## CSCI2100: Regular Exercise Set 11

Prepared by Yufei Tao

Problem 1. Let $G=(V, E)$ be a directed graph. Suppose that we perform BFS starting from a source vertex $s$, and obtain a BFS-tree $T$. For any vertex $v \in V$, denote by $l(v)$ the level of $v$ in the BFS-tree. Prove that BFS en-queues the vertices $v$ of $V$ in non-descending order of $l(v)$.

Problem 2. Let $G=(V, E)$ be a directed graph. Suppose that we perform BFS starting from a source vertex $s$, and obtain a BFS-tree $T$. For any vertex $v \in V$, prove that the path from $s$ to $v$ in $T$ is a shortest path from $s$ to $v$ in $G$.

Problem 3. Let $G=(V, E)$ be an undirected graph. We will denote an edge between vertices $u, v$ as $\{u, v\}$. Next, we define the single source shortest path (SSSP) problem on $G$. Define a path from $s$ to $t$ as a sequence of edges $\left\{v_{1}, v_{2}\right\},\left\{v_{2}, v_{3}\right\}, \ldots,\left\{v_{t}, v_{t+1}\right\}$, where $t \geq 1, v_{1}=s$, and $v_{t+1}=t$. The length of the path equals $t$. Then, the SSSP problem gives a source vertex $s$, and asks to find shortest paths from $s$ to all the other vertices in $G$. Adapt BFS to solve this problem in $O(|V|+|E|)$ time. Once again, you need to produce a BFS tree where, for each vertex $v \in V$, the path from the root to $v$ gives a shortest path from $s$ to $v$.

Problem 4 (Connected Components). Let $G=(V, E)$ be an undirected graph. A connected component (CC) of $G$ includes a set $S \subseteq V$ of vertices such that

- For any vertices $u, v \in S$, there is a path from $u$ to $v$, and a path from $v$ to $u$.
- (Maximality) It is not possible to add any vertex into $S$ while still ensuring the previous property.


For example, in the above graph, $\{a, b, c, d, e\}$ is a CC, but $\{a, b, c, d\}$ is not, and neither is $\{g, f, e\}$.
Prove: Let $S_{1}, S_{2}$ be two CCs. Then, they must be disjoint, i.e., $S_{1} \cap S_{2}=\emptyset$.
Problem 5. Let $G=(V, E)$ be an undirected graph. Describe an algorithm to divide $V$ into a set of CCs. For example, in the example of Problem 5, your algorithm should return 3 CCs: $\{a, b, c, d, e\},,\{g, f\}$, and $\{h, i, j\}$.

