The Birthday Paradox (Slides for ESTR2102)

Yufei Tao
Department of Computer Science and Engineering Chinese University of Hong Kong

The Birthday Paradox

Suppose that we choose n people uniformly at random. We succeed if all these people have distinct birthdays. Obviously, the larger n is, the less likely we would succeed.

We will show that, even with $n=23$, the probability of succeeding already drops to below 50%.

The Birthday Paradox - In General

Suppose that we pick n integers from the domain $[1, u]$. What is the probability that all the integers are distinct?

Answer:

$$
\frac{u-1}{u} \cdot \frac{u-2}{u} \cdot \ldots \cdot \frac{u-n+1}{u}
$$

The Birthday Paradox - In General

Let us upper bound the probability:

$$
\begin{aligned}
& \left(1-\frac{1}{u}\right)\left(1-\frac{2}{u}\right) \ldots\left(1-\frac{n-1}{u}\right) \\
< & e^{-\frac{1}{u}} \cdot e^{-\frac{2}{u}} \cdot \ldots \cdot e^{-\frac{n-1}{u}} \\
= & e^{-\frac{n(n-1)}{2 u}} .
\end{aligned}
$$

For all $x \neq 0$, it holds that $1+x<e^{x}$.

Back to the "birthday question" we asked in the first place. When $n=23, u=365$:

$$
e^{-\frac{n(n-1)}{2 u}}<0.5
$$

Random IDs with No Collisions

In practice, we often need to assign random ids to n objects (e.g., for generating a random URL). But we do not want the ids to collide. One easy way to do so is the following algorithm:

1. for $i=1$ to n
2. $x=\operatorname{RANDOM}(1, u)$
3. assign x as the id to the i-th object

We want to make sure that the probability of collision is at most $1 / 2$. How large should u be?

Note: Our earlier analysis gives an upper bound of the distinct probability. But here we need a lower bound. Next, we will achieve the purpose with a different analysis.

Random IDs with No Collisions

For any distinct $i, j \in[1, n]$, define $X_{i j}=$

- 1, if objects i and j have the same id.
- 0, otherwise.

Clearly:

$$
\begin{aligned}
\operatorname{Pr}\left[X_{i j}=1\right] & =1 / u \\
E\left[X_{i j}\right] & =1 / u
\end{aligned}
$$

Define:

$$
X=\sum_{\text {all distinct } i, j} X_{i j}
$$

Note that $X=0$ implies no collisions.

We know:

$$
\begin{aligned}
\boldsymbol{E}[X] & =\sum_{\text {all distinct } i, j} \\
& =\frac{n(n-1)}{2 u}
\end{aligned}
$$

Random IDs with No Collisions

Let us set $u=n^{2}$ so that

$$
E[X]=\frac{n(n-1)}{2 u}<1 / 2
$$

Next we prove that $\operatorname{Pr}[X=0] \geq 1 / 2$, namely, all ids are distinct with probability at least $1 / 2$.

Random IDs with No Collisions

Lemma: $\operatorname{Pr}[X \geq 1] \leq 1 / 2$.
Proof: If this is not true, then

$$
\begin{aligned}
E[X] & =\sum_{i=1}^{\infty} i \cdot \operatorname{Pr}[X=i] \\
& \geq \sum_{i=1}^{\infty} \operatorname{Pr}[X=i] \\
& =\operatorname{Pr}[X \geq 1] \\
& >1 / 2
\end{aligned}
$$

giving a contradiction.

Random IDs with No Collisions

Let us set $u=n^{3}$ so that

$$
E[X]=\frac{n(n-1)}{2 u}<1 / n .
$$

Next we prove that $\operatorname{Pr}[X=0] \geq 1-1 / n$, namely, all ids are distinct with probability at least $1-1 / n$ (the probability approaches 1 very quickly as n grows).

Random IDs with No Collisions

Lemma: $\operatorname{Pr}[X \geq 1] \leq 1 / n$.
Proof: If this is not true, then

$$
\begin{aligned}
E[X] & =\sum_{i=1}^{\infty} i \cdot \operatorname{Pr}[X=i] \\
& \geq \sum_{i=1}^{\infty} \operatorname{Pr}[X=i] \\
& =\operatorname{Pr}[X \geq 1] \\
& >1 / n
\end{aligned}
$$

giving a contradiction.

