
The van Emde Boas Structure
[Notes for ESTR2102]

Yufei Tao

CSE Dept
CUHK

Yufei Tao The van Emde Boas Structure

We have already learned that a predecessor can be found in O(log n)
time after suitable preprocessing. Today, we will derive another bound
when the underlying set consists of only integers in the domain [1,U].
Our new structure—called the van Emde Boas (vEB) structure—achieves
the query time of O(log logU).

Yufei Tao The van Emde Boas Structure

Predecessor Search

Let S be a set of n integers, each of which comes from the domain
[1,U]. We want to store S in a data structure to support:

A predecessor query: give an integer q, find its predecessor in S ,
which is the largest integer in S that does not exceed q.

We will assume that U = 22α for some integer α ≥ 0. This assumption is
made without loss of generality (this will be obvious, and will be left to
you).

Yufei Tao The van Emde Boas Structure

vEB-Structure

We will describe the vEB-structure in a recursive manner.

Base Case: If U = 2, we simply store S in a linked list.

Yufei Tao The van Emde Boas Structure

vEB-Structure

General Case: Now consider that U > 2.

We divide the universe [1,U] into disjoint segments, each of which has
length

√
U. Note that by our assumption that U = 22α ,

√
U is always an

integer.

We can therefore label the segments from left to right with ids 1, 2, ...,√
U. If a segment contains at least one integer of S , we say that the

segment is non-empty; otherwise, it is empty.

For every non-empty segment σ, denote by S(σ) the set of integers of S

covered by σ.

Yufei Tao The van Emde Boas Structure

vEB-Structure

General Case (cont.):

Structure 1: Let B be the set of non-empty segments’ ids. Build a hash
table H to answer the following query: given an integer i ∈ [1,

√
U], is

i ∈ B?

Structure 2: Store with each non-empty segment σ the largest integer in
S(σ), which is denoted as max(s). Store also the largest integer in the
non-empty segment immediately preceding σ, which is denoted as
leftmax(s).

Yufei Tao The van Emde Boas Structure

vEB-Structure

General Case (cont.): Now here comes the recursive part.

Structure 3: Build a vEB-structure to answer predecessor queries on B
in the universe [1,

√
U].

Structure 4: Each non-empty segment σ defines a universe of its own
with length

√
U. Build a vEB-structure to answer predecessor queries on

S(σ) in that universe.

Note that the recursion eventually ends because the universe keeps
shrinking.

Yufei Tao The van Emde Boas Structure

Query

Let us now discuss how to answer a query with search value q.

First, obtain the id x of the segment containing q: x = dq/
√
Ue. Then,

do dictionary search on H to find out whether x ∈ B.

If no: it means that segment x is empty. We know that the
predecessor of q equals max(σ), where σ is the non-empty segment
whose id is the predecessor of x in B. Hence, solve the query by
performing predecessor search on Structure 3.

If yes: then segment x is non-empty—denote it by σ. Obtain
leftmax(σ). Find the predecessor y of q on S(σ) (recursively using
Structure 4). If y exists, it is the final answer; otherwise, the final
answer is leftmax(σ).

Yufei Tao The van Emde Boas Structure

Query Time Analysis

Let f (U) be the time of a query when the universe has length U.

Searching H takes O(1) time (use perfect hashing to achieve worst case).
In either the yes or the no case, we do one query in a smaller universe of
length

√
U. Hence:

f (U) ≤ O(1) + f (
√
U)

with the terminating condition that f (2) = O(1).

Solving the recurrence gives f (U) = O(log logU) (worst case).

Yufei Tao The van Emde Boas Structure

Space Analysis

Let g(n,U) be the space of a van Emde Boas structure of n elements in
a universe of length U.

Structures 1 and 2 obviously occupy only O(n) space. Structure 3 takes
g(n,
√
U) space. Regarding Structure 4, suppose that we have t

non-empty segments, covering n1, n2, ..., nt integers of S , respectively
(
∑t

i=1 ni = n). We know that the vEB-structure on the i-th (1 ≤ i ≤ t)

segment requiress g(ni ,
√
U) space. Hence:

g(n,U) ≤ O(n) + g(n,
√
U) +

t∑
i=1

g(ni ,
√
U)

with the terminating condition that g(n,U) = O(1) when either n or U
is at most a constant.

Solving the recurrence gives g(n,U) = O(n logU).

Yufei Tao The van Emde Boas Structure

Next, we will reduce the space to O(n), without affecting the query
time, using a technique called bootstrapping.

Yufei Tao The van Emde Boas Structure

Bootstrapping

Sort all the integers of S . Divide S into disjoint intervals, each of which
covers log2 U integers of S , except possibly the last one. There are
O(n/ logU) intervals.

Create a set S ′ by taking the smallest integer of S in each interval.

For each interval, create a binary search tree (BST) on the at most
log2 U integers therein.

Create a vEB-structure on S ′.

Overall space is now O(n)! Note that the vEB-structure on S ′

takes O(n
logU logU) = O(n) space.

Yufei Tao The van Emde Boas Structure

Bootstrapping

Now let us see how to answer a query with search value q.

First, find the predecessor x of q in S ′. This takes O(log logU) time
using the vEB-structure.

Then, go to the interval containing x , and find the predecessor of q
within that interval. This takes O(log logU) time using the BST of that
interval—recall that the BST stores only O(logU) elements.

The overall query time is therefore O(log logU).

Yufei Tao The van Emde Boas Structure

