Perfect Hashing
 (Notes for ESTR2102)

Yufei Tao
CSE Dept
CUHK

In this lecture, we will revisit the approach of using a hash table to answer dictionary search queries. Recall that currently we can answer a query in $O(1)$ expected time with a hash table of $O(n)$ space that can be constructed in $O(n)$ time (where n is the size of the underlying set).

We will show that it is possible to improve the query time to $O(1)$ in the worst case without affecting the space cost. The tradeoff is that the construction time becomes $O(n)$ expected.

Recall:

The Dictionary Search Problem
S is a set of n integers in [U] (recall that $[x]$ denotes the set of integers $\{1,2, \ldots, x\}$). We want to preprocess S into a data structure so that queries of the following form can be answered efficiently:

- Given a value v, a query asks whether $v \in S$.

Recall:

Hash Function

Let U and m be positive integers.

A hash function is a function h that maps [U] to [m], namely, for any integer $k \in[U], h(k)$ returns a value in [m].

Recall:

Universality

Let \mathcal{H} be a family of hash functions. \mathcal{H} is universal if the following holds:
Let k_{1}, k_{2} be two distinct integers in [U]. By picking a function $h \in \mathcal{H}$ uniformly at random, we guarantee that

$$
\operatorname{Pr}\left[h\left(k_{1}\right)=h\left(k_{2}\right)\right] \leq 1 / m .
$$

Recall:

A Universal Family

Pick a prime number p such that $p \geq \max \{U, m\}$. Choose an integer α uniformly at random from $\{1,2, \ldots, p-1\}$, and an integer β uniformly at random from $\{0,1, \ldots, p-1\}$. Design a hash function as:

$$
h(k)=1+((\alpha \cdot k+\beta) \bmod p) \bmod m
$$

Markov Inequality

Theorem: Let X be a positive real-valued random variable. For any $t>0$, it holds that

$$
\operatorname{Pr}[X \geq t] \leq \boldsymbol{E}[X] / t
$$

Proof: Let $f(x)$ be the probability density function of X.

$$
\begin{aligned}
\operatorname{Pr}[X \geq t] & =\int_{t}^{\infty} f(x) d x=\frac{1}{t} \int_{t}^{\infty} t \cdot f(x) d x \\
& \leq \frac{1}{t} \int_{t}^{\infty} x \cdot f(x) d x \\
& \leq \frac{1}{t} \int_{0}^{\infty} x \cdot f(x) d x \\
& =E[X] / t
\end{aligned}
$$

Quadratic m—Collision Free Hashing

In the main class, we said that we should set $m=\Theta(n)$ in order to achieve constant query time. Now we will challenge this conventional wisdom by choosing $m=n^{2}$.

Lemma 1: By picking $m=n^{2}$, the following holds with probability at least $1 / 2$: every linked list in the hash table has length at most 1 .

We actually already proved this in discussing the birthday's paradox. The proof is included again in the next slide for your convenience.

Quadratic m-Collision Free Hashing

Proof: We will prove that with probability at least $1 / 2$, no two integers in S get hashed to the same value. Define $X_{i j}$ to be 1 if the i-th element and j-th element have the same hash value. By universality, we know that $\operatorname{Pr}\left[X_{i j}=1\right] \leq 1 / m$. It thus follows that $\boldsymbol{E}\left[X_{i j}\right] \leq 1 / m$. Define:

$$
X=\sum_{i, j \text { s.t. } i<j} X_{i j}
$$

Note that the summation is on $n(n-1) / 2$ pairs of (i, j). Hence, $\boldsymbol{E}[X] \leq n(n-1) /(2 m)<1 / 2$. By the Markov inequality, we know that

$$
\operatorname{Pr}[X \geq 1] \leq 1 / 2
$$

Since X is an integer, it follows that with probability at least $1 / 2, X=0$, namely, no two elements in S have the same hash value.

It is clear that we can obtain such a collision free hash table with $m=n^{2}$ by 2 trials in expectation (as each trial succeeds with probability $1 / 2$).

Doesn't this already ensure $O(1)$ query time in the worst case? Yes, but unfortunately, setting $m=n^{2}$ incurs $\Omega\left(n^{2}\right)$ space! Next, we will bring the space back down to $O(n)$ using an idea called double hashing.

Double Hashing

Set $m=n$.
Choose a hash function $h:[U] \rightarrow[m]$ randomly from our universal family. Compute the hash value of every integer in S.

Let $S_{i}(1 \leq i \leq m)$ be $\{k \in S \mid h(k)=i\}$. Define $n_{i}=\left|S_{i}\right|$.
If $\sum_{i=1}^{m} n_{i}^{2}>4 n$, we declare a global failure, and repeat from scratch by choosing another h randomly.

Otherwise, proceed to the next slide.

Double Hashing

So now we have $\sum_{i=1}^{m} n_{i}^{2} \leq 4 n$.

For every $i \in[1, m]$, we create a hash table T_{i} for S_{i} as follows:
(1) Set $m_{i}=n_{i}^{2}$.
(2) Choose a hash function $h_{i}: U \rightarrow\left[m_{i}\right]$ randomly from our universal family.
(3) Create T_{i} based on h_{i}.
(4) If any linked list in T_{i} has length at least 2 , declare an i-local failure, and repeat from Step 2.

Note that the final T_{i} is collision free, namely, every linked list therein has a length at most 1 .

Space consumption is $O\left(\sum_{i=1}^{m} n_{i}^{2}\right)=O(n)$.

Given a dictionary search query with search value q, we answer it as follows:

- Compute $i=h(q)$.
- Compute $j=h_{i}(q)$.
- Scan the linked list of T_{i} for value j - note that the linked list contains at most 1 element.
- Report "yes" if q is in the linked list, or "no" otherwise.

The query time is clearly $O(1)$.

Next we will prove the most non-trivial fact: the construction time is $O(n)$ in expectation. What is the major obstacle in the proof? Note that global failure sustains until we get $\sum_{i=1}^{m} n_{i}^{2} \leq 4 n$. This inequality appears rather difficult to ensure, because we know $\sum_{i=1}^{m} n_{i}=n$! Nonetheless, as shown in the next, the inequality actually holds with probability at least $1 / 2$.

Lemma: $\operatorname{Pr}\left[\sum_{i=1}^{m} n_{i}^{2}>4 n\right] \leq 1 / 2$.
Proof: We will prove that $\boldsymbol{E}\left[\sum_{i=1}^{m} n_{i}^{2}\right] \leq 2 n$, after which the lemma will follow from the Markov inequality.

Define $X_{i j}$ to be 1 if the i-th element and j-th element have the same hash value under h. By universality and $m=n$, we know that $\operatorname{Pr}\left[X_{i j}=1\right] \leq 1 / n$. It thus follows that $E\left[X_{i j}\right] \leq 1 / n$. Define:

$$
X=\sum_{i, j \text { s.t. } i<j} X_{i j} .
$$

In other words, X is the number of distinct pairs of elements that collide in their hash values.

Clearly, $\boldsymbol{E}[X] \leq(n(n-1) / 2) \cdot(1 / n)=(n-1) / 2$.

Let us now compare $\sum_{i=1}^{m} n_{i}^{2}$ to X. Recall that n_{i} is the size of S_{i}, i.e., the set of elements that obtain hash value i under h. Hence, S_{i} should contribute $n_{i}\left(n_{i}-1\right) / 2$ to X. It follows that

$$
\begin{aligned}
X & =\sum_{i=1}^{m} \frac{n_{i}\left(n_{i}-1\right)}{2}=\frac{1}{2}\left(\sum_{i=1}^{m} n_{i}^{2}-\sum_{i=1}^{m} n_{i}\right) \\
& =\frac{1}{2} \sum_{i=1}^{m} n_{i}^{2}-\frac{n}{2} .
\end{aligned}
$$

Hence:

$$
\sum_{i=1}^{m} n_{i}^{2} \leq 2 X+n
$$

indicating that $E\left[\sum_{i=1}^{m} n_{i}^{2}\right] \leq 2 \boldsymbol{E}[X]+n \leq 2 n-1$.

Construction Time

Now we can proceed to analyze the expected time of constructing our hash table.

From the previous lemma, we know that we expect to have only 1 global failure before $\sum_{i=1}^{m} n_{i}^{2} \leq 4 n$ holds (i.e., 2 trials, each with success probability at least $1 / 2$). Hence, the decision of h takes only $O(n)$ time in expectation.

It remains to analyze the time of creating each T_{i}. We have already done so - recall that we have $1 / 2$ probability of success by choosing a quadratic $m_{i}=n_{i}^{2}$. In other words, we expect only $1 i$-local failure. The time of building T_{i} is therefore $O\left(n_{i}\right)$ expected.

The total cost of building all of $T_{1}, T_{2}, \ldots, T_{n}$ is therefore $O\left(\sum_{i=1}^{n} n_{i}\right)=O(n)$ in expectation.

