The k-Selection Problem (Det.) (Slides for ESTR2102)

Yufei Tao
Department of Computer Science and Engineering Chinese University of Hong Kong

The k-Selection Problem
Input
You are given a set S of n integers in an array, the value of n, and also an integer $k \in[1, n]$.
Output
The k-th smallest integer of S.

We will describe an algorithm solving the problem deterministically in $O(n)$ time.

Recall:
Define the rank of an integer v in S as the number of elements in S smaller than or equal to v.

For example, the rank of 23 in $\{76,5,8,95,10,31\}$ is 3 , while that of 31 is 4 .

A Deterministic Algorithm

We will assume that n is a multiple of 10 (if not, pad up to 9 dummy elements).

Step 1: Divide A into chunks of size 5 , that is: (i) each chunk has 5 elements, and (ii) there are $n / 5$ chunks.

Step 2: From each chunk, identify the median of the 5 elements therein. Collect all the $n / 5$ medians into an array B.

Step 3: Recursively run the algorithm to find the median p of B.

A Deterministic Algorithm

Step 4: Find the rank r of p in A.
Step 5:

- If $r=k$, return p.
- If $r<k$, produce an array A^{\prime} containing all the elements of A strictly less than p. Recursively find the k-th smallest element in A^{\prime}.
- If $r>k$, produce an array A^{\prime} containing all the elements of A strictly greater than p. Recursively find the $(k-r)$-th smallest element in A^{\prime}.

Analysis

Lemma 1.

The value of r falls in the range from $\lceil(3 / 10) n\rceil$ to $\lceil(7 / 10) n\rceil+7$.
Proof: Let us first prove the lemma by assuming that n is a multiple of 10.

Let C_{1} be the set of chunks whose medians are $\leq p$. Let C_{2} be the set of chunks whose medians are $>p$.

Hence: $\left|C_{1}\right|=\left|C_{2}\right|=n / 10$.

Analysis

Every chunk in C_{1} contains at least 3 elements $\leq p$. Hence:

$$
r \geq 3\left|C_{1}\right|=(3 / 10) n .
$$

Every chunk in C_{2} contains at least 3 elements $>p$. Hence:

$$
r \leq n-3\left|C_{1}\right|=(7 / 10) n .
$$

It thus follows that when n is a multiple of $10, r \in[(3 / 10) n,(7 / 10) n]$.

Analysis

Now consider that n is not a multiple of 10 . Let n^{\prime} be the lowest multiple of 10 at least n. Hence, $n \leq n^{\prime}<n+10$. By our earlier analysis:

$$
\begin{aligned}
& (3 / 10) n^{\prime} \leq r \leq(7 / 10) n^{\prime} \\
& \Rightarrow \quad(3 / 10) n \leq r \leq(7 / 10)(n+10)=(7 / 10) n+7 \\
& \Rightarrow \quad\lceil(3 / 10) n\rceil \leq r \leq(7 / 10)(n+10)<\lceil(7 / 10) n\rceil+7
\end{aligned}
$$

where the last step used the fact that r is an integer.

Analysis

Let $f(n)$ be the worst-case running time of our algorithm on n elements.

We know that when n is at most a certain constant, $f(n)=O(1)$.

For larger n :

$$
\begin{aligned}
f(n) & =f(\lceil(n+10) / 5\rceil)+f(\lceil(7 / 10) n\rceil+7)+O(n) \\
& =f(\lceil n / 5\rceil+2)+f(\lceil(7 / 10) n\rceil+7)+O(n)
\end{aligned}
$$

In the next talk, we will learn a powerful method for solving this recurrence, which gives $f(n)=O(n)$.

