
Perfect Hashing
(Notes for ESTR2102)

Yufei Tao

CSE Dept
CUHK

Perfect Hashing



In this lecture, we will revisit the approach of using a hash table to
answer dictionary search queries. Recall that currently we can answer a
query in O(1) expected time with a hash table of O(n) space that can be
constructed in O(n) time (where n is the size of the underlying set).

We will show that it is possible to improve the query time to O(1) in the

worst case without affecting the space cost. The tradeoff is that the

construction time becomes O(n) expected.

Perfect Hashing



Recall:

The Dictionary Search Problem

S is a set of n integers in [U] (recall that [x ] denotes the set of integers
{1, 2, ..., x}). We want to preprocess S into a data structure so that
queries of the following form can be answered efficiently:

Given a value v , a query asks whether v ∈ S .

Perfect Hashing



Recall:

Hash Function

Let U and m be positive integers.

A hash function is a function h that maps [U] to [m], namely, for any

integer k ∈ [U], h(k) returns a value in [m].

Perfect Hashing



Recall:

Universality

Let H be a family of hash functions. H is universal if the following holds:

Let k1, k2 be two distinct integers in [U]. By picking a function
h ∈ H uniformly at random, we guarantee that

Pr [h(k1) = h(k2)] ≤ 1/m.

Perfect Hashing



Recall:

A Universal Family

Pick a prime number p such that p ≥ max{U,m}. Choose an integer α
uniformly at random from {1, 2, ..., p − 1}, and an integer β uniformly at
random from {0, 1, ..., p − 1}. Design a hash function as:

h(k) = 1 + ((α · k + β) mod p) mod m

Perfect Hashing



Markov Inequality

Theorem: Let X be a positive real-valued random variable. For any
t > 0, it holds that

Pr [X ≥ t] ≤ E [X ]/t.

Proof: Let f (x) be the probability density function of X .

Pr [X ≥ t] =

∫ ∞

t

f (x)dx =
1

t

∫ ∞

t

t · f (x)dx

≤ 1

t

∫ ∞

t

x · f (x)dx

≤ 1

t

∫ ∞

0

x · f (x)dx

= E [X ]/t.

Perfect Hashing



Quadratic m—Collision Free Hashing

In the main class, we said that we should set m = Θ(n) in order to
achieve constant query time. Now we will challenge this conventional
wisdom by choosing m = n2.

Lemma 1: By picking m = n2, the following holds with probability at
least 1/2: every linked list in the hash table has length at most 1.

We actually already proved this in discussing the birthday’s paradox. The
proof is included again in the next slide for your convenience.

Perfect Hashing



Quadratic m—Collision Free Hashing

Proof: We will prove that with probability at least 1/2, no two integers
in S get hashed to the same value. Define Xij to be 1 if the i-th element
and j-th element have the same hash value. By universality, we know
that Pr [Xij = 1] ≤ 1/m. It thus follows that E [Xij ] ≤ 1/m. Define:

X =
∑

i, j s.t. i < j

Xij .

Note that the summation is on n(n − 1)/2 pairs of (i , j). Hence,
E [X ] ≤ n(n − 1)/(2m) < 1/2. By the Markov inequality, we know that

Pr [X ≥ 1] ≤ 1/2.

Since X is an integer, it follows that with probability at least 1/2, X = 0,
namely, no two elements in S have the same hash value.

Perfect Hashing



It is clear that we can obtain such a collision free hash table with m = n2

by 2 trials in expectation (as each trial succeeds with probability 1/2).

Doesn’t this already ensure O(1) query time in the worst case? Yes, but
unfortunately, setting m = n2 incurs Ω(n2) space! Next, we will bring the
space back down to O(n) using an idea called double hashing.

Perfect Hashing



Double Hashing

Set m = n.

Choose a hash function h : [U]→ [m] randomly from our universal
family. Compute the hash value of every integer in S .

Let Si (1 ≤ i ≤ m) be {k ∈ S | h(k) = i}. Define ni = |Si |.

If
∑m

i=1 n
2
i > 4n, we declare a global failure, and repeat from scratch by

choosing another h randomly.

Otherwise, proceed to the next slide.

Perfect Hashing



Double Hashing

So now we have
∑m

i=1 n
2
i ≤ 4n.

For every i ∈ [1,m], we create a hash table Ti for Si as follows:

1 Set mi = n2i .

2 Choose a hash function hi : U → [mi ] randomly from our universal
family.

3 Create Ti based on hi .

4 If any linked list in Ti has length at least 2, declare an i-local
failure, and repeat from Step 2.

Note that the final Ti is collision free, namely, every linked list therein
has a length at most 1.

Space consumption is O(
∑m

i=1 n
2
i ) = O(n).

Perfect Hashing



Query

Given a dictionary search query with search value q, we answer it as
follows:

Compute i = h(q).

Compute j = hi (q).

Scan the linked list of Ti for value j – note that the linked list
contains at most 1 element.

Report “yes” if q is in the linked list, or “no” otherwise.

The query time is clearly O(1).

Perfect Hashing



Next we will prove the most non-trivial fact: the construction
time is O(n) in expectation. What is the major obstacle in the
proof? Note that global failure sustains until we get

∑m
i=1 n

2
i ≤ 4n.

This inequality appears rather difficult to ensure, because we know∑m
i=1 ni = n! Nonetheless, as shown in the next, the inequality

actually holds with probability at least 1/2.

Perfect Hashing



Lemma: Pr [
∑m

i=1 n
2
i > 4n] ≤ 1/2.

Proof: We will prove that E [
∑m

i=1 n
2
i ] ≤ 2n, after which the lemma will

follow from the Markov inequality.

Define Xij to be 1 if the i-th element and j-th element have the same
hash value under h. By universality and m = n, we know that
Pr [Xij = 1] ≤ 1/n. It thus follows that E [Xij ] ≤ 1/n. Define:

X =
∑

i, j s.t. i < j

Xij .

In other words, X is the number of distinct pairs of elements that collide
in their hash values.

Clearly, E [X ] ≤ (n(n − 1)/2) · (1/n) = (n − 1)/2.

Perfect Hashing



Let us now compare
∑m

i=1 n
2
i to X . Recall that ni is the size of Si , i.e.,

the set of elements that obtain hash value i under h. Hence, Si should
contribute ni (ni − 1)/2 to X . It follows that

X =
m∑
i=1

ni (ni − 1)

2
=

1

2

(
m∑
i=1

n2i −
m∑
i=1

ni

)

=
1

2

m∑
i=1

n2i −
n

2
.

Hence:

m∑
i=1

n2i ≤ 2X + n

indicating that E [
∑m

i=1 n
2
i ] ≤ 2E [X ] + n ≤ 2n − 1.

Perfect Hashing



Construction Time

Now we can proceed to analyze the expected time of constructing our
hash table.

From the previous lemma, we know that we expect to have only 1 global
failure before

∑m
i=1 n

2
i ≤ 4n holds (i.e., 2 trials, each with success

probability at least 1/2). Hence, the decision of h takes only O(n) time
in expectation.

It remains to analyze the time of creating each Ti . We have already done
so – recall that we have 1/2 probability of success by choosing a
quadratic mi = n2i . In other words, we expect only 1 i-local failure. The
time of building Ti is therefore O(ni ) expected.

The total cost of building all of T1,T2, ...,Tn is therefore

O(
∑n

i=1 ni ) = O(n) in expectation.

Perfect Hashing


