Random Binary Search (Slides for ESTR2102)

Yufei Tao
Department of Computer Science and Engineering Chinese University of Hong Kong

The Dictionary Search Problem

Input
An array A of n integers, sorted in ascending order. And a search value q.

Output
Determine whether $q \in S$.

Random Binary Search
$i=\operatorname{RANDOM}(1, n)$
If $A[i]=q$, then done.
If $A[i]<q$, recurse on $A[1: i-1]$
Otherwise, recurse on $A[i+1: n]$

Remark 1: $A[x: y]$ represents the array starting at $A[x]$ and ending at $A[y]$.

Remark 2: For our discussion, we will refer to $A[i]$ as a pivot.

Random Binary Search

We will prove that the algorithm finishes in $O(\log n)$ time in expectation.
We will focus on only the scenario where $q \notin S$.
Suppose that $A=\left(e_{1}, e_{2}, \ldots, e_{n}\right)$.
For each $i \in[1, n]$, define random variable X_{i} :

- 1 if e_{i} is compared to q in the algorithm (i.e., e_{i} is one of the pivots picked).
- 0, otherwise.

Random Binary Search

The expected running of the algorithm is

$$
O\left(\sum_{i=1}^{n} \boldsymbol{E}\left[X_{i}\right]\right) .
$$

We will prove

$$
\sum_{i=1}^{n} E\left[X_{i}\right]=O(\log n) .
$$

Random Binary Search

Focus on a particular $i \in[1, n]$. Without loss of generality, assume that $e_{i}<q$. Suppose that $e_{i+1}, e_{i+2}, \ldots, e_{i+t}$ are less than q, for some $t \geq 0$.

Lemma: $\operatorname{Pr}\left[X_{i}=1\right]=1 /(t+1)$.
Proof: Define Y be the first pivot falling in $\left[e_{i}, e_{i+t}\right]$. Note that Y definitely exists (think: why?).
$X_{i}=1$ if and only if $Y=e_{i} . Y$ can be any of $e_{i}, e_{i+1}, \ldots, e_{i+t}$ with the same probability. We thus complete the proof. QED

Random Binary Search

It thus follows from the previous lemma that

$$
\sum_{i=1}^{n} E\left[X_{i}\right] \leq 2 \sum_{i=1}^{n} \frac{1}{i}=O(\log n)
$$

Think: why?
Remark: $1+1 / 2+1 / 3+\ldots+1 / n$ is the harmonic series. The value is between $\ln (n+1)$ and $1+\ln n$.

