
CSCI2100: Regular Exercise Set 3

Prepared by Yufei Tao

Problem 1. Prove log2(n!) = Θ(n log n).

Solution. Let us prove first log2(n!) = O(n log n):

log2(n!) = log2(Π
n
i=1i)

≤ log2 n
n

= n log2 n

= O(n log n).

Now we prove log2(n!) = Ω(n log n):

log2(n!) = log2(Π
n
i=1i)

≥ log2(Π
n
i=n/2i)

≥ log2(n/2)n/2

= (n/2) log2(n/2)

= Ω(n log n).

This completes the proof.

Problem 2. Let f(n) be a function of positive integer n. We know:

f(1) = 1

f(n) ≤ 2 + f(dn/10e).

Prove f(n) = O(log n). Recall that dxe is the ceiling operator that returns the smallest integer at
least x.

If necessary, you can use without a proof the fact that f(n) is monotone, namely, f(n1) ≤ f(n2)
for any n1 < n2.

Solution 1 (Expansion). Consider first n being a power of 10.

f(n) ≤ 2 + f(n/10)

≤ 2 + 2 + f(n/102)

≤ 2 + 2 + 2 + f(n/103)

...

≤ 2 · log10 n+ f(1)

= 2 · log10 n+ 1 = O(log n).

Now consider n that is not a power of 10. Let n′ be the smallest power of 10 that is greater

1



than n. We have:

f(n) ≤ f(n′)

≤ 2 log10 n
′ + 1

≤ 2 log10(10n) + 1

≤ O(log n).

Solution 2 (Master Theorem). Let α, β, and γ be as defined in the Master Theorem (see the
tutorial slides of Week 4). Thus, we have α = 1, β = 10, and γ = 0. Since logβ α = log10 1 = 0 = γ,
by the Master Theorem, we know that f(n) = O(nγ log n) = O(log n).

Solution 3 (Substitution). We aim to prove that, when n ≥ c1, f(n) ≤ c2 log2 n for some
constants c1, c2 to be determined later.

• For the base case, we need:

f(c1) ≤ c2 log2 c1

⇒ c2 ≥ f(c1)

c1
.

• For the inductive case, fix an integer k > c1. Assume that this is correct for all c1 ≤ n < k.
Our goal is to find c to make the claim hold also for n = k.

f(n) ≤ 2 + f(dn/10e)
≤ 2 + c2 log2dn/10e

We will consider only n ≥ c1 ≥ 3 so that dn/10e ≤ (n/10) + 1 ≤ n/2. With this, we continue
the above derivation as follows:

f(n) ≤ 2 + c2 log2(n/2) = 2 + c2 log2 n− c2.

To make the above at most c2 log2 n, it suffices to set c2 ≥ 2.

To satisfy all the above, it suffices to set c1 = 3, and c2 ≥ max{2, 1
c1
f(c1)} = max{2, 13f(3)}.

Problem 3. Let f(n) be a function of positive integer n. We know:

f(1) = 1

f(n) ≤ 2 + f(d3n/10e).

Prove f(n) = O(log n). Recall that dxe is the ceiling operator that returns the smallest integer at
least x.

2



Solution 1 (Expansion).

f(n) ≤ 2 + f(n1) (define n1 = d(3/10)ne)
f(n) ≤ 2 + 2 + f(n2) (define n2 = d(3/10)n1e)
f(n) ≤ 2 + 2 + 2 + f(n3) (define n3 = d(3/10)n2e)

...

f(n) ≤ 2 + 2 + ...+ 2︸ ︷︷ ︸
h terms

+f(nh) (define nh = d(3/10)nh−1e)

= 2h+ f(nh). (1)

So it remains to analyze the value of h that makes nh small enough. Note that we do not need to
solve the precise value of h; it suffices to prove an upper bound for h. For this purpose, we reason
as follows. First, notice that

d3n/10e ≤ (4n/10) (2)

when n ≥ 10 (prove this yourself).

Let us set h to be the smallest integer such that nh < 10 (this implies that nh−1 ≥ 10 and
nh ≥ (4/10)nh−1 ≥ 4). We have:

n1 ≤ (4/10)n

n2 = d(3/10)n1e ≤ (4/10)n1 ≤ (4/10)2n

n3 ≤ (4/10)3n

...

nh ≤ (4/10)hn

Therefore, the value of h cannot exceed log 10
4
n (otherwise, (4/10)4 · n < 1, making nh < 1, which

contradicts the fact that nh ≥ 4). Plugging this into (1) gives:

f(n) ≤ 2 log 10
4
n+ f(10) = O(log n). (think: why?)

Solution 2 (Master Theorem). Let α, β, and γ be as defined in the Master Theorem. Thus,
we have α = 1, β = 10/3, and γ = 0. Since logβ α = log10/3 1 = 0 = γ, by the Master Theorem, we
know that f(n) = O(nγ log n) = O(log n).

Solution 3 (Substitution). We aim to prove that, when n ≥ c1, f(n) ≤ c2 log2 n for some
constants c1, c2 to be determined later.

• For the base case, we need:

f(c1) ≤ c2 log2 c1

⇒ c2 ≥ f(c1)

c1
.

• For the inductive case, fix an integer k > c1. Assume that this is correct for all c1 ≤ n < k.
Our goal is to find c to make the claim hold also for n = k.

3



f(n) ≤ 2 + f(d3n/10e)
≤ 2 + c2 log2dn/10e

We will consider only n ≥ c1 ≥ 5 so that d3n/10e ≤ (3n/10) + 1 ≤ n/2. With this, we
continue the above derivation as follows:

f(n) ≤ 2 + c2 log2(n/2) = 2 + c2 log2 n− c2.

To make the above at most c2 log2 n, it suffices to set c2 ≥ 2.

To satisfy all the above, it suffices to set c1 = 5, and c2 ≥ max{2, 1
c1
f(c1)} = max{2, 15f(5)}.

Problem 4. Let f(n) be a function of positive integer n. We know:

f(1) = 1

f(n) ≤ 2n+ 4f(dn/4e).

Prove f(n) = O(n log n).

Solution 1 (Expansion). Consider first n being a power of 4.

f(n) ≤ 2n+ 4f(n/4)

≤ 2n+ 4(2n/4 + 4f(n/42))

≤ 2n+ 2n+ 42f(n/42)

= 2 · 2n+ 42f(n/42)

≤ 2 · 2n+ 42 · (2(n/42) + 4f(n/43))

= 3 · 2n+ 43f(n/43)

...

= (log4 n) · 2n+ n · f(1)

= (log4 n) · 2n+ n = O(n log n).

Now consider that n is not a power of 4. Let n′ be the smallest power of 4 that is greater than
n. This implies that n′ < 4n. We have:

f(n) ≤ f(n′)

≤ (log4 n
′) · 2n′ + n′

< (log4(4n)) · 8n+ 4n = O(n log n).

Solution 2 (Master Theorem). Let α, β, and γ be as defined in the Master Theorem. Thus,
we have α = 4, β = 4, and γ = 1. Since logβ α = log4 4 = 1 = γ, by the Master Theorem, we know
that f(n) = O(nγ log n) = O(n log n).

Solution 3 (Substitution). We aim to prove that, when n ≥ c1, f(n) ≤ c2 log2 n for some
constants c1, c2 to be determined later.

4



• For the base case, we need:

f(c1) ≤ c2 log2 c1

⇒ c2 ≥ f(c1)

c1
.

• For the inductive case, fix an integer k > c1. Assume that this is correct for all c1 ≤ n < k.
Our goal is to find c to make the claim hold also for n = k.

f(n) ≤ 2n+ 4c2dn/4e log2dn/4e
≤ 2n+ 4c2(n/4 + 1) log2(n/4 + 1).

We will consider only n ≥ c1 ≥ 5 so that n/4 + 1 ≤ n/2. With this, we continue the above
derivation as follows:

f(n) ≤ 2n+ 4c2(n/4 + 1) log2(n/2)

= 2n+ (c2n+ 4c2)(log2 n− 1)

≤ 2n+ (c2n+ 4c2) log2 n− c2n
≤ 2n+ c2n log2 n+ 4c2 log2 n− c2n

To make the above smaller than or equal to c2n log2 n, it suffices to make sure:

2n+ 4c2 log2 n ≤ c2n

We will consider only n ≥ c1 ≥ 28 so that log2 n ≤ n/8. To make sure the above, it suffices to
guarantee:

2n+ 4c2(n/8) ≤ c2n

⇔ 2n+ c2n/2 ≤ c2n

⇔ 2n ≤ c2n/2

⇔ 4 ≤ c2.

To satisfy all the above, it suffices to set c1 = 28, and c2 ≥ max{4, 1
c1
f(c1)} = max{4, 1

28
f(28)}.

Problem 5 (Bubble Sort). Let us re-visit the sorting problem. Recall that, in this problem, we
are given an array A of n integers, and need to re-arrange them in ascending order. Consider the
following bubble sort algorithm:

1. If n = 1, nothing to sort; return.

2. Otherwise, do the following in ascending order of i ∈ [1, n − 1]: if A[i] > A[i + 1], swap the
integers in A[i] and A[i+ 1].

3. Recur in the part of the array from A[1] to A[n− 1].

Prove that the algorithm terminates in O(n2) time.

As an example, support that A contains the sequence of integers (10, 15, 8, 29, 13). After Step
2 has been executed once, array A becomes (10, 8, 15, 13, 29).

5



Solution 1. Notice that Step 2 is executed n − 1 times in total. At its j-th (1 ≤ j ≤ n − 1)
execution, it incurs at most c · j time for some constant c > 0. Hence, its worst-case time is no
more than

c
n−1∑
j=1

j = cn(n− 1)/2 < cn2 = O(n2).

Solution 2. Let f(n) be the worst-case running time of bubble sort when the array has n elements.
From the base case (Step 1), we know:

f(1) ≤ c1

for some constant c1. From the inductive case (Steps 2-3), we know:

f(n) ≤ c2n+ f(n− 1)

for some constant c2. Solving the recurrence (by the expansion method) gives f(n) = O(n2).

Problem 6* (Modified Merge Sort). Let us consider a variant of the merge sort algorithm for
sorting an array A of n elements (we will use the notation A[i..j] to represent the part of the array
from A[i] to A[j]):

• If n = 1 then return immediately.

• Otherwise set k = dn/3e.

• Recursively sort A[1..k] and A[k + 1..n], respectively.

• Merge A[1..k] and A[k + 1..n] into one sorted array.

Prove that this algorithm runs in O(n log n) time.

Solution. Let f(n) be the worst case time of the algorithm on an array of size n. We have: the
following recurrence:

f(1) ≤ α

f(n) ≤ f(dn/3e) + f(d2n/3e) + β · n

where α > 0 and β > 0 are constants. Next we will prove that f(n) = O(n log n) using the
substitution method. To simplify discussion, let us get rid of α by defining: g(n) = f(n)− α. We
thus have:

g(1) ≤ 0

g(n) ≤ g(dn/3e) + g(d2n/3e) + α+ β · n
≤ g(dn/3e) + g(d2n/3e) + (α+ β) · n

We will prove instead that g(n) = O(n log n) which will imply that g(n) = O(n log n).

To further simplify discussion, let us define h(n) = 1
α+β · g(n). Hence, we have

h(1) ≤ 0 (3)

h(n) ≤ h(dn/3e) + h(d2n/3e) + n (4)

6



We will prove that h(n) = O(n log n) which will imply that g(n) = O(n log n).

Assume that h(n) ≤ cn log2 n for some constant c > 0. It is easy to verify that this is true for
h(1), h(2), ..., h(32) as long as c is greater than a certain constant, say, β.

Suppose that h(n) ≤ cn log2 n for all n ≤ k − 1 and an arbitrary integer k > 32. Next, we will
work out the condition for this to hold also on n = k as well. From (4), we have:

h(k) ≤ h(dk/3e) + h(d2k/3e) + k

≤ cdk/3e log2dk/3e+ cd2k/3e log2d2k/3e+ k

≤ c(1 + k/3) log2(1 + k/3) + c(1 + 2k/3) log2(1 + 2k/3) + k (5)

For k > 32, it always holds that 1 + k/3 ≤ k/2 and 1 + 2k/3 ≤ k. Hence we have from (5):

h(k) ≤ c(1 + k/3) log2(k/2) + c(1 + 2k/3) log2 k + k

= c(1 + k/3)((log2 k)− 1) + c(1 + 2k/3) log2 k + k

= ck log2 k + c log2 k − c− ck/3 + c log2 k + k

≤ ck log2 k + 2c log2 k − ck/3 + k

We want the above to be no greater than ck log2 k for our argument to work. This is true as long
as

2c log2 k − ck/3 + k ≤ 0

⇔ 2c log2 k ≤ (c/3− 1)k.

The above holds for any k > 32 as long as c ≥ 48.

We can therefore set c = max{48, β}, and assert that h(n) ≤ cn log2 n.

7


