Random Binary Search (Slides for ESTR2102)

Yufei Tao

Department of Computer Science and Engineering Chinese University of Hong Kong The Dictionary Search Problem

Input

An array A of n integers, sorted in ascending order. And a search value q.

Determine whether $q \in S$.

- ₹ 🖬 🕨

i = RANDOM(1, n)If A[i] = q, then done. If A[i] < q, recurse on A[1:i-1]Otherwise, recurse on A[i+1:n]

Remark 1: A[x : y] represents the array starting at A[x] and ending at A[y].

Remark 2: For our discussion, we will refer to A[i] as a **pivot**.

We will prove that the algorithm finishes in $O(\log n)$ time in expectation.

We will focus on only the scenario where $q \notin S$.

Suppose that $A = (e_1, e_2, ..., e_n)$. For each $i \in [1, n]$, define random variable X_i :

- 1 if e_i is compared to q in the algorithm (i.e., e_i is one of the pivots picked).
- 0, otherwise.

The expected running of the algorithm is

$$O\left(\sum_{i=1}^{n} \boldsymbol{E}[X_i]\right).$$

We will prove

$$\sum_{i=1}^{n} \boldsymbol{E}[X_i] = O(\log n).$$

э

- ● ● ●

Focus on a particular $i \in [1, n]$. Without loss of generality, assume that $e_i < q$. Suppose that $e_{i+1}, e_{i+2}, ..., e_{i+t}$ are less than q, for some $t \ge 0$.

Lemma: $Pr[X_i = 1] = 1/(t+1).$

Proof: Define Y be the first pivot falling in $[e_i, e_{i+t}]$. Note that Y definitely exists (think: why?).

 $X_i = 1$ if and only if $Y = e_i$. Y can be any of $e_i, e_{i+1}, ..., e_{i+t}$ with the same probability. We thus complete the proof. **QED**

It thus follows from the previous lemma that

$$\sum_{i=1}^{n} \boldsymbol{E}[X_i] \leq 2\sum_{i=1}^{n} \frac{1}{i} = O(\log n).$$

Think: why?

Remark: 1 + 1/2 + 1/3 + ... + 1/n is the harmonic series. The value is between $\ln(n+1)$ and $1 + \ln n$.