CSCI2100: Regular Exercise Set 3

Prepared by Yufei Tao

Problem 1. Prove $\log _{2}(n!)=\Theta(n \log n)$.
Problem 2. Let $f(n)$ be a function of positive integer n. We know:

$$
\begin{aligned}
f(1) & =1 \\
f(n) & =2+f(\lceil n / 10\rceil)
\end{aligned}
$$

Prove $f(n)=O(\log n)$. Recall that $\lceil x\rceil$ is the ceiling operator that returns the smallest integer at least x.

If necessary, you can use without a proof the fact that $f(n)$ is monotone, namely, $f\left(n_{1}\right) \leq f\left(n_{2}\right)$ for any $n_{1}<n_{2}$.

Problem 3. Let $f(n)$ be a function of positive integer n. We know:

$$
\begin{aligned}
& f(1)=1 \\
& f(n)=2+f(\lceil 3 n / 10\rceil) .
\end{aligned}
$$

Prove $f(n)=O(\log n)$. Recall that $\lceil x\rceil$ is the ceiling operator that returns the smallest integer at least x.

Problem 4. Let $f(n)$ be a function of positive integer n. We know:

$$
\begin{aligned}
& f(1)=1 \\
& f(n)=2 n+4 f(\lceil n / 4\rceil) .
\end{aligned}
$$

Prove $f(n)=O(n \log n)$. If necessary, you can use without a proof the fact that $f(n)$ is monotone.
Problem 5 (Bubble Sort). Let us re-visit the sorting problem. Recall that, in this problem, we are given an array A of n integers, and need to re-arrange them in ascending order. Consider the following bubble sort algorithm:

1. If $n=1$, nothing to sort; return.
2. Otherwise, do the following in ascending order of $i \in[1, n-1]$: if $A[i]>A[i+1]$, swap the integers in $A[i]$ and $A[i+1]$.
3. Recur in the part of the array from $A[1]$ to $A[n-1]$.

Prove that the algorithm terminates in $O\left(n^{2}\right)$ time.
As an example, support that A contains the sequence of integers (10, 15, 8, 29, 13). After Step 2 has been executed once, array A becomes ($10,8,15,13,29$).

Problem 6* (Modified Merge Sort). Let us consider a variant of the merge sort algorithm for sorting an array A of n elements (we will use the notation $A[i . . j]$ to represent the part of the array from $A[i]$ to $A[j])$:

- If $n=1$ then return immediately.
- Otherwise set $k=\lceil n / 3\rceil$.
- Recursively sort $A[1 . . k]$ and $A[k+1 . . n]$, respectively.
- Merge $A[1 . . k]$ and $A[k+1 . . n]$ into one sorted array.

Prove that this algorithm runs in $O(n \log n)$ time.

