CSCI2100: Regular Exercise Set 3

Prepared by Yufei Tao

Problem 1. Prove $\log _{2}(n!)=\Theta(n \log n)$.
Solution. Let us prove first $\log _{2}(n!)=O(n \log n)$:

$$
\begin{aligned}
\log _{2}(n!) & =\log _{2}\left(\Pi_{i=1}^{n} i\right) \\
& \leq \log _{2} n^{n} \\
& =n \log _{2} n \\
& =O(n \log n) .
\end{aligned}
$$

Now we prove $\log _{2}(n!)=\Omega(n \log n)$:

$$
\begin{aligned}
\log _{2}(n!) & =\log _{2}\left(\Pi_{i=1}^{n} i\right) \\
& \geq \log _{2}\left(\Pi_{i=n / 2}^{n} i\right) \\
& \geq \log _{2}(n / 2)^{n / 2} \\
& =(n / 2) \log _{2}(n / 2) \\
& =\Omega(n \log n) .
\end{aligned}
$$

This completes the proof.
Problem 2. Let $f(n)$ be a function of positive integer n. We know:

$$
\begin{aligned}
f(1) & =1 \\
f(n) & \leq 2+f(\lceil n / 10\rceil) .
\end{aligned}
$$

Prove $f(n)=O(\log n)$. Recall that $\lceil x\rceil$ is the ceiling operator that returns the smallest integer at least x.

If necessary, you can use without a proof the fact that $f(n)$ is monotone, namely, $f\left(n_{1}\right) \leq f\left(n_{2}\right)$ for any $n_{1}<n_{2}$.

Solution 1 (Expansion). Consider first n being a power of 10 .

$$
\begin{aligned}
f(n) & \leq 2+f(n / 10) \\
& \leq 2+2+f\left(n / 10^{2}\right) \\
& \leq 2+2+2+f\left(n / 10^{3}\right) \\
& \cdots \\
& \leq 2 \cdot \log _{10} n+f(1) \\
& =2 \cdot \log _{10} n+1=O(\log n)
\end{aligned}
$$

Now consider n that is not a power of 10 . Let n^{\prime} be the smallest power of 10 that is greater
than n. We have:

$$
\begin{aligned}
f(n) & \leq f\left(n^{\prime}\right) \\
& \leq 2 \log _{10} n^{\prime}+1 \\
& \leq 2 \log _{10}(10 n)+1 \\
& \leq O(\log n)
\end{aligned}
$$

Solution 2 (Master Theorem). Let α, β, and γ be as defined in the Master Theorem (see the tutorial slides of Week 4). Thus, we have $\alpha=1, \beta=10$, and $\gamma=0$. Since $\log _{\beta} \alpha=\log _{10} 1=0=\gamma$, by the Master Theorem, we know that $f(n)=O\left(n^{\gamma} \log n\right)=O(\log n)$.

Solution 3 (Substitution). We aim to prove that, when $n \geq c_{1}, f(n) \leq c_{2} \log _{2} n$ for some constants c_{1}, c_{2} to be determined later.

- For the base case, we need:

$$
\begin{aligned}
f\left(c_{1}\right) & \leq c_{2} \log _{2} c_{1} \\
\Rightarrow c_{2} & \geq \frac{f\left(c_{1}\right)}{c_{1}}
\end{aligned}
$$

- For the inductive case, fix an integer $k>c_{1}$. Assume that this is correct for all $c_{1} \leq n<k$. Our goal is to find c to make the claim hold also for $n=k$.

$$
\begin{aligned}
f(n) & \leq 2+f(\lceil n / 10\rceil) \\
& \leq 2+c_{2} \log _{2}\lceil n / 10\rceil
\end{aligned}
$$

We will consider only $n \geq c_{1} \geq 3$ so that $\lceil n / 10\rceil \leq(n / 10)+1 \leq n / 2$. With this, we continue the above derivation as follows:

$$
f(n) \leq 2+c_{2} \log _{2}(n / 2)=2+c_{2} \log _{2} n-c_{2} .
$$

To make the above at most $c_{2} \log _{2} n$, it suffices to set $c_{2} \geq 2$.
To satisfy all the above, it suffices to set $c_{1}=3$, and $c_{2} \geq \max \left\{2, \frac{1}{c_{1}} f\left(c_{1}\right)\right\}=\max \left\{2, \frac{1}{3} f(3)\right\}$.
Problem 3. Let $f(n)$ be a function of positive integer n. We know:

$$
\begin{aligned}
& f(1)=1 \\
& f(n) \leq 2+f(\lceil 3 n / 10\rceil) .
\end{aligned}
$$

Prove $f(n)=O(\log n)$. Recall that $\lceil x\rceil$ is the ceiling operator that returns the smallest integer at least x.

Solution 1 (Expansion).

$$
\begin{align*}
f(n) & \leq 2+f\left(n_{1}\right) \quad\left(\text { define } n_{1}=\lceil(3 / 10) n\rceil\right) \\
f(n) & \leq 2+2+f\left(n_{2}\right) \quad\left(\text { define } n_{2}=\left\lceil(3 / 10) n_{1}\right\rceil\right) \\
f(n) & \leq 2+2+2+f\left(n_{3}\right) \quad\left(\text { define } n_{3}=\left\lceil(3 / 10) n_{2}\right\rceil\right) \\
& \cdots \\
f(n) & \leq \underbrace{2+2+\ldots+2}_{h \text { terms }}+f\left(n_{h}\right) \quad\left(\text { define } n_{h}=\left\lceil(3 / 10) n_{h-1}\right\rceil\right) \tag{1}\\
& =2 h+f\left(n_{h}\right) .
\end{align*}
$$

So it remains to analyze the value of h that makes n_{h} small enough. Note that we do not need to solve the precise value of h; it suffices to prove an upper bound for h. For this purpose, we reason as follows. First, notice that

$$
\begin{equation*}
\lceil 3 n / 10\rceil \leq(4 n / 10) \tag{2}
\end{equation*}
$$

when $n \geq 10$ (prove this yourself).
Let us set h to be the smallest integer such that $n_{h}<10$ (this implies that $n_{h-1} \geq 10$ and $\left.n_{h} \geq(4 / 10) n_{h-1} \geq 4\right)$. We have:

$$
\begin{aligned}
n_{1} & \leq(4 / 10) n \\
n_{2} & =\left\lceil(3 / 10) n_{1}\right\rceil \leq(4 / 10) n_{1} \leq(4 / 10)^{2} n \\
n_{3} & \leq(4 / 10)^{3} n \\
& \cdots \\
n_{h} & \leq(4 / 10)^{h} n
\end{aligned}
$$

Therefore, the value of h cannot exceed $\log _{\frac{10}{4}} n$ (otherwise, $(4 / 10)^{4} \cdot n<1$, making $n_{h}<1$, which contradicts the fact that $n_{h} \geq 4$). Plugging this into (1) gives:

$$
f(n) \leq 2 \log _{\frac{10}{4}} n+f(10)=O(\log n) . \quad \text { (think: why?) }
$$

Solution 2 (Master Theorem). Let α, β, and γ be as defined in the Master Theorem. Thus, we have $\alpha=1, \beta=10 / 3$, and $\gamma=0$. Since $\log _{\beta} \alpha=\log _{10 / 3} 1=0=\gamma$, by the Master Theorem, we know that $f(n)=O\left(n^{\gamma} \log n\right)=O(\log n)$.

Solution 3 (Substitution). We aim to prove that, when $n \geq c_{1}, f(n) \leq c_{2} \log _{2} n$ for some constants c_{1}, c_{2} to be determined later.

- For the base case, we need:

$$
\begin{aligned}
f\left(c_{1}\right) & \leq c_{2} \log _{2} c_{1} \\
\Rightarrow c_{2} & \geq \frac{f\left(c_{1}\right)}{c_{1}}
\end{aligned}
$$

- For the inductive case, fix an integer $k>c_{1}$. Assume that this is correct for all $c_{1} \leq n<k$. Our goal is to find c to make the claim hold also for $n=k$.

$$
\begin{aligned}
f(n) & \leq 2+f(\lceil 3 n / 10\rceil) \\
& \leq 2+c_{2} \log _{2}\lceil n / 10\rceil
\end{aligned}
$$

We will consider only $n \geq c_{1} \geq 5$ so that $\lceil 3 n / 10\rceil \leq(3 n / 10)+1 \leq n / 2$. With this, we continue the above derivation as follows:

$$
f(n) \leq 2+c_{2} \log _{2}(n / 2)=2+c_{2} \log _{2} n-c_{2}
$$

To make the above at most $c_{2} \log _{2} n$, it suffices to set $c_{2} \geq 2$.
To satisfy all the above, it suffices to set $c_{1}=5$, and $c_{2} \geq \max \left\{2, \frac{1}{c_{1}} f\left(c_{1}\right)\right\}=\max \left\{2, \frac{1}{5} f(5)\right\}$.
Problem 4. Let $f(n)$ be a function of positive integer n. We know:

$$
\begin{aligned}
& f(1)=1 \\
& f(n) \leq 2 n+4 f(\lceil n / 4\rceil) .
\end{aligned}
$$

Prove $f(n)=O(n \log n)$.
Solution 1 (Expansion). Consider first n being a power of 4 .

$$
\begin{aligned}
f(n) & \leq 2 n+4 f(n / 4) \\
& \leq 2 n+4\left(2 n / 4+4 f\left(n / 4^{2}\right)\right) \\
& \leq 2 n+2 n+4^{2} f\left(n / 4^{2}\right) \\
& =2 \cdot 2 n+4^{2} f\left(n / 4^{2}\right) \\
& \leq 2 \cdot 2 n+4^{2} \cdot\left(2\left(n / 4^{2}\right)+4 f\left(n / 4^{3}\right)\right) \\
& =3 \cdot 2 n+4^{3} f\left(n / 4^{3}\right) \\
& \cdots \\
& =\left(\log _{4} n\right) \cdot 2 n+n \cdot f(1) \\
& =\left(\log _{4} n\right) \cdot 2 n+n=O(n \log n) .
\end{aligned}
$$

Now consider that n is not a power of 4 . Let n^{\prime} be the smallest power of 4 that is greater than n. This implies that $n^{\prime}<4 n$. We have:

$$
\begin{aligned}
f(n) & \leq f\left(n^{\prime}\right) \\
& \leq\left(\log _{4} n^{\prime}\right) \cdot 2 n^{\prime}+n^{\prime} \\
& <\left(\log _{4}(4 n)\right) \cdot 8 n+4 n=O(n \log n)
\end{aligned}
$$

Solution 2 (Master Theorem). Let α, β, and γ be as defined in the Master Theorem. Thus, we have $\alpha=4, \beta=4$, and $\gamma=1$. Since $\log _{\beta} \alpha=\log _{4} 4=1=\gamma$, by the Master Theorem, we know that $f(n)=O\left(n^{\gamma} \log n\right)=O(n \log n)$.

Solution 3 (Substitution). We aim to prove that, when $n \geq c_{1}, f(n) \leq c_{2} \log _{2} n$ for some constants c_{1}, c_{2} to be determined later.

- For the base case, we need:

$$
\begin{aligned}
f\left(c_{1}\right) & \leq c_{2} \log _{2} c_{1} \\
\Rightarrow c_{2} & \geq \frac{f\left(c_{1}\right)}{c_{1}}
\end{aligned}
$$

- For the inductive case, fix an integer $k>c_{1}$. Assume that this is correct for all $c_{1} \leq n<k$. Our goal is to find c to make the claim hold also for $n=k$.

$$
\begin{aligned}
f(n) & \leq 2 n+4 c_{2}\lceil n / 4\rceil \log _{2}\lceil n / 4\rceil \\
& \leq 2 n+4 c_{2}(n / 4+1) \log _{2}(n / 4+1)
\end{aligned}
$$

We will consider only $n \geq c_{1} \geq 5$ so that $n / 4+1 \leq n / 2$. With this, we continue the above derivation as follows:

$$
\begin{aligned}
f(n) & \leq 2 n+4 c_{2}(n / 4+1) \log _{2}(n / 2) \\
& =2 n+\left(c_{2} n+4 c_{2}\right)\left(\log _{2} n-1\right) \\
& \leq 2 n+\left(c_{2} n+4 c_{2}\right) \log _{2} n-c_{2} n \\
& \leq 2 n+c_{2} n \log _{2} n+4 c_{2} \log _{2} n-c_{2} n
\end{aligned}
$$

To make the above smaller than or equal to $c_{2} n \log _{2} n$, it suffices to make sure:

$$
2 n+4 c_{2} \log _{2} n \leq c_{2} n
$$

We will consider only $n \geq c_{1} \geq 2^{8}$ so that $\log _{2} n \leq n / 8$. To make sure the above, it suffices to guarantee:

$$
\begin{aligned}
2 n+4 c_{2}(n / 8) & \leq c_{2} n \\
\Leftrightarrow 2 n+c_{2} n / 2 & \leq c_{2} n \\
\Leftrightarrow 2 n & \leq c_{2} n / 2 \\
\Leftrightarrow 4 & \leq c_{2} .
\end{aligned}
$$

To satisfy all the above, it suffices to set $c_{1}=2^{8}$, and $c_{2} \geq \max \left\{4, \frac{1}{c_{1}} f\left(c_{1}\right)\right\}=\max \left\{4, \frac{1}{2^{8}} f\left(2^{8}\right)\right\}$.
Problem 5 (Bubble Sort). Let us re-visit the sorting problem. Recall that, in this problem, we are given an array A of n integers, and need to re-arrange them in ascending order. Consider the following bubble sort algorithm:

1. If $n=1$, nothing to sort; return.
2. Otherwise, do the following in ascending order of $i \in[1, n-1]$: if $A[i]>A[i+1]$, swap the integers in $A[i]$ and $A[i+1]$.
3. Recur in the part of the array from $A[1]$ to $A[n-1]$.

Prove that the algorithm terminates in $O\left(n^{2}\right)$ time.
As an example, support that A contains the sequence of integers (10, 15, 8, 29, 13). After Step 2 has been executed once, array A becomes ($10,8,15,13,29$).

Solution 1. Notice that Step 2 is executed $n-1$ times in total. At its j-th $(1 \leq j \leq n-1)$ execution, it incurs at most $c \cdot j$ time for some constant $c>0$. Hence, its worst-case time is no more than

$$
c \sum_{j=1}^{n-1} j=c n(n-1) / 2<c n^{2}=O\left(n^{2}\right) .
$$

Solution 2. Let $f(n)$ be the worst-case running time of bubble sort when the array has n elements. From the base case (Step 1), we know:

$$
f(1) \leq c_{1}
$$

for some constant c_{1}. From the inductive case (Steps 2-3), we know:

$$
f(n) \leq c_{2} n+f(n-1)
$$

for some constant c_{2}. Solving the recurrence (by the expansion method) gives $f(n)=O\left(n^{2}\right)$.
Problem 6* (Modified Merge Sort). Let us consider a variant of the merge sort algorithm for sorting an array A of n elements (we will use the notation $A[i . . j]$ to represent the part of the array from $A[i]$ to $A[j])$:

- If $n=1$ then return immediately.
- Otherwise set $k=\lceil n / 3\rceil$.
- Recursively sort $A[1 . . k]$ and $A[k+1 . . n]$, respectively.
- Merge $A[1 . . k]$ and $A[k+1 . . n]$ into one sorted array.

Prove that this algorithm runs in $O(n \log n)$ time.
Solution. Let $f(n)$ be the worst case time of the algorithm on an array of size n. We have: the following recurrence:

$$
\begin{aligned}
& f(1) \leq \alpha \\
& f(n) \leq f(\lceil n / 3\rceil)+f(\lceil 2 n / 3\rceil)+\beta \cdot n
\end{aligned}
$$

where $\alpha>0$ and $\beta>0$ are constants. Next we will prove that $f(n)=O(n \log n)$ using the substitution method. To simplify discussion, let us get rid of α by defining: $g(n)=f(n)-\alpha$. We thus have:

$$
\begin{aligned}
g(1) & \leq 0 \\
g(n) & \leq g(\lceil n / 3\rceil)+g(\lceil 2 n / 3\rceil)+\alpha+\beta \cdot n \\
& \leq g(\lceil n / 3\rceil)+g(\lceil 2 n / 3\rceil)+(\alpha+\beta) \cdot n
\end{aligned}
$$

We will prove instead that $g(n)=O(n \log n)$ which will imply that $g(n)=O(n \log n)$.
To further simplify discussion, let us define $h(n)=\frac{1}{\alpha+\beta} \cdot g(n)$. Hence, we have

$$
\begin{align*}
h(1) & \leq 0 \tag{3}\\
h(n) & \leq h(\lceil n / 3\rceil)+h(\lceil 2 n / 3\rceil)+n \tag{4}
\end{align*}
$$

We will prove that $h(n)=O(n \log n)$ which will imply that $g(n)=O(n \log n)$.
Assume that $h(n) \leq c n \log _{2} n$ for some constant $c>0$. It is easy to verify that this is true for $h(1), h(2), \ldots, h(32)$ as long as c is greater than a certain constant, say, β.

Suppose that $h(n) \leq c n \log _{2} n$ for all $n \leq k-1$ and an arbitrary integer $k>32$. Next, we will work out the condition for this to hold also on $n=k$ as well. From (4), we have:

$$
\begin{align*}
h(k) & \leq h(\lceil k / 3\rceil)+h(\lceil 2 k / 3\rceil)+k \\
& \leq c\lceil k / 3\rceil \log _{2}\lceil k / 3\rceil+c\lceil 2 k / 3\rceil \log _{2}\lceil 2 k / 3\rceil+k \\
& \leq c(1+k / 3) \log _{2}(1+k / 3)+c(1+2 k / 3) \log _{2}(1+2 k / 3)+k \tag{5}
\end{align*}
$$

For $k>32$, it always holds that $1+k / 3 \leq k / 2$ and $1+2 k / 3 \leq k$. Hence we have from (5):

$$
\begin{aligned}
h(k) & \leq c(1+k / 3) \log _{2}(k / 2)+c(1+2 k / 3) \log _{2} k+k \\
& =c(1+k / 3)\left(\left(\log _{2} k\right)-1\right)+c(1+2 k / 3) \log _{2} k+k \\
& =c k \log _{2} k+c \log _{2} k-c-c k / 3+c \log _{2} k+k \\
& \leq c k \log _{2} k+2 c \log _{2} k-c k / 3+k
\end{aligned}
$$

We want the above to be no greater than $c k \log _{2} k$ for our argument to work. This is true as long as

$$
\begin{aligned}
2 c \log _{2} k-c k / 3+k & \leq 0 \\
\Leftrightarrow \quad 2 c \log _{2} k & \leq(c / 3-1) k .
\end{aligned}
$$

The above holds for any $k>32$ as long as $c \geq 48$.
We can therefore set $c=\max \{48, \beta\}$, and assert that $h(n) \leq c n \log _{2} n$.

