Linear Time Sorting in a Polynomial Domain [Notes for ESTR2102]

Yufei Tao

Department of Computer Science and Engineering Chinese University of Hong Kong

Linear Time Sorting in a Polynomial Domain

< ∃ →

Recall that counting sort is able to sort n integers in the range from 1 to U in O(n + U) time. The running time is expensive. We will significantly improve this by describing how to sort in O(n) time for any $U \le n^c$, where c is a constant (e.g., 10).

The new algorithm is called radix sort.

Without loss of generality, we will consider that *n* is a power of 2 (why no generality is lost?). Hence, every integer can be represented by $c \log_2 n$ bits (in binary form), which we denote as $b_{c \log_2 n} b_{c \log_2 n-1} \dots b_2 b_1$, where b_1 is the least significant bit.

For every integer $b_{c \log_2 n} b_{c \log_2 n-1} \dots b_2 b_1$, we divide the bits into c disjoint chunks, each of which contains $\log_2 n$ bits:

- The first chunk contains the right most $\log_2 n$ bits, namely, $b_{\log_2 n} b_{\log_2 n-1} \dots b_1$.
- The second chunk contains the next $\log_2 n$ bits, namely, $b_2 \log_2 n b_2 \log_2 n-1 \dots b_{\log_2 n+1}$.
- ...
- The last chunk contains the left most $\log_2 n$ bits, namely, $b_{c \log_2 n} b_{c \log_2 n-1} \dots b_{(c-1) \log_2 n+1}$

(4月) (日) (日) 日

For any integer $x = b_{c \log_2 n} b_{c \log_2 n-1} \dots b_2 b_1$, and any $i \in [1, c]$, we can obtain an integer whose binary form corresponds to the *i*-th chunk as follows:

Calculate y = x mod nⁱ. The binary form of y corresponds to the rightmost i · log₂ n bits of x. If i = 1, then return y. Otherwise, proceed to the next step.

• Return
$$y/n^{i-1}$$
 (integer division).

We can prepare $n, n^2, n^3, ..., n^c$ in advance to ensure that y can be calculated in O(1) time. The values of $n, n^2, n^3, ..., n^c$ can be calculated in O(c) = O(1) total time.

Suppose that c = 4, n = 16, and x = 011011000010 (i.e., 1730 in decimal). To get its 2nd chunk, we do:

•
$$y = x \mod n^2 = 1730 \mod 256 = 194$$

• We return
$$y/n = 194/16 = 12$$
.

This is correct because 12 is 1100 in binary, namely, the 2nd chunk of x.

Recall: Stable Counting Sort

In the tutorial, we described a variant of counting sort that solves the following "stable key-value sorting" problem in O(n) time.

The input is a set S of *n* key-value pairs of the form (k, v), where k is the key and v is the value. These pairs have been sorted in an array A. Every key k is in the range from 1 to n.

The goal is to produce an array *B* that stores these pairs in non-descending key order. Furthermore, the sorting must be stable in the following sense. For any two pairs (k_1, v_1) and (k_2, v_2) such that $k_1 = k_2$, if (k_1, v_1) is positioned earlier than (k_2, v_2) in *A*, this must also be true in *B*.

We now return to our problem. Let A be the input array of n integers. We sort them by executing the stable counting sort algorithm of the previous slide c times:

- Sort *A* by their 1st chunks. Replace *A* with the array output (by stable counting sort).
- Sort A by their 2nd chunks. Replace A with the array output.

• ...

• Sort A by their c-th chunks. Replace A with the array output.

Return the final A.

Correctness guaranteed by stability.

Running time clearly $c \cdot O(n) = O(n)$.

Linear Time Sorting in a Polynomial Domain

э

A B + A B +