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Abstract

Classification of large and dense networks based on topology is very difficult
due to the computational challenges of extracting meaningful topological features
from real-world networks. In this paper we present a computationally tractable
approach to topological classification of networks by using principled theory from
persistent homology and optimal transport to define a novel vector representation
for topological features. The proposed vector space is based on the Wasserstein
distance between persistence barcodes. The 1-skeleton of the network graph is
employed to obtain 1D persistence barcodes that represent connected components
and cycles. These barcodes and the corresponding Wasserstein distance can be
computed very efficiently. The effectiveness of the proposed vector space is
demonstrated using support vector machines to classify brain networks.

1 Introduction

Networks are ubiquitous representations for describing complex, highly interconnected systems
that capture potentially intricate patterns of relationships between nodes. [4]. Finding meaningful
characterizations of network structure is very difficult, especially for large and dense networks with
node degrees ranging over multiple orders of magnitude [10, 25].

Persistent homology [3, 20, 45] is an emerging tool for understanding, characterizing and quantifying
the topology of complex networks [15, 41]. Topology is characterized using connected components
(0D topological features), cycles (1D topological features) and higher dimensional, difficult to
visualize, objects. Connected components and cycles are the most dominant and fundamental
topological features of real networks. Many networks naturally organize into modules or connected
components [10, 25]. Similarly, cycle structure is ubiquitous and is often interpreted in terms of
information propagation, redundancy and feedback loops [29, 36, 46].

Here we present a novel topological vector space (TopVS) that embeds persistence barcodes for
connected components and cycles. TopVS preserves the underlying distance in the original space of
persistence barcodes while existing methods do not [13]. The p-norm distance in TopVS is equivalent
to the p-Wasserstein distance in the original barcode space. This equivalence allows the computation
of summary statistics such as the mean of persistence barcodes to be easily performed in TopVS.
The utility of TopVS is illustrated by classifying measured functional brain networks associated with
different levels of arousal during administration of general anesthesia. TopVS performs very well
compared to other topology-based approaches.
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2 Wasserstein Distance Based Vector Space

Birth-Death Decomposition Define a network as an undirected weighted graph G = (V,w) with
a set of nodes V , and a weighted adjacency matrix w = (wij). Define a binary graph Gϵ with the
identical node set V by thresholding the edge weights so that an edge between nodes i and j exists
if wij > ϵ. The binary graph is viewed as a 1-skeleton [32]. As ϵ increases, more and more edges
are removed from the network G. Thus, we have a graph filtration: Gϵ0 ⊇ Gϵ1 ⊇ · · · ⊇ Gϵk , where
ϵ0 ≤ ϵ1 ≤ · · · ≤ ϵk are called filtration values. Persistent homology keeps track of the birth and
death of topological features over filtration values ϵ. A topological feature that is born at a filtration
bi and persists up to a filtration di, is represented as a 2D point (bi, di) in a plane. A set of all the
points {(bi, di)} is called persistence barcode [23]. In the 1-skeleton, the only non-trivial topological
features are connected components and cycles. As ϵ increases, the number of connected components
β0(Gϵ) and cycles β1(Gϵ) are monotonically increasing and decreasing, respectively [41]. Thus, the
representation of the connected components and cycles can be simplified to a collection of sorted
birth values B(G) = {bi}|V |−1

i=1 and a collection of sorted death values D(G) = {di}1+|V |(|V |−3)/2
i=1 ,

respectively [41].

Closed-Form Wasserstein Distance Let Gi be a network. Its underlying probability density
function on the barcodes for connected components is defined in the form of Dirac masses [44] as
fGi,B(x) :=

1
|B(Gi)|

∑
b∈B(Gi)

δ(x− b) where δ(x− b) is a Dirac delta centered at the point b. Then
the empirical distribution is the integration of fGi,B as FGi,B(x) =

1
|B(Gi)|

∑
b∈B(Gi)

1b≤x where
1b≤x is an indicator function taking the value 1 if b ≤ x, and 0 otherwise. A pseudoinverse of FGi,B

is defined as F−1
Gi,B

(z) = inf{b ∈ R |FGi,B(b) ≥ z}. Then the empirical Wasserstein distance for
connected components has a closed-form solution in terms of pseudoinverses as Wp,B(G1, G2) =( ∫ 1

0
|F−1

G1,B
(z)− F−1

G2,B
(z)|p dz

)1/p

. Similarly, the Wasserstein distance for cycles Wp,D(G1, G2)

is defined in terms of empirical distributions for death sets D(G1) and D(G2).

The empirical Wasserstein distances Wp,B and Wp,D are approximated by computing the Lebesgue
integration numerically as follows. Let B̂(G1) = {F−1

G1,B
(1/m), ..., F−1

G1,B
(m/m)} and D̂(G1) =

{F−1
G1,D

(1/n), ..., F−1
G1,D

(n/n)} be pseudoinverses of network G1 sampled with partitions of equal
intervals. Let B̂(G2) and D̂(G2) be sampled pseudoinverses of network G2 with the same partitions
of m and n, respectively. Then the approximated Wasserstein distances are given by Ŵp,B(G1, G2) =(

1
mp

∑m
k=1

∣∣F−1
G1,B

(k/m)−F−1
G2,B

(k/m)
∣∣p)1/p

and Ŵp,D(G1, G2) =
(

1
np

∑n
k=1

∣∣F−1
G1,D

(k/n)−

F−1
G2,D

(k/n)
∣∣p)1/p

.

Topological Vector Representation A collection of 1D persistence barcodes together with the
Wasserstein distance is a metric space. 1D persistence barcodes can be embedded into a vector
space that preserves the Wasserstein metric on the original space of persistence barcodes as follows.
Let G1, G2, ..., GN be N observed networks possibly with different node sizes. Let F−1

Gi,B
be

a pseudoinverse of network Gi. The vector representation of a persistence barcode for connected
components in network Gi is defined as a vector of the pseudoinverse sampled at 1/m, 2/m, ...,m/m.
That is, vB,i :=

(
F−1
Gi,B

(1/m), F−1
Gi,B

(2/m), ..., F−1
Gi,B

(m/m)
)⊤

. A collection of these vectors
MB = {vB,i}Ni=1 with the p-norm ||·||p induces the p-norm metric dp,B given by dp,B(vB,i,vB,j) =

||vB,i − vB,j ||p = mŴp,B . Thus, for p = 1 the proposed vector space describes Manhattan distance,
p = 2 Euclidean distance, and p → ∞ the maximum metric, which in turn correspond to the earth
mover’s distance (W1) [38], 2-Wasserstein distance (W2), and the bottleneck distance (W∞) [27],
respectively, in the original space of persistence barcodes. Similarly, we can define a vector space
of persistence barcodes for cycles MD = {vD,i}Ni=1 with the p-norm metric dp,D. The normed
vector space (MB , dp,B) describes topological space of connected components in networks, while
(MD, dp,D) describes topological space of cycles in networks.

The topology of a network viewed as a 1-skeleton is completely characterized by connected compo-
nents and cycles. Thus, we can fully describe the network topology using both MB and MD as follows.
Let MB ×MD = {(vB,i,vD,i) |vB,i ∈ MB ,vD,i ∈ MD} be the Cartesian product between MB
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Figure 1: Accuracy classifying brain networks within individual subjects. The last column displays
the average accuracy obtained across all subjects. The center markers and bars depict the means and
standard deviations obtained over 100 trials.

and MD so the vectors in MB ×MD are the concatenations of vB,i and vD,i. For this product space
to represent meaningful topology of network Gi, the vectors vB,i and vD,i must be a network decom-
position, as stated in Section 2. Thus vB,i and vD,i are constructed by sampling their psudoinverses
with m = V −1 and n = 1+ V(V−3)

2 , respectively, where V is a free parameter indicating a reference
network size. The metrics dp,B and dp,D can be put together to form a p-product metric dp,× on

MB×MD as dp,×
(
(vB,i,vD,i), (vB,j ,vD,j)

)
=

(
[dp,B(vB,i,vB,j)]

p+[dp,D(vD,i,vD,j)]
p
)1/p

=(
[mŴp,B ]

p + [nŴp,D]p
)1/p

, where (vB,i,vD,i), (vB,j ,vD,j) ∈ MB × MD, m = V − 1 and
n = 1 + V(V−3)

2 . Thus, dp,× is a weighted combination of p-Wasserstein distances, and is simply
the p-norm metric between vectors constructed by concatenating vB,i and vD,i. The normed vector
space (MB ×MD, dp,×) is termed topological vector space (TopVS). A direct consequence of the
equality is that the mean of persistence barcodes under the approximated Wasserstein distance is
equivalent to the sample mean vector in TopVS. In addition, the proposed vector representation
is highly interpretable because persistence barcodes can be easily reconstructed from vectors by
separating sorted births and deaths.

Related work, statistical validation and runtime experiment for TopVS are provided in Appendices A
to C.

3 Application to Functional Brain Networks

Dataset We evaluate our method using a brain network dataset from the anesthesia study [2] (see
Appendix E for details). The brain networks are based on eleven neurosurgical patients during
administration of increasing doses of the general anesthetic propofol. Each segment is labeled as one
of the three arousal states: pre-drug wake, sedated but responsive to command, or unresponsive.

Classification performance evaluation We compare the classification performance of the proposed
TopVS relative to that of several state-of-the-art methods for persistence barcodes and graph kernels
including persistence image (PI) [1], sliced Wasserstein kernel (SWK) [14], persistence weighted
gaussian kernel (PWGK) [28], propagation kernel (Prop) [33] and graph hopper kernel (GHK) [22].
Implementation details of all the baseline methods are provided in Appendix D.

We are interested in whether 1) the candidate methods can differentiate arousal states within individual
subjects, and 2) generalize their learned knowledge to unknown subjects afterwards. As a result, we
consider two different nested CV tasks as follows. For the first task, we apply a nested CV comprising
an outer loop of stratified 2-fold CV and an inner loop of stratified 3-fold CV, for each subject. Since
we may get a different split of data folds each time, we perform the nested CV for 100 trials and
report an average accuracy score and standard deviation for each subject. We also average these
individual accuracy scores across subjects (11× 100 scores) to obtain an overall accuracy.

For the second task, we use a different nested CV comprising both outer and inner loops with a
leave-one-subject-out scheme. That is, a classifier is trained using all but one test subject. The
inner loop is used to determine optimal hyperparameters, while the outer loop is used to assess
generalization capacity of the candidate methods to unknown subjects in the population.
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Figure 2: Confusion matrices illustrating method performance for classifying across subjects. The
numbers represent the fraction of brain networks in the test subjects being predicted as one of the
three possible states: wake (W), sedated (S), and unresponsive (U).

Results Figure 1 compares classification accuracy for individual subjects. There is variability in
performance across subjects and across methods. In most subjects all methods perform relatively
well. Our TopVS method is consistently among the best performing classifiers, resulting in the higher
overall performance. On the other hand, the PI and Prop methods perform poorest in most subjects.
The consistently poorer performance of PI and Prop is evident in the lower overall performance. For
classifying across subjects, results are 0.65±0.21, 0.58±0.22, 0.57±0.20, 0.60±0.21, 0.36±0.12
and 0.43± 0.14 for TopVS, PI, SWK, WGK, Prop and GHK, respectively. TopVS is still among the
best methods for classifying across subjects, while the performance of both graph kernels suffers.

Figure 2 displays a summary of the across-subject prediction results using confusion matrices. Except
for two graph kernels, the other methods are generally effective for separating unresponsive (U)
from the other two states. However, the majority of classification errors are associated with the
differentiation between wake (W) and sedated (S) states. This misclassification is consistent with
prior biological expectations since the sedated brain, in which subjects have been administered
propofol but are still conscious, is expected to have a great deal of similarity with the wake brain
[2]. TopVS appears to show clear advantages over other baseline methods for differentiating wake
and sedated states. This suggests that the proposed vector representation is an effective choice for
representing subtle topological structure in networks.
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[49] Bartosz Zieliński, Michał Lipiński, Mateusz Juda, Matthias Zeppelzauer, and Paweł Dłotko.
Persistence codebooks for topological data analysis. Artificial Intelligence Review, 54:1969–
2009, 2021.

A Related Work

The extraction of topological features from persistence barcodes is an active area of research. A large
number of methods have been proposed in the literature, ranging from vectorization methods that
utilize limited topological information extracted from barcodes, such as statistics [31], Betti numbers
[11] and tropical coordinates [26], to more systematic featurizations, such as binning approach [12],
persistent codebooks [49], persistent functions [1, 8, 47] and persistent paths [18]. Embeddings
extracted from these methods, existing in both 1D and 2D representations, bridge the gap between
barcode representations and machine learning, enabling the incorporation of topological information
into various learning models.

The central trait of persistence barcodes is their stability properties [19]. It is thus of great interest to
understand if such properties carry over to barcode embeddings. Previously proposed feature maps
[1, 8, 47] achieve limited stability guarantees [13]. In contrast, TopVS is derived directly from the
closed form expression of the Wasserstein distance and thus is faithful to the stability properties
of persistence barcodes. Note also that performing statistical analysis in a metric space of such
embeddings is also of interest [9, 17, 21, 44]. The capability to model and quantify variations in data,
such as mean and variance, is important. TopVS allows closed form computation of such statistics and
enables the corresponding analyses. The high computational cost of persistent homology methods is a
hindrance to their use on large datasets. Previously proposed algorithms [27, 30] rely on approximate
solutions, typically iterative, to manage computational complexity. In contrast, TopVS is computed
efficiently using closed form expressions.

TopVS is limited to the representation of connected components and cycles. These two features play
a dominant role in topological analyses. For example, they are widely utilized in the brain network
community [10, 25]. While higher-order topological features have been considered in cosmology
[48], recent work shows that cosmic voids are not as discriminative as filament loops, i.e., cycles,
due to their relatively rare occurrence [6]. Hence, while higher-order topological information is of
theoretical interest, it is rarely used in applications of topology.

B Validation using Simulated Networks

Simulated networks of different topological structure are used to compare the classification perfor-
mance of the proposed TopVS relative to that of several state-of-the-art kernel methods for persistence
barcodes and graph kernels. While nearly any classifier may be used with TopVS, here we illustrate
results using the C-support vector machine (SVM) [16] with the linear kernel, which maximizes
Wasserstein distance-based margin. When the TopVS method is applied to different-size networks,
we compute birth and death sets of the largest network, and upsample birth and death sets of smaller
networks to match that of the largest network in size. If the networks considered have the same size,
we simply vectorize their birth and death sets.

The performance of TopVS is compared to five other methods published in the literature. Three
of these methods are based on 2-dimensional persistence barcodes: the Persistence Image (PI)
vectorization [1], the Sliced Wasserstein kernel (SWK) [14] and the Persistence Weighted Gaussian
kernel (PWGK) [28]. The other two benchmark methods are based on graph kernels: the Propagation
kernel (Prop) [33] and the GraphHopper kernel (GHK) [22]. The PI method embeds persistence
barcodes into a vector space in which classification is performed using linear SVMs. The non-linear
SWK, PWGK, Prop and GHK methods are combined with SVMs using the kernel trick [24] to
perform classification.
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Figure 3: Example networks with |V | = 90 nodes distributed evenly among m = 3 modules
according to within-module-connection probabilities r = 0.75, 0.65 and 0.55.

The three persistence barcode methods require computation of 2-dimensional persistence barcodes
from networks. We compute a 2-dimensional persistence barcode using the approach of Otter et al.
[35] in which edge weights are inverted via the function f(w) = 1/(1 + w). Then a point cloud is
obtained from the shortest path distance between nodes. Finally, the Ripser implementation [43] of
the Rips filtration [23] generates the persistence barcode from the point cloud. The two graph kernel
methods require node continuous attributes. We follow the experimental protocol of Borgwardt et al.
[7] in which a node attribute is set to the sum of edge weights incident to the node. Implementation
details of the baseline methods are provided in Appendix D.

Evaluation and tuning protocol Nested cross validation (CV) is used for selection of optimal
hyperparameters and assessment of generalization capacity of the candidate algorithms for classifying
networks. Nested CV comprises an outer loop of stratified 2-fold CV and an inner loop of stratified
5-fold CV. The folds in stratified CV are selected by preserving the percentage of network samples
for each group label. The inner loop is used to tune hyperparameters via grid search [5] to determine
the set of optimal hyperparameters that achieves the highest accuracy. The outer loop provides a
generalized performance evaluation for the model trained using the optimal hyperparameters from
the inner loop. Thus, the nested CV procedure finds the average of accuracy scores over 2 folds in
the outer loop using a model trained by the optimal hyperparameters obtained from the inner loop.
Additional details on hyperparameter values and tuning are provided in Appendix D.

Simulated modular network structure Random modular networks Xi are simulated with |V |
nodes and m modules such that the nodes are evenly distributed among modules. Figure 3 displays
modular networks with |V | = 90 nodes and m = 3 modules such that |V |/m = 30 nodes are in each
module. Edges connecting two nodes within the same module are assigned a random weight following
a normal distribution N (1, 0.52) with probability r or otherwise Gaussian noise N (0, 0.52) with
probability 1− r. On the other hand, edges connecting nodes in different modules have probability
1−r of being N (1, 0.52) and probability r of being N (0, 0.52). The modular structure becomes more
pronounced as the within-module connection probability r increases. Any negative edge weights are
set to zero. This procedure yields random networks Xi that exhibit topological connectedness.

Simulated dataset Two groups of modular networks L1 = {Xi}30i=1 and L2 = {Xi}60i=31 cor-
responding to m = 3 and 5 modules, respectively, are generated. This results in 60 networks in
the dataset, each of which has a group label L1 or L2. Two different settings of network sizes
are considered: 1) all 60 networks with |V | = 90 and 2) an equal number (ten) of networks with
|V | = 60, 90 and 120 in each group. Three different settings of within-module connection proba-
bilities are considered for each case: r = 0.75, 0.65 and 0.55 to vary the strength of the modular
structure, as illustrated in Figure 3. Note that it is computationally challenging to apply statistical
characterization such as a permutation test with persistence barcode and graph kernel based methods
for even small networks of |V | = 60 and 90.

Classification performance evaluation Binary classification is performed on the generated dataset
using the candidate algorithms. Nested CV is used to evaluate classification performance, resulting in
an observed accuracy statistic s. Since the distribution of the accuracy s is unknown, a permutation
test is used to determine the empirical distribution under the null hypothesis that sample networks
and their group labels are independent [34]. The empirical distribution is calculated by repeatedly
shuffling the group labels, thereby removing any dependency between the sample networks and the
labels, and then re-computing the corresponding nested CV accuracy score for one thousand random
permutations. By comparing the observed accuracy to this empirical distribution, we can determine
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Figure 4: Classification performance comparison for simulated networks with m = 3, 5 modules and
either |V | = 90 nodes (Top) or |V | = 60, 90, 120 nodes (bottom) with respect to average accuracy
(left) and average p-values (right). Results for within-module connection probabilities r = 0.55, 0.65
and 0.75 are shown. Data points (middle horizontal lines) indicate the average results over ten
independently generated datasets, while vertical error bars indicate standard deviations.

the statistical significance of the observed accuracy. The p-value is calculated as the fraction of
permutations that give nested CV accuracy values higher than the observed accuracy s. The average
p-value and average observed accuracy across ten independently generated datasets are reported.

Results Figure 4 indicates that all methods achieve relatively high accuracy on networks with
pronounced modular structure (r = 0.75), and their accuracy decreases as the modularity strength
diminishes, i.e., decreasing r. Our TopVS performs relatively well discriminating the more subtle
modularity corresponding to r = 0.65 and 0.55. Since the dataset is purposefully generated to exhibit
dependency between sample networks and their group labels, a low p-value provides statistical
evidence that a trained classifier is able to leverage the dependency to differentiate network topology
[34]. The proposed method has average p-values lower than 0.05 for all experimental settings,
indicating that its improved accuracy over the baseline methods is significant. The Prop method has
the closest accuracy to TopVS when r = 0.55, but has a higher p-value, indicating the accuracy is a
less reliable indicator of performance.

C Runtime Experiment

All candidate methods used in the simulation study are evaluated for a runtime experiment. All
methods were run on Intel Core i7 CPU with 16GB of RAM. Figure 5 displays the runtime vs input
size plot. The result clearly shows that all three persistent homology based kernels (PI, SWK and
WGK) are limited to dense networks with a few hundred nodes, representing the current scaling
limit of persistent homology embedding methods. On the other hand, TopVS is able to compute a
kernel between 2000-node networks each with approx. two million edges in about one second. The
computational practicality of TopVS extends its applicability to the large-scale analyses of brain
networks that cannot be analyzed using prior methods based on conventional persistence barcodes.
Note that the time complexity of Prop is O(|E|) while TopVS has the slightly higher complexity
as O(|E| log |V |), where |V | and |E| are the number of nodes and edges. While Prop is the most
efficient among all the methods, it has the lowest average accuracy when classifying the brain network
data.

D Implementation Details of Candidate Methods

Implementation of Persistence Image (PI) vectorization [1] is performed using Persim [39]. Sliced
Wasserstein kernel (SWK) [14] and Persistence weighted Gaussian kernel (PWGK) [28] are imple-
mented using the Gudhi library [42]. Propagation kernel (Prop) [33] and GraphHopper kernel (GHK)
[22] are implemented via GraKel library [40].
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Figure 5: Runtime experiment. We measured the runtime as the average amount of time each
algorithm takes to compute its kernel between two complete graphs starting from edge weights as a
given input. The complete graphs were constructed using our modular network generation, described
in Appendix B. The runtime is plotted with respect to network size in terms of both the number of
nodes and edges.

For the PI method, we follow a parameter setting used by Adams et al. [1] to convert two persistence
barcodes for connected components and cycles into two 2-dimensional pixel images of 20× 20 reso-
lution using a Gaussian function with variance 0.01. The two images are vectorized and concatenated
into a single feature vector per network. Then linear SVMs are used to classify these vectors.

SWK is based on the sliced Wasserstein approximation [37] over 10 directions. PWGK is based on
the RBF kernel and an arctan weight function recommended by Kusano et al. [28]. Both SWK and
PWGK use combined persistence barcodes, each comprising 2-dimensional points of both connected
components and cycles, to compute the Gram matrices.

Grid search [5] across different hyperparameter values is used to train all the candidate methods.
SVMs have a regularization parameter C = {0.01, 1, 100}. Thus, a grid search trains TopVS
and PI methods with each C ∈ C. The SWK and WGK methods have a bandwidth parameter
Σ = {0.1, 1, 10}, and thus grid search trains both methods with each pair (C, σ) ∈ C × Σ. The
Prop method has a maximum number of propagation iterations Tmax = {1, 5, 10}, and thus is
trained with each pair (C, tmax) ∈ C × Tmax. GHK method uses the RBF kernel with a parameter
Γ = {0.1, 1, 10} between node attributes, and thus is trained with each pair (C, γ) ∈ C × Γ.

E Brain Network Dataset

Brain network data were obtained from eleven neurosurgical patients between 19 and 59 years old as
described in Table 1. The patients were undergoing chronic invasive intracranial electroencephalog-
raphy (iEEG) monitoring as part of their treatment for medically refractory epilepsy. The Code of
Ethics of the World Medical Association (Declaration of Helsinki) for experiments involving humans
was followed for all the experiments. The University of Iowa Institutional Review Board and the
National Institutes of Health approved all research protocols, and written informed consent was
obtained from all subjects. Acquisition of clinically required data was not impeded by the research
and subjects were free to rescind their consent whenever they wished without interfering with their
clinical evaluation. Subdural and depth electrodes (Ad-Tech Medical, Oak Creek, WI) used to obtain
all research data were located by the team of epileptologists and neurosurgeons based solely on needs
for clinical evaluation of the patients. Data collected in the operating room prior to electrode removal,
before and during induction of general anesthesia with propofol were used to create the brain network
dataset. Full description of the method for obtaining the brain network dataset and experimental
procedure is provided in [2].
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Table 1: Brain network dataset.

SUBJECT AGE GENDER NETWORK SIZE

R369 30 M 199
L372 34 M 174
R376 48 F 189
B384 38 M 89
R399 22 F 175
L400 59 F 126
L403 56 F 194
L405 19 M 127
L409 31 F 160
L423 51 M 152
L514 46 M 118
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