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Abstract

As modern neural networks keep breaking

records and solving harder problems, their pre-

dictions also become less intelligible. The cur-

rent lack of interpretability undermines the de-

ployment of accurate machine learning tools in

sensitive settings. In this work, we present a

model-agnostic explanation method for image

classification based on a hierarchical extension

of Shapley coefficients –Hierarchical Shap (h-

Shap)– that resolves some limitations of current

approaches. Unlike other Shapley-based explana-

tion methods, h-Shap is scalable and it does not

need approximation. Under certain distributional

assumptions, which are common in multiple in-

stance learning, h-Shap retrieves the exact Shap-

ley coefficients with an exponential improvement

in computational complexity. We compare our hi-

erarchical approach with popular Shapley-based

and non-Shapley-based methods on a synthetic

dataset, a medical imaging scenario, and a gen-

eral computer vision problem. We show that h-

Shap outperforms the state of the art in both ac-

curacy and runtime.

1. Introduction

Explainability has become a question of increasing rele-

vance in machine learning, where the growing complexity

of deep neural networks often renders them opaque to us,

the humans interacting with them. This issue is commonly

referred to as the black-box problem and comprises theo-

retical, technical, and regulatory questions (Zednik, 2019;

Tomsett et al., 2018). As deep neural networks take on sen-

sitive tasks in medical, legal, and financial settings, they

need to achieve both high accuracy and high transparency
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for a safe deployment. For example, uninterpretable pre-

dictions could mislead clinicians in their decision-making

rather than support it (Amann et al., 2020). Furthermore,

it is sometimes required by law (Kaminski, 2019) to pro-

vide an explanation of how data lead an automated algo-

rithm, for example, to reject a loan application (Kaminski,

2019; Kaminski & Malgieri, 2019; Hacker et al., 2020). Fi-

nally, opaque models can conceal dataset bias, and lead to

socially unfair models (Shin, 2021).

In this work, we are particularly interested in explaining

models in supervised learning scenarios in order to gain in-

sights about the concept related to a specific response. For

example, assume one has a model that predicts the presence

of brain tumor in MRI scans with very high accuracy. What

are the most relevant features that indicate the presence of

tumor, and where are they located? Can we discover new

features of the disease from what the model has learned?

Many important problems of this kind exist, but the nec-

essary tools to answer these questions effectively and effi-

ciently are still lacking.

The foundational work by Ribeiro et al. (2016) spurred

exciting advances in local feature attribution methods,

such as Grad-CAM (Selvaraju et al., 2017), Integrated

Gradients (Sundararajan et al., 2017), and DeepLIFT

(Shrikumar et al., 2017). Lundberg and Lee (2017) provide

a unified framework for several different approaches under

their SHAP method, which leverages Shapley coefficients

–a game-theoretic measure (1953)– and feature removal

strategies. Unlike other perturbation-based alternatives,

these methods produce attributions that enjoy of important

consistency results and theoretical properties. Since then,

a plethora of different explanation methods has been devel-

oped1 for tabular, sequential, or imaging data; both based

on Shapley coefficients (Chen et al., 2018) as well as other

information theoretic quantities (MacDonald et al., 2019;

Heiß et al., 2020; Merrick & Taly, 2020). Although previ-

ous work explores structured and hierarchical approaches

(Chen et al., 2020b; 2018; Singh et al., 2018), they remain

limited for high-dimensional data.

Notwithstanding the recent advances in image attribution

1To our knowledge, Covert et al. (2020) compiled the most
comprehensive review of currently available explanation methods
based on feature removal.
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methods based on Shapley coefficients, several limitations

hinder their use for “large” images –a standard image con-

tains≈ 106 pixels, and larger images are used in several im-

portant applications. The contribution of this work is three-

fold: first, we present a fast explanation method based on

Shapley coefficients that is exponentially faster than pop-

ular SHAP methods. Second, under some distributional

assumptions similar to those in multiple instance learning,

we show that the coefficients provided by h-Shap are ex-

act, and can be further approximated in a controlled man-

ner by trading off computational cost. Third, we compare

h-Shap with other popular explanation methods on three

benchmarks of varied complexity and dimension, demon-

strating that h-Shap outperforms the state of the art both in

terms of runtime and retrieval of relevant features.

This paper is organized as follows. In Sec. 2 we briefly

summarize the necessary background. We present h-

Shap in Sec. 3, and the experiments with their results in

Sec. 4 and 5. Finally, we discuss our limitations in Sec. 6,

and we conclude in Sec. 7.

2. Background

In supervised learning scenarios, we are interested in ap-

proximating a response or label, Y ∈ Y , from a given in-

put random sample X ∈ X . Herein we assume a realizable

setting where the response Y = f∗(X) ∈ Y , for some

f∗ : X → Y , and denote the joint distribution of (X,Y )
as D. We look for a function f : X → Y ′ that approxi-

mates f∗(X). Given a loss function L : Y × Y ′ → R that

penalizes the dissimilarity between the predicted and real

label, we look for f in a suitable functional class with min-

imal risk, R = ED[L(Y, f(X))]. However, D is typically

unknown and instead we are provided with a training set

{(X(i), Y (i))}Ni=1 of observed data. As a result, we search

for a function that minimizes the empirical risk,

f̂ = argmin
f∈F

1

N

N∑

i=i

L(Y (i), f(X(i))), (1)

whereF = {fθ : θ ∈ Θ}, with parameters θ (such as a neu-

ral network model). We focus on binary classification prob-

lems, where Y = {0, 1} and Y ′ ∈ R, though our general

methodology is applicable to multi-class settings as well.

We will refer to images as vectors in the n-dimensional real

space, i.e. X ⊆ R
n.

Explaining predictions via Shapley coefficients. Mod-

ern machine learning models can often provide solutions

that perform remarkably well. In many settings, however,

one would like to know the contribution of xi, the ith en-

try of X , towards the output. Let us define by C a subset

of the entries of X , so that C ⊆ [n] := {1, . . . , n}, and

define XC ∈ R
n the input that coincides with X in the

entries denoted by C but takes a different, baseline, value

in its complement, C̄. In the context of interpretability,

we look for a vector Φ(X,f̂) ∈ R
n, where the ith coordi-

nate reflects the importance of xi towards f̂(X). Broadly

speaking, the features C provide an explanation for f̂(X)

if f̂(X) ≈ f̂(XC). Different measures of importance have

been proposed to study model interpretability, and thus to

compute Φ(X,f̂). In this work, we focus on the general

approach presented originally by (Lundberg & Lee, 2017)

that employs Shapley coefficients (1953) as the measure of

contribution of every pixel toward the output, which has

gained great popularity (Sundararajan & Najmi, 2020). We

now briefly introduce some game theory notation to define

Shapley coefficients.

Let g = (X, f, [n]) be an n-person cooperative game with

players [n] and characteristic function f : X 7→ R which

maps the input space X to a score. In particular, f(XC)
is the score that the players in C would earn by collabo-

rating in the game, with f(X∅) = 0 by convention2. A

solution concept is a rule that assigns a fair contribution to

each player in the game. Notably, Shapley coefficients, de-

noted by φ1(f), . . . , φn(f), are the only solution concept

of (X, f, [n]) that simultaneously satisfy the properties of

efficiency, nullity, and symmetry (Shapley, 1953). In the

context of model explanations, input features are regarded

as players, and these properties imply that: i) feature attri-

butions sum up to the model prediction; ii) the attributions

of irrelevant features are simply 0; and iii) the attributions

of equally important features are equal, respectively. These

equip Shapley-based methods with a useful set of proper-

ties, which are not generally satisfied by others attributions

methods.

Shapley coefficients can be derived axiomatically (Shapley,

1953), and they are defined as

φi(f) =
∑

C⊆[n]\{i}
wC

[
f(XC∪{i})− f(XC)

]
(2)

where wC = |C|!(n − |C| − 1)!/n! . This way, φi(f) rep-

resents the averaged marginalized contribution of xi over

all possible subsets of [n]. Eq. (2) also illustrates what

is arguably the most important limitation of Shapley co-

efficients: their computation is exponential in the dimen-

sion of the input features, and it requires 2n unique eval-

uations of f . This quickly becomes intractable in image

classification problems when f is a convolutional neural

network and n ≈ 106, or larger. As a result, all state-

of-the-art image explanation methods based on Shapley

coefficients rely on some approximation strategy to work

2Game theory (Owen, 1995) requires a characteristic function
v : P(X) → R, where P(X) is the power set of X . Fol-
lowing prior work (Lundberg & Lee, 2017), we assume v(C) =
f(XC), ∀C ⊆ X , and therefore use f for the sake of simplicity.
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around this computational limitation. For instance, Gra-

dientExplainer (Lundberg & Lee, 2017) extends Integrated

Gradients (Sundararajan et al., 2017) by sampling multi-

ple references from the background dataset to integrate

on. Similarly, DeepExplainer (Lundberg & Lee, 2017;

Chen et al., 2021) builds upon DeepLIFT (Shrikumar et al.,

2017) by choosing a per-node attribution rule that can ap-

proximate Shapley coefficients when integrated over many

background samples. Finally, PartitionExplainer employs

a hierarchical clustering approach to compute Owen’s coef-

ficients (Owen, 1977; López & Saboya, 2009), which can

improve runtime compared to the naive Shapley coeffi-

cients. While these approximations can sometimes work in

practice, they only provide consistency results and lack re-

sults when one can only use a small amount of model eval-

uations (Merrick & Taly, 2020). As a result, it is hard to un-

derstand when they will and will not be effective. We will

compare extensively with these approaches later in Sec. 4.

We remark that one of the most important details of any

explanation method based on feature removal is the base-

line, which defines the value that XC takes in the entries

not in C. There are different approaches to removing fea-

tures, ranging from using the default value of 0, to using

their conditional distribution (refer to (Covert et al., 2020)

for further details). Computing the latter can be challeng-

ing, and recent work has explored various approximations

(Aas et al., 2021; Frye et al., 2019). The effects of us-

ing different baselines have also been investigated in im-

ages (Sturmfels et al., 2020) and tabular data (Haug et al.,

2021). We follow the standard approach of setting the

baseline to their expected value over the training dataset

(Lundberg & Lee, 2017; Janzing et al., 2020), and com-

ment on potential extensions later.

Multiple Instance Learning. In this work, we focus on

problems with particular joint distributions of samples and

labels. Our guarantees will apply to settings broadly known

as multiple instance learning (MIL) (Weidmann et al.,

2003). In MIL, each instance xi is assumed to have an

instance-label, and the sample X is regarded as a bag that

aggregates all instances. The bag, X , has its own label

Y ∈ {0, 1} determined by its constituent instances. In its

simplest version, the bag is assumed to be positive if at least

one of its instances is positive. As an example, an image of

cells will be labeled with infection if at least one cell

in it is infected. Importantly, the learner does not have

access to the instance-labels, but only to the bag-label Y .

Such an MIL setting appears in several important problems

(Han et al., 2020; Hashimoto et al., 2020; Fu et al., 2012).

In the context of our work, we assume that the prediction

rule satisfies such an MIL assumption:

f∗(X) = 1 ⇐⇒ ∃ C ⊆ [n] : f∗(XC) = 1. (3)

In words, Eq. (3) implies that f∗(X) will be 1 as soon as

there is at least one subset C of [n] that contains the concept

of interest. This is simply a formalization of the setting we

were describing earlier, where the concept can be a specific

morphological feature in a brain scan, a sick cell in a blood

smear, or something as general as a traffic light in a street

image.

To recap, f̂ is trained to detect a binary concept in a sam-

ple image, and we would like to detect which subsets of

the input, XC , are relevant for this task. While this could

in principle be done via Shapley coefficients, it is compu-

tationally intractable. We now move on to present our ap-

proach, which will address this limitation.

3. Hierarchical-Shap

Our motivating observation is that if an area of an image

is uninformative (i.e. it does not contain the concept), so

will be its constituent sub-areas. Therefore, the exploration

of relevant areas of an image can be done in a hierarchi-

cal manner. There exists extensive literature on hierar-

chies of games and their properties (Faigle & Peis, 2008;

Algaba & van den Brink, 2019). Our contribution is to de-

ploy these ideas for the purpose of image explanations. We

now make this more precise.

Let T0 = (S0, T1, . . . , Tγ) be a recursive γ-partition tree of

X , where S0 is the root node containing all features of X ,

i.e. S0 = [n], |S0| = n, and T1, . . . , Tγ are the subtrees

branching off of S0. Let c(Si) = {C1, . . . , Cγ} denote the

children of Si, and hf̂ : Si 7→ (X, f̂ , c(Si)) be a mapping

from the node Si of Ti to the γ-person cooperative game

(X, f̂ , c(Si)). Succinctly, G0 = hf̂ (T0) is a hierarchy of γ-

person games, and we denote by φi,1(f̂), . . . , φi,γ(f̂) the

Shapley coefficients of gi ∈ G0. In simpler words, we par-

tition an image X into a few disjoint components, compute

the Shapley coefficients φi of each component, and then

partition further in a hierarchical manner. In particular, the

number of such partitions per level (specified by γ) is very

small: if X is a one dimensional vector, we set γ = 2 and

T0 is a binary tree; when X is a (
√
n×√n) image, γ = 4

and T0 is a quadtree. As a result, computing all 2γ unique

evaluations of f̂ required for each game (X, f̂ , c(Si)) is

trivial. For images, each coefficient requires only 16 model

evaluations. We have chosen to employ symmetric disjoint

partitions in this work (i.e. halves for vectors, quadrants for

images, etc) for simplicity only. More sophisticated (and

potentially data-dependent) hierarchical partitions are pos-

sible as well. We will comment on this in the discussion.

Given such nested partitions, h-Shap relies on evaluating

the resulting hierarchy of games while only visiting nodes

that are relevant. More precisely, beginning at S0, it com-

putes the coefficients φ0,1, . . . , φ0,γ of g0. Under Eq. (3),
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if any φ0,i = 0, all features in the corresponding subtrees

will also be irrelevant. As a result, they can be ignored alto-

gether, and we only proceed by exploring the Si for which

φi > 0. This process finishes when all relevant leaves have

been visited. In practice, we introduce two parameters to

add flexibility. We set a relevance tolerance, τ , which de-

termines the threshold to be used to declare a partition rele-

vant, and therefore expand on its subtrees. We further intro-

duce a minimal feature size, s, that serves as a condition for

termination. These two parameters are naturally motivated

by application and easy to set. For example, it might not

be that useful for a domain expert to know the exact pixel-

level explanation of a given input. Rather, it would be more

informative to have a coarser aggregation of the features

that inform the model prediction. Later in this section, we

will precisely characterize how the minimal feature size s
affects the dissimilarity between h-Shap’s attributions and

the exact Shapley coefficients. On the other hand, model

deviations and noise in the input may result in positive co-

efficients very close to 0. Requiring φi > τ > 0 provides

control over the sensitivity of the method. Finally, when

τ = 0, s = 1, h-Shap simply explores all relevant nodes in

T0 as described above.

Fixed τ and s, h-Shap explores T0 starting from S0, and

it visits all relevant nodes Si : φi > τ, |Si| ≥ s. This tree

exploration can be naturally done in a depth-first or breadth-

first manner. Please refer to Supplementary Material A for

both algorithms. The only difference between them is that

the former defines τ as an absolute value (e.g. 0), whereas

the latter does so relative to the pooled Shapley coefficients

of all nodes at the same depth (e.g. 50th percentile). Both

algorithms return the set of relevant leaves L ⊆ [n] with

coefficients greater than τ , and the saliency map Φ̂ is finally

computed as

φ̂i =

{
1/|L| if i ∈ L,

0 otherwise.
(4)

This choice will ensure that Φ̂ is consistent with the exact

Shapley attributions Φ under the MIL assumption, as we

will formalize shortly.

To mask features out (i.e. as baseline), h-Shap

uses their expected value (or unconditional distribu-

tion (Janzing et al., 2020)) for simplicity, as done by

other works (Covert et al., 2020). As pointed out by

(Covert et al., 2020; Lundberg & Lee, 2017), this is valid

under the assumptions of model linearity and feature inde-

pendence3. Yet, as we will argue later in Sec. 7, the feature

independence property holds approximately in the cases we

3We refer to (Chen et al., 2020a; Sundararajan & Najmi, 2020;
Merrick & Taly, 2020; Janzing et al., 2020) for recent discussion
on the use of observational vs interventional conditional distribu-
tions in the context of removal-based explanation methods.

are interested in this work, whereas our MIL assumption is

enough to provide specific guarantees without requiring lin-

earity of the model. We will also show in Sec. 4 that these

assumptions are sufficient for h-Shap to work well in prac-

tice. More generally, our contribution is independent of

the particular method employed for sampling the baseline,

and follow-up work can employ better approximations of

both the observational and interventional conditional distri-

butions in appropriate tasks (Chen et al., 2020a).

Computational analysis. The benefit of h-Shap relies on

decoupling the dimensionality of the sample X (i.e. n),

from the number of players in each game (i.e. γ). As we

will explain in this section, this leads to an exponential com-

putational advantage over the general expression in Eq. (2)

in explaining f̂ . In the analysis that follows, we do not

include the computation of the baseline value –which we

assume fixed, see discussion in Sec. 7– and we refer the

reader to the proofs of all the results in this section to the

Supplementary Material B. Let us denote by T̂0 the sub-

tree of T0 explored by h-Shap (i.e. the one with the visited

nodes only). We will also assume in this section that n is a

power of γ for simplicity of the expressions. We begin by

making the following remark.

Remark 3.1 (Computational cost). Given X ∈ R
n, h-

Shap requires at most 2γk logγ(n) model evaluations,

where k is the number of relevant leaves in T̂0.

This result follows directly by noting that the cost of split-

ting each node is always 2γ , and by realizing that each im-

portant leaf takes, at most, logγ(n) nodes, which is expo-

nentially better than the cost of Eq. (2). The reader should

recall that the number of internal nodes of a full and com-

plete γ-partition tree is (n − 1)/(γ − 1). Then, the above

result is relevant whenever k logγ n < (n − 1)/(γ − 1).
This implies that further benefit is obtained whenever k =
O(n/ logγ n), which is only a mild requirement in the num-

ber of relevant features.

Moreover, it is of interest to know the expected computa-

tional cost, which can be significantly smaller than the up-

per bound above. Throughout the rest of this section, and

to provide more precise results, we will let the data X be

drawn from a distribution of important and non-important

features. A distribution is “important” in the sense that it

leads to positive responses.

Assumption A1. The data X ∈ R
n is drawn so that each

entry xi ∼ aiI + (1 − ai)Ic, where ai ∼ Bernoulli(ρ)
is a binary random variable that indicates whether the fea-

ture xi comes from an important distribution I, or its non-

important complement Ic, so that

f̂(XC) = 1 ⇐⇒ ∃i ∈ C : xi ∼ I, C ⊆ [n]. (5)

With these elements, we present the following result.
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(a) Synthetic dataset.

(b) BBBC041 dataset.

(c) LISA dataset.

Figure 1. A few saliency maps for the three settings studied in this work, where blue pixels have negative, white pixels have negligible,

and red pixels have positive Shapley coefficients. The color mapping is adapted to each saliency map and centered around 0.

Theorem 3.2 (Expected number of visited nodes). Assume

X and f̂(X) satisfy A1, τ = 0, and s = 1. Then, the

expected number of visited nodes in T̂0 is

E[|T̂0|] = 1 + γ(1− p(S0))E[|T̂1|], (6)

where

p(Si) =





(1− ρ)
|Si|

γ if i = 0,

(1− ρ)
|Si|

γ

(
1−(1−ρ)

|Si|
γ−1

γ

1−(1−ρ)|Si|

)
otherwise.

See Proof B.1. Hence, E[|T̂0|] is a monotonically increas-

ing function of the Bernoulli probability ρ, and it tends to

(n− 1)/(γ − 1) as ρ→ 1.

Accuracy and Approximation. Recall that h-Shap pro-

vides image attributions by means of a hierarchy of coop-

erative games. As a result, the attributions are different, in

general, from those estimated by analyzing the grand coali-

tion directly –that is, by the general Shapley approach in

Eq. (2). Yet, we now show that under A1, h-Shap can in

fact provide exact Shapley coefficients while being expo-

nentially faster.

We begin by noting that under the MIL assumption, all pos-

itive features have the same importance. This agrees with

intuition that the number of times the positive concept ap-

pears in the input image does not affect its label. We denote

as Φ and Φ̂ the exact and hierarchical Shapley coefficients,

respectively, for simplicity.

Remark 3.3. Under A1, and denoting k = ‖Φ‖0, it holds

that the exact saliency map Φ satisfies

φi =

{
1/k if xi ∼ I
0 otherwise.

(7)

This remark follows simply from the nullity and symmetry

properties of Shapley coefficients. As a result, the saliency

map computed by h-Shap, Φ̂, as in Eq. (4), coincides with

Φ under the MIL assumption. We now derive a more gen-

eral similarity lower bound between Φ and Φ̂ that allows

for minimal feature sizes s > 1. For simplicity, we assume

that n and s are powers of γ, and 1 ≤ s ≤ n. First of

all, because of the MIL assumption, h-Shap will only keep

exploring nodes that have at least one important feature in

them at each level of the hierarchy. Thus, for each impor-

tant feature i with Φi = 1/k there will be a non-zero coef-

ficient produced by h-Shap. The following result precisely

quantifies to what extent these two vectors Φ and Φ̂ match.

Theorem 3.4 (Similarity lower bound). Assume X ∈ R
n

and f̂(X) satisfy A1, and k = ‖Φ‖0. Then

〈Φ, Φ̂〉
‖Φ‖2‖Φ̂‖2

≥ max{1/√s,
√

k/n}. (8)

See Proof B.2. This result shows that not only does h-Shap

provide faster image attributions, but it retrieves the exact

Shapley coefficients defined in Eq. (7) under the MIL as-

sumption if s = 1.

4. Experiments

We now move to demonstrate the performance of h-

Shap and of other state-of-the-art methods for image at-

tributions. Our objective is mainly to compare with

other Shapley-based methods, such as GradientExplainer

(Lundberg & Lee, 2017), DeepExplainer (Lundberg & Lee,

2017; Chen et al., 2021), and PartitionExplainer. We

also include LIME (Ribeiro et al., 2016) given its relation

to Shapley coefficients, and Grad-CAM (Selvaraju et al.,

2017) because of its popularity. We study three comple-
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(a) (b) (c) (d) (e) (f) (g)

Figure 2. Ablation examples for all explanation methods removing all important pixels from the original image 2a. The model is trained

to predict if a given image does contain a cross or not.

mentary binary classification problems of different com-

plexity and input dimension: a simple synthetic benchmark,

a medical imaging dataset, and a general computer vision

task. We focus on scenarios where the ground truth of the

image attributions (i.e. what defines the label) is well de-

fined and available for evaluation. Our code is made avail-

able for the purpose of reproducibility4. When possible,

each method was set to use as much GPU memory as possi-

ble, so as to minimize their runtime. DeepExplainer, Gradi-

entExplainer, and PartitionExplainer were constrained the

most by memory, reflecting their limitation in analyzing

large images. We use h-Shap with both an absolute thresh-

old τ = 0, and a relative threshold τ equal to the 70th per-

centile, which we refer to as τ = 70%. Finally, we perform

full randomization sanity checks (Adebayo et al., 2018) on

the network used in the synthetic dataset for all explanation

methods. We refer the reader to Supplementary Material D

for these results.

Synthetic dataset. We created a controlled setting where

the joint data distribution is completely known, giving us

maximal flexibility for sampling. We generate images

of size 100 × 120 pixels with a random number of non-

overlapping geometric shapes of size 10 × 10 and of dif-

ferent colors, uniformly distributed across the image. Each

image that contains at least one cross receives a positive la-

bel, and each image without any crosses receives a negative

label. Alongside with the images, we generate the ground

truth saliency maps by setting all pixels that precisely lie

on a cross to 1, and every other pixel to 0. We generate

8000 positive and negative images, and we randomly sam-

ple train, validation, and test splits, with size 5000, 1000
and 2000 images, respectively. We train a simple ConvNet

architecture and achieve an accuracy greater than 99% on

the test set –implying that the model has effectively satis-

fied the MIL assumption for this problem. From the true

positive predictions on the test set, we choose 300 example

images with 1 cross and as many with 6 crosses to evaluate

the saliency maps.

P. vivax (malaria) dataset. Moving on to a real and

high-dimensional problem, we explore the BBBC041

4https://github.com/Sulam-Group/h-shap

dataset5 (Ljosa et al., 2012). The dataset consists of

1328, 1200 × 1600 pixels blood smears with uninfected

and malaria-infected cells. The dataset also comprises

bounding-box annotations of both healthy and sick cells.

We consider the binary problem of detecting images that

contain at least one trophozoite. We apply transfer learn-

ing to a ResNet18 (He et al., 2016) network pretrained on

ImageNet using cross-entropy loss. Our model achieves a

test accuracy of ≈ 94%. We finally aggregate all 107 true

positive predictions for evaluation.

LISA traffic light dataset. We finally look at a gen-

eral computer vision dataset consisting of driving se-

quences6 (Jensen et al., 2016; Philipsen et al., 2015). The

complete dataset counts 43 007 frames of size 960 × 1280
pixels, and 113 888 annotated traffic lights. From this set,

we take daytime traffic images, and train a model to predict

the presence of a green light in a sample image. As before,

we apply transfer learning on a pretrained ResNet18 with

cross-entropy loss. After training, we achieve a test accu-

racy of ≈ 93%. Finally, we randomly sample 300 true pos-

itive examples to evaluate the different attribution methods

on.

We refer to Supplementary Material C for a detailed de-

scription of the training procedures. Fig. 1a, 1b, and 1c

show an example image for each dataset, and the respective

saliency maps obtained with different explanation models

(for more examples, see Fig. E.1).

5. Results

We evaluate the explanation methods by means of three per-

formance measures: ablation tests, accuracy, and runtime.

Ablation tests. As commonly done in literature

(Lundberg & Lee, 2017; Sturmfels et al., 2020; Haug et al.,

2021) we remove the top k scoring features of all methods

by setting them to their expected value, and plot the logit

of the prediction as a function of k. For these experiments,

we use τ = 0 so as to find all the features that are relevant

for the model. Fig. 2 shows full ablation results on one ex-

ample image from the synthetic dataset for all explanation

5https://www.kaggle.com/kmader/malaria-bounding-boxes.
6https://www.kaggle.com/mbornoe/lisa-traffic-light-dataset.
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(a) Synthetic dataset. Results for n = 1, 6 crosses.

(b) BBBC041 dataset. (c) LISA dataset.

Figure 3. f1 scores as a function of runtime for all explanation methods in all three experiments.

methods. We expect a perfect method to remove all crosses

from the image –and only those. We can appreciate how h-

Shap removes mostly only the crosses, while other methods

also erase other shapes which should not be identified as

important. Furthermore, removing more relevant features

should produce a steeper drop of the prediction logit. We

include the respective curves in Fig. E.2, depicting that h-

Shap’s logit curves either drop the fastest towards 0 or pro-

vide the lowest logit at complete ablation. Indeed, h-Shap

quickly identifies the most relevant features in the image.

Naturally, as tasks become harder, the accuracy of f̂ de-

creases, and the model gets further away from the oracle

function f∗. In these cases, f̂ might not satisfy Eq. (3), re-

sulting in noisier saliency maps, and subsequently, in non-

monotonic curves.

Accuracy and Runtime. Since we have ground-truth ex-

planations in all these cases (i.e. a cross, a sick cell, or

a green traffic light), we use f1 scores (Guidotti, 2021) as

a measure of goodness of explanation. Fig. 3 depicts the

f1 scores as a function of runtime for every explanation

method and experiment. The relevance tolerance τ allows

to take into account the risk of the model f̂ and discard

noisy attributions, while also decreasing runtime. These

results reflect how the computational cost and accuracy

guarantees described earlier translate into application. Not

only does h-Shap decrease runtime by almost two orders of

magnitude compared to current Shapley-based explanation

methods, but also it increases the f1 score by more than

one order of magnitude. In all experiments –both synthetic

and real– h-Shap consistently provides more accurate and

faster saliency maps.

6. Discussion and Limitations

h-Shap’s most important limitation is its MIL assumption

on the data distribution. Indeed, h-Shap is designed to iden-

tify local findings that produce a positive global response,

accurately and efficiently. These are precisely the impor-

tant features C analyzed in Sec. 3. This setting fails when

the minimal feature size is much smaller than the size of

the findings that define the label. As an example, Fig. 4 de-

picts a zoomed-in version of the map produced by h-Shap

for one sample from the P. vivax dataset, for different val-

ues of s. We see that when s is somewhat smaller than

the object, h-Shap still recognizes the important features in

the image. Once s is too small, however, the resulting map

breaks down, as our assumption does not hold anymore. In-

deed, this simply implies that a small (e.g. 5 × 5 pixels)

image patch of a cell is no longer necessary for the model

to recognize the cell. In practice, these failure cases can

easily be identified by deploying simple conditions search-

ing over decreasing sizes of s (which would not increase
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(a) Original image. (b) s = 80 pixels.

50px

(c) s = 20 pixels. (d) s = 5 pixels.

Figure 4. Degradation of h-Shap’s maps as the minimal feature

size s becomes smaller than the target concept.

the computational cost).

Another limitation of h-Shap pertains the way hierarchical

partitions are created. We have chosen to use quadrants for

simplicity, and this is sub-optimal: important features can

fall in-between quadrants, impacting performance. This

limitation is minor, as it can be easily fixed by applying

ideas of cycle spinning and averaging the resulting esti-

mates. Furthermore, and more interestingly, hierarchical

data-dependent partitions could also be employed. We re-

gard this as future work.

Finally, we turn our attention to the masking strategy, i.e.

how to sample the baseline. We recall that in this work we

defined the variable XC as

(XC)i =

{
Xi if i ∈ C

Ri otherwise,
(9)

where R ∈ R
n−|C| is a baseline value. Throughout this

work, we have treated R as a fixed, deterministic quan-

tity. However, more generally, reference inputs are random

variables. Let this masked input be the random variable

XC = [X̄C , R] ∈ R
n, where X̄C ∈ R

|C| is fixed, and

R is a random variable. Here, we follow the original ap-

proach in (Lundberg & Lee, 2017). Indeed, the definition

of φi in Eq. (2) can be made more precise by writing the

expectation E[f̂(XC∪{i})− f̂(XC)] as

ER[f̂([X̄C∪{i}, R])|X̄C∪{i}]− ER[f̂([X̄C , R])|X̄C ]. (10)

Then, if the model f̂ is linear, and the features are indepen-

dent, Eq. (10) simplifies to

f̂([X̄C∪{i},E[R]])− f̂([X̄C ,E[R]]), (11)

where E[R] is an unconditional expectation. E[R] can be

easily computed over the training data, and is precisely the

fixed baseline we employed in this work.

How realistic are these assumptions in our case? First, the

cases that we study approximately satisfy feature indepen-

dence in a local sense, i.e. when s is greater or similar to the

size of the concept we are interested in detecting. This pre-

cisely holds in the synthetic dataset, where each 10×10 pix-

els shape is sampled independently from the others. This

assumption is still approximately valid in the other two ex-

periments, where the presence or absence of a cell does not

affect the content of the image many pixels apart. On the

other hand, while we have chosen general models f̂ which

are far from linear, we argue that A1 is enough to obtain a

weaker sense of interpretability. Looking at

f̂([XC ,E[R]]), (12)

and under the MIL assumption, there are only two mutu-

ally exclusive events for the subset C: (a) C contains at

least one relevant feature, and (b) C does not contain any

relevant features. When event (a) occurs, Eq. (12) will nec-

essarily yield a value≈ 1. It follows that if both C∪{i} and

C contain important features, Eq. (11) will be ≈ 0; which

agrees with intuition that all important features are equally

important. As a result, because E[R] is fixed and A1 holds,

a positive value of Eq.(11) is only attained if (i.e. implies

that) i is an important feature (and it also implies that E[R]
is not important).

Even though we have focused on binary classification tasks

in this work, h-Shap could also easily be applied to multi-

class settings by adapting the problem to a 1 vs all scenario.

Lastly, note that our method relies on f̂ satisfying A1, and

one should wonder when this holds. Such an assumption

is true when f∗ –the true classification rule Y = f∗(X)–
satisfies A1 (which is true for a variety of problems, includ-

ing the ones studied in our experiments), and f̂ constitutes

a good approximation for f∗. We show that such assump-

tions are reasonable in practical settings.

7. Conclusion

We presented a fast, scalable, and exact explanation method

for image classification based on a hierarchical extension

of Shapley coefficients. We showed that when the data

distribution satisfies some multiple instance learning as-

sumption, our method gains an exponential computational

advantage while producing accurate –or approximate– re-

sults. Furthermore, we studied synthetic and real settings

of varying complexity, demonstrating that h-Shap outper-

forms the current state-of-the-art methods in both accuracy

and runtime, and suggesting that h-Shap acts as a weakly-

supervised object detector. We have also presented and il-

lustrated limitations of our approach, and addressing them

is matter of future work.
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Supplementary Material

A. Algorithms

Here, we describe the two versions of h-Shap presented in

Sec. 3. Algorithm 1 details dh-Shap (depth-first h-Shap),

and Algorithm 2 describes bh-Shap (breadth-first h-Shap).

We recall that both implementations return the set of rele-

vant leaves L ⊆ [n] := {1, . . . , n} such that their Shapley

coefficients are greater than a relevance tolerance τ . The

former implementation, dh-Shap, uses an absolute toler-

ance, while the latter, bh-Shap, uses a relative tolerance.

Algorithm 1 Depth-first h-Shap

1: procedure dH-SHAP(X, T0, f̂ )

2: inputs: image X , threshold τ ≥ 0, trained model f̂
3: g0 ← (X, f̂ , c(S0))
4: φ0,1, . . . , φ0,γ ← shap(g0)
5: for all φi do

6: if φi > τ then

7: if |Si| ≤ s then

8: return Si

9: else

10: return dh-Shap(X, Ti, f̂ )

11: end if

12: end if

13: end for

14: end procedure

15: L← dh-Shap(X, T0, f̂)

B. Proofs

We summarize here the assumptions and notation used in

the following results. Let X ∈ R
n be drawn so that each

entry xi ∼ aiI + (1 − ai)Ic, where ai ∼ Bernoulli(ρ)
is a binary random variable that indicates whether the fea-

ture xi comes from an important distribution I, or its non-

important complement Ic. Let

f̂(XC) = 1 ⇐⇒ ∃i ∈ C : xi ∼ I, C ⊆ [n],

where n := {1, . . . , n} and XC ∈ R
n is equal to X in the

entries of C and takes value in the baseline in its comple-

ment C̄. We denote with Φ(X,f̂) = {φ1(f̂), . . . , φn(f̂)} ∈
R

n the saliency map of X where φi(f̂) is the Shapley coef-

ficient of xi. Let k = ‖Φ(X,f̂)‖0 be the number of reported

important features by the exact Shapley coefficients. We

showed earlier (see Eq. (7)) that under these assumptions,

it follows:

φi(f̂) =

{
1/k if xi ∼ I
0 otherwise.

Furthermore, let T0 = (S0, T1, . . . , Tγ) be the recursive

definition of a γ-partition tree of X such that S0 = [n];

Algorithm 2 Breadth-first h-Shap

1: procedure bH-SHAP(X, T0, f̂ )

2: inputs: image X , threshold τ ≥ 0, trained model f̂
3: L← ∅
4: l← S0

5: while l is not empty do

6: Φl ← ∅
7: for all Si ∈ l do

8: gi ← (X, f̂ , c(Si))
9: φi,1, . . . , φi,γ ← shap(gi)

10: Φl ← Φl ∪ φi,1, . . . , φi,γ

11: end for

12: τ ← τ(Φl)
13: l′ ← ∅
14: for all φi ∈ Φl do

15: if φi ≥ τ then

16: if |Si| ≤ s then

17: L← L ∪ Si

18: else

19: l′ ← l′ ∪ Si

20: end if

21: end if

22: end for

23: l← l′

24: end while

25: return L
26: end procedure

27: L← bh-Shap(X, T0, f̂)

Ti, . . . , Tγ are the subtrees branching off of S0; and c(Si)
are the γ children of the node Si. Recall that h-Shap ex-

plores T0 from S0 and returns all relevant leaves L ⊆ [n]
such that their Shapley coefficient is greater than a rele-

vance tolerance τ . We denote with T̂0 the subtree com-

posed of the nodes visited by h-Shap, and with Φ̂(X,f̂) the

saliency map computed by h-Shap, such that

φ̂i(f̂) =

{
1/|L| if i ∈ L

0 otherwise.

Now, we will provide proof of the Theorems presented in

Sec. 3.

B.1. Expected number of visited nodes 3.2

Here, we are interested in evaluating the expected number

of nodes visited by h-Shap, to better characterize its com-

putational advantage.

Proof. Recall that S0 contains all features of X . That is,
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S0 = [n]. Since x1, . . . , xn ∈ X are iid, so are groups of

features. Then, it suffices to analyze each child of S0 inde-

pendently. Consider the two mutually exclusive events on

the child node ci ∈ c(S0): 1) it does not contain any impor-

tant features, i.e. ∄ j ∈ ci : f̂(Xj) = 1; and 2) it contains

at least one important feature, i.e. ∃ j ∈ ci : f̂(Xj) = 1.

Let p1(S0) be the probability of event 1, and 1− p1(S0) be

the probability of event 2. When event 2 occurs, we add

one node to T̂0, and then we explore the subtree T̂i branch-

ing off of ci. We can recursively apply this strategy to each

subtree of T̂0, which yields

E[|T̂0|] = 1 + γ(1− p1(S0))E[|T̂1|]. (13)

We are left with evaluating p1(S0), which simply is

p1(S0) = (1− ρ)|S0|/γ (14)

since the probability for xk not to be important, i.e xk ∼ Ic,

is (1−ρ), and all the children c(S0) have cardinality n/γ =
|S0|/γ because they form a disjoint symmetric partition of

S0. When analyzing the ith subtree branching off of S0,

T̂i, one has to condition on the probability of the event that

Si contains at least one important feature. The probability

p′(Si) of the event that Si contains at least one important

feature is, again, simply 1− (1− ρ)|Si|. Therefore

p1(Si) =
(1− ρ)|Si|/γ(1− (1− ρ)|Si|(γ−1)/γ)

1− (1− ρ)|Si| (15)

is the conditioned probability that a child of Si does not

contain any important features.

B.2. Similarity lower bound 3.4

Here, we want to find the lower bound of the similarity

between Φ and Φ̂, defined as

α =
〈Φ, Φ̂〉
‖Φ‖2‖Φ̂‖2

.

Proof. Let k = ‖Φ‖0 be the number of reported important

features in X as returned by the Shapley coefficients. Let

L ⊆ [n] be the relevant leaves returned by h-Shap. From

Eq. (7) and (4) it follows that

‖Φ‖2 =

√
1

k2
k =

√
1

k
, (16)

‖Φ̂‖2 =

√
1

(ℓs)2
ℓs =

√
1

ℓs
, (17)

where |L| = ℓs, ℓ is the number of relevant leaves, and s is

the minimal feature size. Furthermore, we know that

〈Φ, Φ̂〉 = k

(
1

k

1

ℓs

)
=

1

ℓs
. (18)

Therefore

α =
〈Φ, Φ̂〉
‖Φ‖2‖Φ̂‖2

=
1
ℓs
1√
ℓsk

=

√
k

ℓs
. (19)

Fixed s and k, α is a monotonically decreasing function of

ℓ, which means that minimizing the similarity between Φ
and Φ̂ is equivalent to maximizing the number of leaves

returned by h-Shap. When k ≤ n/s, ℓ ≤ k, so α ≥√
k/(ks) = 1/

√
s. When k > n/s, |L| = n, therefore

α ≥
√
k/n.

C. Experimental details

C.1. Synthetic dataset

Table 1 represents the network architecture used in the

synthetic dataset experiment. We optimize for 50 epochs

with Adam optimizer, learning rate 0.001 and cross-entropy

loss.

Layer Filter size Input size

Conv 1 6× (3× 5× 5) 3× 100× 120
ReLU 1 – 6× 96× 116

MaxPool 1 2× 2 6× 96× 116
Conv 2 16× (6× 4× 4) 6× 48× 58
ReLU 2 – 16× 45× 55

MaxPool 2 5× 5 16× 45× 55
FC 1 1584× 120 1584× 1

ReLU 3 – 120× 1
Dropout 1 – 120× 1

FC 2 120× 84 120× 1
ReLU 4 – 84× 1

Dropout 2 – 84× 1
FC 3 84× 2 84× 1

Table 1. Network architecture for the synthetic dataset experiment

C.2. P. vivax (malaria), LISA datasets

In both experiments, we optimize all parameters of a pre-

trained ResNet18 for 25 epochs with stochastic gradient de-

scent – learning rate 0.001, momentum 0.9. We use cross-

entropy loss and learning rate decay of 0.2 every 10 epochs.

D. Sanity checks

Some interpretability methods have been shown

(Adebayo et al., 2018) to be unreliable in that they do not

truly rely on what the model has learned, i.e. the precise

parametrization of f̂ . For this reason, (Adebayo et al.,

2018) advocates for some sanity checks. Following this

observation, we perform full model randomization tests

on all methods compared in this work. The intuition
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Figure D.1. Examples of full model randomization tests in the synthetic dataset.

behind model randomization tests is that if the explanation

method actually depends on features learned by the model,

the explanations should degrade as model weights are

randomized. We perform full randomization tests in the

sense that we randomly initialize all the parameters in the

simple network described above in Table 1. Fig. D.1 shows

that all explanation methods employed in this work pass

the model randomization test, in the sense that the saliency

maps degrade completely with a random model.
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E. Figures

(a) Synthetic dataset

(b) BBBC041 dataset

(c) LISA dataset

Figure E.1. More examples of saliency maps.
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(a) Synthetic dataset. Results for n = 1, 6 crosses.

(b) BBBC041 dataset (c) LISA dataset

Figure E.2. Logit output compared to original logit output as a function of image ablation.


