
CSCI2100: Regular Exercise Set 10

Prepared by Yufei Tao

Problem 1*. Prove that an insertion into the AVL-tree can trigger at most one (single/double)
rotation.

Solution. Recall that each insertion descends a single root-to-leaf path. Let Π be the insertion
path (the leaf on Π stores the newly inserted element). Let u be the lowest node on Π that is now
imbalanced. Let p be any proper ancestor of u on Π that has become imbalanced. We will show
that, fixing the imbalance at u automatically restores the balance at p.

Without loss of generality, suppose that u is in the right subtree of p. Since p is now imbalanced,
currently its right subtree height must be 2 plus its left subtree height. We will prove that after
fixing the imbalance at u, the right subtree height of u decreases by 1. This, in turn, decreases the
right subtree height of p by 1, thus restoring the balance at p.

Recall that single and double rotations are performed as follows:

h + 1

h

b

C

CB BA

A

b

a

a

⇒h + 1 x

h + 2 h h + 1

hx

x + 1

(a) Single rotation (remedying left-left)

⇒ h

b

c

h+ 1

h

a

b

A

C

⇒

c

b

A

B

B

a

C

D

D

a
hh+ 2

h+ 1h

hh+ 2

h+ 1h

x y

x yh h

h+ 1h+ 1

(b) Double rotation (remedying left-right)

Figure 1: Rotations

Let us first look at single rotation. Observe that the value of x must be h in an insertion
(otherwise, a was imbalanced even before the insertion, which is impossible). This means that the
height of the subtree rooted at node a decreases from h + 2 to h + 1 (note that after the rotation
the subtree is rooted at node b), as claimed.

The claim is obvious in double rotation, as shown in the figure.

1

Problem 2**. Prove that it suffices to handle only 2-level imbalance in the insertion and deletion
algorithms of the AVL-tree. In other words, neither algorithm will run into a situation where
an imbalanced node sees an absolute difference of 3 or higher in the heights of its left and right
subtrees.

Solution. Our solution to Problem 1 essentially serves as the proof here for the insertion algorithm.

Let us now look at the case of deletion. Let Π be the root-to-leaf path followed by the deletion
algorithm. The algorithm removes the leaf node of Π, and then fixes the imbalanced nodes of Π in
bottom-up order. Next, we will prove the following claims:

1. Before fixing an imbalanced node u, all other nodes on Π are balanced.

2. u has a 2-level imbalance situation.

This will complete our proof for the deletion case as well.

We will prove Claims 1 and 2 by induction, in bottom-up order of the nodes fixed:

Base Case. Consider the moment before fixing the first imbalanced node u of Π. It means that
u must have lost a level in one of its subtrees in the deletion. Since u was balanced before the
deletion, Claim 2 holds on u. Furthermore, the height of the subtree rooted at u has not changed
(because it is decided by the subtree of u that did not lose any leaf). This indicates that, for any
proper ancestor v of u, both subtrees of v must have the same height as before the deletion; hence,
v remains balanced.

Inductive Case. Suppose that, after fixing an imbalanced node u of Π, v is the next imbalanced
node to fix. By induction, we know that v was balanced before the fixing of u, which had a 2-level
imbalance situation. Remedying the situation was done with a single or double rotation. But either
rotation type can reduce the height of one subtree of v by at most 1—let it be the right subtree
of v, without loss of generality. Since v is now imbalanced, the left subtree of v must have 2 more
levels than its right subtree. This proves Claim 2. Furthermore, the height of the subtree rooted
at v has not been affected by the fixing of u (because it is determined by the left subtree). This
implies that all the proper ancestors of v must remain balanced. This proves Claim 1.

Problem 3. Let T be a balanced binary tree of n nodes. For each node u of T , define its count as
the number of nodes in its subtree (remember that the subtree includes the node itself). Modify
the insertion and deletion algorithms to maintain the counts of all the nodes. Your algorithms must
still perform an insertion and deletion in O(log n) time.

Solution. Notice that the count of a node u can be obtained from those of its child nodes in
constant time. We can utilize this fact to update the counts in a bottom-up manner along the
insertion/deletion path. Next, we elaborate the details for insertion, because the same ideas apply
to deletion as well.

First, insert a new leaf in T as described in the lecture. Set the count of the leaf to 1. Let Π
be the insertion path. Set b to this leaf. Next, repeat the following steps.

1. If b is the root of T , finish.

2. Let a be the parent of u. Update the count of a from its child nodes in constant time.

3. If a is still balanced, set b to a, and repeat from Step 1.

2

4. Otherwise, perform a single or double rotation, and update the counts of at most 3 nodes
accordingly:

• Single rotation: See Figure 1a. Update first the count of a (from its children), and then
the count of b. Now repeat from Step 1.

• Double rotation: See Figure 1b. Update first the counts of a, b (from their children),
and then the count of c. Now set b to c, and repeat from Step 1.

Clearly, we spend constant time per level. The total cost of an insertion is therefore O(log n).

Problem 4. In this exercise, we will design an algorithm to detect whether network packets have
been received in a wrong order. A network packet here is defined as a pair (t, k) where t is the
timestamp when the packet was received, and k is an integer representing the packet’s content.
Design an algorithm to detect whether you have received any two pairs (t1, k1) and (t2, k2) such
that t1 < t2 but k1 > k2. You may assume that all the packets have distinct t-values and distinct
k-values. Your algorithm must process every incoming packet in O(log n) time, where n is the
number of packets received.

Solution. Observe that the answer is no if and only if the following is true: when the packets
are sorted in ascending order of t, they are also sorted in ascending order of k. Utilizing this
observation, we simply maintain an AVL-tree on the t-values of the packets, and store the k-value
of each packet in the same node where the packet’s t-value is the key. Then, we process an incoming
packet (t, k) as follows:

1. Find the packet (t1, k1) where t1 is the predecessor of t, among the t-values of the received
packets. Report “yes” if k < k1.

2. Find the packet (t2, k2) where t2 is the successor of t, among the t-values of the received
packets. Report “yes” if k > k2.

3. Insert (t, k) into the AVL-tree according to t.

The processing time is clearly O(log n) per packet.

Problem 5**. In two-dimensional space, a point (x, y) dominates another point (x′, y′) if x > x′

and y > y′. Let S be a set of n points in two-dimensional space, such that no two points share the
same x- or y-coordinate. A point p ∈ S is a maximal point of S if no point in S dominates p. For
example, suppose that S = {(1, 1), (5, 2), (3, 5)}; then S has two maximal points: (5, 2) and (3, 5).

Describe a data structure to support the following operations on a dynamic set S:

• Insert(p): Adds a new point p to S.

• Query: Reports all the maximal points of S.

If n is the current size of S, your structure must support an insertion in O(log n) amortized time,
and a query in O(1 + k) time, where k is the number of maximal points.

Solution. Let P be the set of maximal points of S. Observe that if we sort the points of P
in ascending order of x-coordinate, then they are also sorted in descending order of y-coordinate.
Based on this observation, we maintain an AVL-tree T on the x-coordinates of the points in P .

Given an incoming point p = (x, y), we process it as follows.

3

1. Find p′ = (x′, y′), where x′ is the successor of x, among the x-coordinates of all the points in
P .

2. If p′ exists and dominates p, discard p, and finish.

3. Find p′′ = (x′′, y′), where x′′ is the predecessor of x, among the x-coordinates of all the points
in P . If p′′ does not exist, set p′′ to nil.

4. Do one of the following:

4.1 If p′′ is nil, finish.

4.2 If p does not dominate p′′, finish.

4.3 Otherwise, delete p′′ from T , and repeat from Step 3.

Every step can be performed in O(log n) time except Step 4.3. However, since each point can be
deleted only once, the total amount of time spent on Step 4.3 is bounded by O(n log n). Therefore,
our algorithm supports each insertion in O(log n) amortized time.

To answer a query, simply output all the k points in T using O(1 + k) time.

4

