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We have already learned that a predecessor can be found in O(log n)
time after suitable preprocessing. Today, we will derive another bound
when the underlying set consists of only integers in the domain [1,U].
Our new structure—called the van Emde Boas (vEB) structure—achieves
the query time of O(log logU).
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Predecessor Search

Let S be a set of n integers, each of which comes from the domain
[1,U]. We want to store S in a data structure to support:

A predecessor query: give an integer q, find its predecessor in S ,
which is the largest integer in S that does not exceed q.

We will assume that U = 22α for some integer α ≥ 0. This assumption is
made without loss of generality (this will be obvious, and will be left to
you).
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vEB-Structure

We will describe the vEB-structure in a recursive manner.

Base Case: If U = 2, we simply store S in a linked list.
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vEB-Structure

General Case: Now consider that U > 2.

We divide the universe [1,U] into disjoint segments, each of which has
length

√
U. Note that by our assumption that U = 22α ,

√
U is always an

integer.

We can therefore label the segments from left to right with ids 1, 2, ...,√
U. If a segment contains at least one integer of S , we say that the

segment is non-empty; otherwise, it is empty.

For every non-empty segment σ, denote by S(σ) the set of integers of S

covered by σ.
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vEB-Structure

General Case (cont.):

Structure 1: Let B be the set of non-empty segments’ ids. Build a hash
table H to answer the following query: given an integer i ∈ [1,

√
U], is

i ∈ B?

Structure 2: Store with each non-empty segment σ the largest integer in
S(σ), which is denoted as max(s). Store also the largest integer in the
non-empty segment immediately preceding σ, which is denoted as
leftmax(s).
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vEB-Structure

General Case (cont.): Now here comes the recursive part.

Structure 3: Build a vEB-structure to answer predecessor queries on B
in the universe [1,

√
U].

Structure 4: Each non-empty segment σ defines a universe of its own
with length

√
U. Build a vEB-structure to answer predecessor queries on

S(σ) in that universe.

Note that the recursion eventually ends because the universe keeps
shrinking.
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Query

Let us now discuss how to answer a query with search value q.

First, obtain the id x of the segment containing q: x = dq/
√
Ue. Then,

do dictionary search on H to find out whether x ∈ B.

If no: it means that segment x is empty. We know that the
predecessor of q equals max(σ), where σ is the non-empty segment
whose id is the predecessor of x in B. Hence, solve the query by
performing predecessor search on Structure 3.

If yes: then segment x is non-empty—denote it by σ. Obtain
leftmax(σ). Find the predecessor y of q on S(σ) (recursively using
Structure 4). If y exists, it is the final answer; otherwise, the final
answer is leftmax(σ).
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Query Time Analysis

Let f (U) be the time of a query when the universe has length U.

Searching H takes O(1) time (use perfect hashing to achieve worst case).
In either the yes or the no case, we do one query in a smaller universe of
length

√
U. Hence:

f (U) ≤ O(1) + f (
√
U)

with the terminating condition that f (2) = O(1).

Solving the recurrence gives f (U) = O(log logU) (worst case).
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Space Analysis

Let g(n,U) be the space of a van Emde Boas structure of n elements in
a universe of length U.

Structures 1 and 2 obviously occupy only O(n) space. Structure 3 takes
g(n,
√
U) space. Regarding Structure 4, suppose that we have t

non-empty segments, covering n1, n2, ..., nt integers of S , respectively
(
∑t

i=1 ni = n). We know that the vEB-structure on the i-th (1 ≤ i ≤ t)

segment requiress g(ni ,
√
U) space. Hence:

g(n,U) ≤ O(n) + g(n,
√
U) +

t∑
i=1

g(ni ,
√
U)

with the terminating condition that g(n,U) = O(1) when either n or U
is at most a constant.

Solving the recurrence gives g(n,U) = O(n logU).
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Next, we will reduce the space to O(n), without affecting the query
time, using a technique called bootstrapping.
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Bootstrapping

Sort all the integers of S . Divide S into disjoint intervals, each of which
covers log2 U integers of S , except possibly the last one. There are
O(n/ logU) intervals.

Create a set S ′ by taking the smallest integer of S in each interval.

For each interval, create a binary search tree (BST) on the at most
log2 U integers therein.

Create a vEB-structure on S ′.

Overall space is now O(n)! Note that the vEB-structure on S ′

takes O( n
logU logU) = O(n) space.
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Bootstrapping

Now let us see how to answer a query with search value q.

First, find the predecessor x of q in S ′. This takes O(log logU) time
using the vEB-structure.

Then, go to the interval containing x , and find the predecessor of q
within that interval. This takes O(log logU) time using the BST of that
interval—recall that the BST stores only O(logU) elements.

The overall query time is therefore O(log logU).
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