
Skip Lists
[Notes for ESTR2102]

Yufei Tao

CSE Dept
CUHK

Skip Lists



The AVL-tree is able to solve the dynamic predecessor problem with
O(log n) time per operation. Today, we will see another structure called
the skip list to achieve the same time, but in expectation. The main
advantage of the skip list is that, it is extremely simple to implement,
and involves nothing but several linked lists! The structure serves as
another example demonstrating the power of randomization.

Skip Lists



Recall:

Dynamic Predecessor Search

Let S be a set of integers. We want to store S in a data structure to
support the following operations:

A predecessor query: give an integer q, find its predecessor in S ,
which is the largest integer in S that does not exceed q;

Insertion: adds a new integer to S ;

Deletion: removes an integer from S .

Skip Lists



Skip List

For each element e ∈ S , compute its level l(e) as follows:

1 Initialize l(e) = 1.

2 Toss a coin with head probability 1/2.

3 If the coin heads, increment l(e) by 1 and repeat from Step 2.

4 Otherwise, return l(e).

Note that the value of l(e) is a random variable.

Skip Lists



Skip List

For each level i ≥ 1, define Li as {e ∈ S | l(e) ≥ i}, namely, the set of
elements in S whose levels are at least i .

Sort each Li in ascending order, and chain up all the elements by the
sorted order with a linked list.

For each element e ∈ Li (i ≥ 2), store a downward pointer to its copy in
Li−1.

The height h = maxe∈S l(e). Note that h can be ∞ in the worst case!

Skip Lists



Example

3 9 16 19 25 31 37 44 56 67L1

9 16 31 44 67L2

16 44L3

16L4

16L5

44

l(16) = 5, l(44) = 4, l(9) = l(31) = l(67) = 2, and the levels of all other
elements equal 1. Here, h = 5.

Skip Lists



Predecessor Query

Let q be the search value of the query.

If h > 2 log2 n, we simply scan L1 in full to answer the query.

Otherwise, we start from the highest level, and descend via the
predecessor at this level:

1 i = h, and define x = −∞
2 Find the predecessor y of q in Li by walking from x towards right.

3 If i = 1, then return y .

4 Otherwise, descend to the copy of y in Li−1.

5 Decrease i by 1, set x to y , and repeat from Line 2.

Skip Lists



Example

3 9 16 19 25 31 37 44 56 67L1

9 16 31 44 67L2

16 44L3

16L4

16L5

44

Consider q = 38. At L5, we stop at 16. Then, descend to the 16 at L4,
but stop there. Same story at L3. Descend to the 16 at L3, and stop at
31 at that level. Descend to the 31 at L1, and stop at 37, which is the
predecessor.

Skip Lists



Worst case query time? Actually O(n) (why not O(n log n)?)!
Nevertheless, next we will prove that the expected query time is
only O(log n).

Skip Lists



Analysis

Let us start with the space consumption to gain some intuition. In the
worst case, the space consumption can be ∞! But the probability of that
happening ought to be extremely low.

Indeed, it is easy to verify that each element has probability 1 to be L1,
1/2 to be in L2, 1/4 to be in L3, and so on.

So Li (i ≥ 1) has n/2i−1 elements in expectation. The total number of
elements of all the linked lists is in expectation:

∞∑
i=1

n

2i−1 = O(n).

Skip Lists



Analysis

By the same reasoning, how large is the height h on average? Intuitively,
it should be O(log n) because we are losing half of the elements each level
up! The following theorem confirms this intuition with a stronger fact:

Theorem: Pr [h ≥ 1 + 2 · log2 n] ≤ 1
n .

Essentially says that h ≤ 2 log2 n with “high probability” at least
1− 1/n.

Skip Lists



Analysis

Proof: Let li denote the level of the i-th element of S . We know that for
any x ≥ 2

Pr [li ≥ x ] = 1/2x−1.

Setting x = 1 + 2 log2 n gives

Pr [li ≥ 1 + 2 log2 n] = 1/22 log2 n = 1/n2.

Therefore:

Pr [h ≥ 1 + 2 log2 n] ≤
n∑

i=1

Pr [li ≥ 1 + 2 log2 n] = n/n2 = 1/n.

Skip Lists



Analysis

So we know there are O(log n) levels with high probability. But how
much time do we spend at each level? Note that if we are not lucky, we
may need to spend O(n) time at a level (think: why?).

Nevertheless, we will show that in expectation we spend only O(1) time

per level.

Skip Lists



Analysis

Without loss of generality, let us consider an arbitrary level i ≥ 2. Let x
be the predecessor of q in Li , and y be the element that succeeds x in Li .
Let z0, z1, ..., zt be the elements in Li−1 that are in the range
[x , y ]—notice that z0 = x and zt = y .

x y

z0 z1 z2 ... zt

...

...

...

...Li−1

Li

If we are not lucky, at level i − 1, we may spend O(t) time. But we will
prove:

Lemma: The expectation of t is O(1).

Skip Lists



Analysis

Proof: Event t = x happens only if z1, z2, ..., zx−1 do not make it to
level i , the probability of which is 1/2x−1.

Hence:

E [t] =
n∑

i=1

x

2x−1 = O(1).

Skip Lists



Analysis

So now it remains to prove that the overall query time is O(log n) in
expectation. Note that it is not correct to simply multiply the expected
height and the expected cost per level—because the two corresponding
random variables are not independent!

But a little trick will do the job. We already know that with probability at
least 1− 1/n, the height is at most 2 log2 n, in which case the expected
query cost is O(log n). In the event of the remaining 1/n probability, the
query cost is no more than O(n). Hence, the overall query cost is at most

O(log n)(1− 1/n) + O(n) · (1/n) = O(log n)

in expectation.

Skip Lists



We have not elaborated on the insertion and deletion algorithms
yet, which at this moment should have become simple exercises
for you. Try them out. Your algorithms must finish in O(log n)
expected time.

Skip Lists


