CSCI2100: Regular Exercise Set 13

Prepared by Yufei Tao

Problem 1 (Correctness of Dijkstra) Prove that Dijkstra's algorithm correctly computes all the shortest paths from the source vertex.

Solution. Let s be the source vertex. Recall that the algorithm works by repetitively removing the vertex u from S that has the smallest $\operatorname{dist}(u)$. We will prove that, when u is removed, $\operatorname{dist}(u)$ equals precisely the shortest path distance - denoted as $\operatorname{spdist}(u)$ - from s to u.

We will prove the claim by induction on the sequence of vertices removed. This is obviously true for the first vertex removed, which is s itself with $\operatorname{dist}(s)=0$.

Now consider that we are removing vertex u from S, and the claim is true with respect to all the vertices already removed. Consider any shortest path π from s to u. Let v be the predecessor of u on this path. We will prove that v has already been removed. This will complete the proof because when v is removed, we have:

- $\operatorname{spdist}(v)=\operatorname{dist}(v)$
- Relaxing the edge (v, u) makes $\operatorname{dist}(u)=\operatorname{dist}(v)+w(u, v)=\operatorname{spdist}(v)$.

We will prove that all the vertices on π have been removed (and hence, v as well) at the moment when u is removed. Suppose that this is not true. Let v^{\prime} be the first vertex (in the direction from s to u) on π that still remains in S. Let p be the predecessor of v^{\prime} on π. By the inductive assumption, we know that $\operatorname{dist}(p)=\operatorname{spdist}(p)$ when p was removed. Hence, after relaxing the edge $\left(p, v^{\prime}\right)$, we had $\operatorname{dist}\left(v^{\prime}\right)=\operatorname{dist}(p)+w\left(p, v^{\prime}\right)=\operatorname{spdist}\left(v^{\prime}\right)<\operatorname{dist}(u)$. This means that v^{\prime} should be the next vertex to remove, contradicting that the algorithm has chosen u.

Problem 2. Let S be a set of integer pairs of the form $(i d, v)$. We will refer to the first field as the $i d$ of the pair, and the second as the key of the pair. Design a data structure that supports the following operations:

- Insert: add a new pair $(i d, v)$ to S (you can assume that S does not already have a pair with the same id).
- Delete: given an integer t, delete the pair $(i d, v)$ from S where $t=i d$, if such a pair exists.
- DeleteMin: remove from S the pair with the smallest key, and return it. .

Your structure must consume $O(n)$ space, and support all operations in $O(\log n)$ time where $n=|S|$.
Solution. Maintain S in two binary search trees T_{1} and T_{2}, where the pairs are indexed on ids in T_{1}, and on keys in T_{2}. We support the three operations as follows:

- Insert: simply insert the new pair $(i d, v)$ into both T_{1} and T_{2}.
- Delete: first find the pair with id t in T_{1}, from which we know the key v of the pair. Now, delete the pair (t, v) from both T_{1} and T_{2}.
- DeleteMin: find the pair with the smallest key v from T_{2} (which can be found by continuously descending into left child nodes). Now we have its id t as well. Remove (t, v) from T_{1} and T_{2}.

Problem 3. Describe how to implement the Dijkstra's algorithm on a graph $G=(V, E)$ in $O((|V|+|E|) \cdot \log |V|)$ time.

Solution. Recall that the algorithm maintains (i) a set S of vertices at all times, and (ii) an integer value $\operatorname{dist}(v)$ for each vertex $v \in S$. Define P to be the set of $(v, \operatorname{dist}(v))$ pairs (one for each $v \in S$). We need the following operations on P :

- Insert: add a pair $(v, \operatorname{dist}(v))$ to P.
- DecreaseKey: given a vertex $v \in S$ and an integer $x<\operatorname{dist}(v)$, update the pair $(v, \operatorname{dist}(v))$ to (v, x) (and thereby, setting $\operatorname{dist}(v)=x$ in $P)$.
- DeleteMin: Remove from P the pair $(v, \operatorname{dist}(v))$ with the smalelst $\operatorname{dist}(v)$.

We can store P in a data structure of Problem 2 which supports all operations in $O(\log |V|)$ time (note: DecreaseKey can be implemented as a Delete followed by an Insert).

In addition to the above structure, we store all the $\operatorname{dist}(v)$ values in an array A of length $|V|$, so that using the id of a vertex v, we can find its $\operatorname{dist}(v)$ in constant time.

Now we can implement the algorithm as follows. Initially, insert only $(s, 0)$ into P, where s is the source vertex. Also, in A, set all the values to ∞, except the cell of s which equals 0 .

Then, we repeat the following until P is empty:

- Perform a DeleteMin to obtain a pair $(v, \operatorname{dist}(v))$.
- For every edge (v, u), compare $\operatorname{dist}(u)$ to $\operatorname{dist}(v)+w(u, v)$. If the latter is smaller, perform a DecreaseKey on vertex u to set $\operatorname{dist}(u)=\operatorname{dist}(v)+w(u, v)$, and update the cell of u in A with this value as well.

Problem 4. Prove: in a weighted undirected graph $G=(V, E)$ where all the edges have distinct weights, the minimum spanning tree (MST) is unique.

Solution. We will prove that the tree T returned by the Prim's algorithm is the only MST. Set $n=|V|$. Let $e_{1}, e_{2}, \ldots, e_{n-1}$ be the sequence of edges that the algorithm adds to T. Suppose, on the contrary, that there is another MST T^{\prime}. Let k be the smallest i such that e_{i} is not in T^{\prime}.

- Case 1: $k=1$. This means that e_{1}, which is the edge with the smallest weight, is not in T^{\prime}. Add e_{1} to T^{\prime} to create a cycle, and remove from the cycle the edge with the largest weight. This create another spanning tree whose cost is strictly smaller than T^{\prime} (remember: all the edges are distinct), contradicting the fact that T^{\prime} is an MST.
- Case 2: $k>1$. Recall that edges $e_{1}, e_{2}, \ldots, e_{k-1}$ form a tree. Let S be the set of vertices in this tree. Add $e_{k}=\{u, v\}$ into T^{\prime} to create a cycle. Suppose $u \in S$; it follows that $v \notin S$. Let us walk on the cycle from v, by going into S, traveling within S, and stopping as soon as we exist S. Let $\left\{u^{\prime}, v\right\}$ be the last edge crossed (namely, one of u^{\prime}, v^{\prime} is in S, while the other one is not). By the way Prim's algorithm runs and the fact that all edges have distinct weights, we know that $\{u, v\}$ has a smaller weight than $\left\{u^{\prime}, v^{\prime}\right\}$. Thus, removing $\left\{u^{\prime}, v^{\prime}\right\}$ from T^{\prime} gives spanning tree with strictly smaller cost, which creates a contradiction.

Problem 5. Describe how to implement the Prim's algorithm on a graph $G=(V, E)$ in $O((|V|+$ $|E|) \cdot \log |V|)$ time.

Solution. Remember that the algorithm incrementally grows a tree T which at the end becomes the final minimum spanning tree. Let S be the set of vertices that are currently in T. At all times, the algorithm maintains, for every vertex $v \in V \backslash S$, its lightest extension edge best-ext (v), and the weight of this edge.

To implement this, we maintain a set P of triples, one for every vertex $u \in V \backslash S$. Specifically, the triple of u has the form (u, v, t), indicating that best-ext (u) is the edge $\{u, v\}$ (i.e., $v \in S$), whose weight is t. We need the following operations on P :

- Insert: add a triple (u, v, t) to P.
- DecreaseKey: given a vertex $v^{\prime} \in S$ and an extension edge $\left\{u, v^{\prime}\right\}$ (i.e., $u \notin S$), this operation does the following. First, fetch the triple (u, v, t). Then, compare t to the weight t^{\prime} of $\left\{u, v^{\prime}\right\}$. If $t^{\prime}<t$, update the triple (u, v, t) to $\left(u, v^{\prime}, t^{\prime}\right)$; otherwise, do nothing.
- DeleteMin: Remove from P the triple (u, v, t) with the smallest t.

We can store P in a data structure of Problem 2 which supports all operations in $O(\log |V|)$ time (note: DecreaseKey can be implemented as a Delete followed by an Insert). Besides the above structure, we also store an array A of length $|V|$ to so that we can query in constant time, for any vertex $v \in V$, whether v is in S currently.

Now we can implement the algorithm as follows. Let $\left\{v_{1}, v_{2}\right\}$ be an edge with the smallest weight in G. The set S contains only v_{1} and v_{2} at this point. For every vertex $u \in V \backslash S$ where $S=\left\{v_{1}, v_{2}\right\}$, we check whether u has extension edges to v_{1} and v_{2}. If neither edge exists, insert triple $(u, n i l, \infty)$ to P. Otherwise, suppose without loss of generality that $\left\{u, v_{1}\right\}$ is the lighter extension edge of u with weight t; insert a triple $\left(u, v_{1}, t\right)$ into P.

Repeat the following until P is empty:

- Perform a DeleteMin to obtain a triple (u, v, t).
- Recall that u should be added to S, which may need to change the extension edges of some other vertices. To implement this, for every edge $\left(u, u^{\prime}\right)$ of u where $u^{\prime} \notin S$, perform DecreaseKey with u^{\prime} and $\left\{u, u^{\prime}\right\}$.

