
Linear Time Sorting in a Polynomial Domain
[Notes for ESTR2102]

Yufei Tao

Department of Computer Science and Engineering
Chinese University of Hong Kong

Linear Time Sorting in a Polynomial Domain



Recall that counting sort is able to sort n integers in the range from 1 to
U in O(n + U) time. The running time is expensive. We will significantly
improve this by describing how to sort in O(n) time for any U ≤ nc ,
where c is a constant (e.g., 10).

The new algorithm is called radix sort.

Linear Time Sorting in a Polynomial Domain



Without loss of generality, we will consider that n is a power of 2 (why
no generality is lost?). Hence, every integer can be represented by
c log2 n bits (in binary form), which we denote as bc log2 nbc log2 n−1...b2b1,
where b1 is the least significant bit.

For every integer bc log2 nbc log2 n−1...b2b1, we divide the bits into c
disjoint chunks, each of which contains log2 n bits:

The first chunk contains the right most log2 n bits, namely,
blog2 nblog2 n−1...b1.

The second chunk contains the next log2 n bits, namely,
b2 log2 nb2 log2 n−1...blog2 n+1.

...

The last chunk contains the left most log2 n bits, namely,
bc log2 nbc log2 n−1...b(c−1) log2 n+1

Linear Time Sorting in a Polynomial Domain



For any integer x = bc log2 nbc log2 n−1...b2b1, and any i ∈ [1, c], we can
obtain an integer whose binary form corresponds to the i-th chunk as
follows:

Calculate y = x mod ni . The binary form of y corresponds to the
rightmost i · log2 n bits of x . If i = 1, then return y . Otherwise,
proceed to the next step.

Return y/ni−1 (integer division).

We can prepare n, n2, n3, ..., nc in advance to ensure that y can
be calculated in O(1) time. The values of n, n2, n3, ..., nc can be
calculated in O(c) = O(1) total time.

Linear Time Sorting in a Polynomial Domain



Example

Suppose that c = 4, n = 16, and x = 011011000010 (i.e., 1730 in
decimal). To get its 2nd chunk, we do:

y = x mod n2 = 1730 mod 256 = 194

We return y/n = 194/16 = 12.

This is correct because 12 is 1100 in binary, namely, the 2nd chunk of x .

Linear Time Sorting in a Polynomial Domain



Recall: Stable Counting Sort

In the tutorial, we described a variant of counting sort that solves the
following “stable key-value sorting” problem in O(n) time.

The input is a set S of n key-value pairs of the form (k, v), where k is
the key and v is the value. These pairs have been sorted in an array A.
Every key k is in the range from 1 to n.

The goal is to produce an array B that stores these pairs in
non-descending key order. Furthermore, the sorting must be stable in the
following sense. For any two pairs (k1, v1) and (k2, v2) such that k1 = k2,
if (k1, v1) is positioned earlier than (k2, v2) in A, this must also be true in
B.

Linear Time Sorting in a Polynomial Domain



Radix Sort

We now return to our problem. Let A be the input array of n integers.
We sort them by executing the stable counting sort algorithm of the
previous slide c times:

Sort A by their 1st chunks. Replace A with the array output (by
stable counting sort).

Sort A by their 2nd chunks. Replace A with the array output.

...

Sort A by their c-th chunks. Replace A with the array output.

Return the final A.

Linear Time Sorting in a Polynomial Domain



Analysis

Correctness guaranteed by stability.

Running time clearly c · O(n) = O(n).

Linear Time Sorting in a Polynomial Domain


