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Abstract
We propose a novel method based on associa-
tive classification in combination with odds ra-
tios, a well-understood epidemiological metric, as
an interpretable method for in-hospital mortality
estimation, which is influenced by thousands of
clinical variables. We tested and validated the
method for cases in intensive and emergency care.
The resulting model achieves an area under the re-
ceiver operating characteristic curve of 0.98. The
model is easy to interpret in the form of one-to-
one rules and the corresponding odds ratios. This
study shows that associative classification com-
bined with epidemiological metrics can be used as
effective and interpretable machine learning mod-
els in the presence of outcomes that are influenced
by thousands of variables.

1. Introduction
Intensive care units (ICUs) and emergency departments
(EDs) provide care for the critically ill. In-hospital mor-
tality, which is the term for when a patient dies during
their stay in the hospital, is part of this care. In a complex
clinical environment, different factors play a vital role for
in-hospital mortality. Socio-demographic factors describe
the patients as well as their background. Diagnoses, medica-
tion, and procedures, describe the clinical care the patients
experience. Both the patients as well as their care influence
in-hospital mortality. When viewed as data recorded in elec-
tronic health records or other forms of clinical data, this
plethora of factors results in thousands of different variables
that may or may not be associated with in-hospital mortality.

Scoring systems and machine learning methods allow
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providers to use clinical data to arrive at an objective estima-
tion of the in-hospital mortality risk based on these variables.
Various scoring systems have been developed to estimate
the mortality risk or a case’s severity in different scenarios
(Salluh & Soares, 2014). Such a risk score can objectively
assess the urgency, mortality risk, and patients’ expected
need of care.

Next to these standardized analog scoring systems, various
machine learning methods have been used in the last years
(Xie et al., 2017; Johnson et al., 2017; Keuning et al., 2020).
These models provide scoring systems tailored to the respec-
tive clinic because they are learned directly from the data
recorded in this clinic. Interpretability of these methods
has been discussed both in in-hospital mortality prediction
(Xie et al., 2017) and early warning score systems (Fu et al.,
2020), mentioning that there is a compromise between inter-
pretability and predictive performance. Decision trees show
the best interpretability among the commonly used models,
but often lack predictive performance (Xie et al., 2017).

Apart from this compromise, there is another challenge.
ICUs and EDs are, by design, caring for patients with very
different conditions and illnesses. Mortality risk estimation
methods need to incorporate many different variables of
different types, as many variables are associated with mor-
tality. This hinders interpretability, as more variables that
are associated with the outcome of interest make models
even more complex.

One class of machine learning models showing high inter-
pretability are associative classifiers (Thabtah, 2007). They
are built of association rules, i.e., rules of the form ”A⇒ B”
where A is a set of variables and B the outcome(s) of inter-
est. These rules are first mined from the dataset to build a set
of rules that fulfill configurable quality constraints. Given
a new observation, this set of rules is then evaluated on the
observation and ranked or aggregated to form a prediction.

The advantages of associative classifiers are their analytic
nature and their high interpretability. These advantages stem
from the fact that the algorithm’s decision can be understood
in the form of human-readable if-then-rules. Additionally,
associative classifiers can incorporate large numbers of het-
erogeneous variables.
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Associative classification methods have previously been
used in the field of healthcare. Notable fields of application
include disease and wellness prediction (Meena et al., 2019;
Dua et al., 2009; Rea & Huff, 2010; Ujager & Mahmood,
2019), outcome prediction and adverse drug reactions (Kad-
khoda et al., 2020; El Houby, 2014; Uriarte-Arcia et al.,
2014; Lin et al., 2012), and biochemistry and genetics (Yu
& Wild, 2012a;b; He & Hui, 2009; ElHefnawi & Sherif,
2014; Kianmehr & Alhajj, 2008). In the field of in-hospital
mortality prediction, Cheng et. al. used association rules
based on twelve lab test results (2015). While this study
shows the feasibility of associative classification, the present
study expands the approach by incorporating heterogeneous
variables and much more variables in general.

We want to assess the association that a variable has with
in-hospital mortality. In epidemiology, odds ratios (ORs)
are often used to measure the strength and direction of an as-
sociation between variables. We use this metric to measure
the quality of the association rules in this study. ORs have
previously been used with associative classification (Lin
et al., 2012). They are widely used in epidemiology and can
be used to measured both the direction and the strength of
an association. We give a short introduction to ORs as they
are less often used in machine learning.

Let D denote the clinical dataset under analysis. D is a
collection of clinical cases, with each case being a set com-
prised of the variables that occurred during the case. Let
y = 1 denote that the patient died during the stay, and y = 0
that they did not. In this way, we can assign to each case A
in D the number 1 or 0, depending on the outcome of the
case A. This leads to the following definition.

Given a variable x and y either 0 or 1, we denote by
supp(x, y) the number of cases that include x and have
outcome y, i.e.

supp(x, y) = |{A ∈ D | x ∈ A,A has outcome y}|.

The term supp(x, y) is called the support of x with outcome
y. We additionally define

supp(y) = |{A ∈ D | A has outcome y}|,

which is the number of all cases with outcome y without
imposing any criterion on the items included in the case.

Similarly, we want to look at cases that do not contain the
variable x, indicated by ¬x. This leads to the definition

supp(¬x, y) = supp(y)− supp(x, y).

Then, the OR can be expressed as

OR(x) =
ad

bc
=

supp(x, 1) · supp(¬x, 0)
supp(¬x, 1) · supp(x, 0)

,

using the outcome-based support function given above.

In a fictional example with 1000 patients and some drug
A, imagine that 100 patients got drug A and 200 patients
did not get drug A, after which they died during the stay.
Additionally, 400 patients got drug A and 300 patients did
not get drug A and did not die during the stay. Then, we
have

a = supp(drug A, 1) = 100,

b = supp(drug A, 0) = 400,

c = supp(¬ drug A, 1) = 200,

d = supp(¬ drug A, 0) = 300,

and

OR(drug A) =
100 · 300
400 · 200

= 0.375,

which indicates that drug A is negatively associated with
mortality during the stay because the OR is lower than 1.0.
This calculation allows us to assess the association between
drug A and in-hospital mortality.

We use the same principle in this study to assess the asso-
ciation between various clinical variables and in-hospital
mortality. Next to the prediction and the interpretability
of the method, the goal of the present study is to analyze
how such a rule-based model can be used to study which
variables influence in-hospital mortality in a clinical dataset.

2. Materials and Methods
2.1. Data

This study uses data from the MIMIC-IV project, version
0.4 (Johnson et al., 2020). MIMIC-IV is a publicly available
clinical dataset comprising around 525,000 ICU and ED
cases collected between 2008 and 2019. Recorded variables
include vital signs, textual notes, diagnoses, procedures,
and various organizational information. We included all
available cases in the study. The age of a patient is not
used to filter the cases. This allows us to assess the in-
hospital mortality risk for the most general and heterogenous
population possible that can be expected in ICUs and EDs.
This yields 524,520 cases that were used in this study. Out
of these, 9369 (1.79%) were reported to have died during
the hospital stay. While this is a considerable amount of
cases, general clinical data also contains a lot of variables.

The types of variables used in the present study are listed
in Table 1. This set of variables types includes variables
that can be expected to exists in all ICUs and EDs. It does
not include quickly changing information like vital signs
or unstructured data like textual notes. Like diagnoses and
procedures, some information might change throughout the
stay but can be expected to do so slowly.
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Table 1. The types of variables used in the present study as well as a description and the number of variables of this type in MIMIC-IV.
ICD: International Classification of Diseases.

VARIABLE TYPE DESCRIPTION NUMBER OF VARIABLES

DIAGNOSIS DIAGNOSES (ICD) 86,751
ETHNICITY PATIENT’S ETHNICITY 8
GENDER RECORDED AS BINARY: MALE/FEMALE 2
INSURANCE TYPE RECORDED AS MEDICARE, MEDICAID, OR OTHER 3
LANGUAGE RECORDED AS BINARY: ENGLISH/OTHER 2
MARITAL STATUS RECORDED AS SINGLE, MARRIED, DIVORCED, WIDOWED, MISSING 5
PRESCRIPTION PRESCRIBED DRUGS 10,259
PROCEDURE PROCEDURES (ICD) 82,763
SERVICE SERVICES: MEDICAL, PSYCHOLOGICAL ETC. 21
WARD WARDS: EMERGENCY DEPARTMENT, SURGERY ETC. 43

OVERALL 179,857

Overall, 179,857 variables were included in the method.
Each variable is treated the same, irrespective of its type.
Additionally, in-hospital mortality is defined for each clini-
cal case in MIMIC-IV. This variable is used as the outcome
of interest. In comparison to other datasets, this is a vast
number of variables, resulting in only around three cases per
variable. Many commonly used software packages strug-
gle with such sparse data, rendering the usage of popular
algorithms like logistic regression and decision trees diffi-
cult. We circumvent this by applying ARM to the dataset,
which considers all variables independently and based on
commonly used metrics.

2.2. Method

The method is composed of three steps, which are shown in
Figure 1. In the first step, the OR between each variable and
in-hospital mortality is calculated. ORs which take the value
0 or +∞ are discarded. This corresponds to at least one of
the values included in the OR being 0. In the second step,
these odds ratios are filter based on a statistical significance
test, resulting in a prediction model composed of rules with
a statistically significant odds ratio. This prediction model
is used in the third step by aggregating the odds ratios of all
rules that apply to the given case.

In the first step, the OR of each variable with in-hospital
mortality is calculated as explained above. After the dataset
has been fully searched, the second step consists of applying
a statistical test to each rule to determine if it is statistically
significant. The normal approximation of the log odds ra-
tio (Morris & Gardner, 1988) is used to test for statistical
significance, analyzing the calculated OR against the null
hypothesis ”OR = 1.0”. The returned two-sided p-value is
compared to a configurable value pmax and only rules with
p < pmax are kept. A method to correct for multiple hypoth-
esis testing may be used when configuring pmax to ensure
valid results despite the high number of statistical tests. The
user can thus choose whether to use Bonferroni correction

Figure 1. A visual representation of the proposed method.It con-
tains three steps, namely the calculation of the odds ratio between
each variable and in-hospital mortality, a filter for statistical signif-
icance of the calculated odds ratio, and an aggregation of all odds
ratio that apply to a given case.

(Shaffer, 1995). If it is enabled, the user-chosen p-value is
changed before the statistical tests are executed. If p is the
original p-value, the new p-value is chosen to be p divided
by the number of tests to be executed. This statistical signif-
icance test (with or without Bonferroni correction) can filter
out rules for which the test deemed that there is not enough
evidence available to determine that ”OR 6= 1.0” and that
the OR being different from 1.0 could therefore have been
observed due to random chance.

2.3. Risk estimation

These calculations result in a set of rules of the form
”variable ⇒ in-hospital mortality,” each with an OR that
measures the strength as well as the direction of the asso-
ciation between the variable and in-hospital mortality. The
third and last step of the method consists of the actual predic-
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tion of in-hospital mortality for an individual case. Given a
new clinical case, the algorithm estimates the risk as follows.
First, the method checks which rules apply to the case, i.e.,
for which rules the corresponding variable occurred in the
case. Second, the average OR of all these applying rules is
taken. This average OR is then used as a mortality risk score.
A cutoff value is needed to transform this score into a binary
prediction (low risk/high risk). The cutoff value depends on
the users’ needs and has to be determined empirically; see
below.

2.4. Experiments

Ten-fold cross-validation was used. The hyperparameters
were configured as follows. The use of Bonferroni correc-
tion could be turned on (”yes” in the plots below) and off
(”no”). The maximal allowed p-value threshold was set to
10−n for n ∈ {0, . . . , 10} as well as the commonly used
threshold 0.05. The metric of interest was the area under
the receiver operating characteristic curve (AUC). The ex-
periments resulted in 12 ∗ 2 ∗ 10 = 240 AUC values.

3. Results
Figure 2 shows the resulting AUCs. Overall, the predictive
performance was very good, with AUCs around 0.98. Even
though there is some variation in the average AUCs, the dif-
ferent configurations do not impact the predictive qualities
of the model.

Figure 2. The AUC values returned by the experiments are shown
on the y-axis. The x-axis is the p-value threshold used to filter the
rules, the color indicates whether Bonferroni correction was used
in the experiments. The error bars denote plus/minus one standard
deviation. Higher p-values lead to slightly increased AUC values.

The configured p-value threshold and the use of Bonfer-

roni correction have a major impact on the number of rules
in the model, as shown in Figure 3. The number of rules
increases approximately exponentially with increasing p-
value threshold. The use of Bonferroni correction slows this
increase down. The standard deviation of the number of
rules is small, which indicates that the model size is stable
in different folds of the dataset. In summary, statistical sig-
nificance tests can simplify the model considerably without
compromising the predictive performance.

Figure 3. The y-axis shows the number of rules in the model. The
x-axis is the p-value threshold used to filter the rules, the color in-
dicates whether Bonferroni correction was used in the experiments.
The error bars (which are barely visible) denote plus/minus one
standard deviation. The number of rules increases exponentially
with the p-value.

The high number of rules results from the complex and
highly heterogeneous scenario with many variables for
which this model is built. This can be seen in Figure 4.
Even though there are thousands of rules in the model, only
around 23 to 36 rules apply to each case, dependent on the
hyperparameters. This makes the model easily understand-
able and interpretable for each case.

We further analyze one model that was trained with Bon-
ferroni correction and a maximal p-value of 10−10. As the
AUC is only weakly affected by the hyperparameters while
the number of rules decreases quickly for smaller p-value
thresholds, this configuration was chosen to achieve a model
with a good predictive performance and as few rules as pos-
sible. This model achieved an AUC of 0.98 with 1302 rules.
The corresponding receiver operating characteristic curve
(ROC) can be seen in Figure 5. It shows the sensitivity and
specificity for different risk score cutoff values.

The choice of a cutoff value depends on the usage context.
One common method to choose a cutoff values is by Youden
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Figure 4. The average number of rules that apply to one clinical
case. The x-axis is the p-value threshold used to filter the rules,
the color indicates whether Bonferroni correction was used in the
experiments. The error bars (which are barely visible) denote
plus/minus one standard deviation. The average number of rules
increases only slightly with the p-value. The standard deviations
are very low, indicating that most cases have a similar number of
rules that apply.

Table 2. The four-fold table between in-hospital mortality and the
predicted mortality risk with the cutoff value 5.31, which mini-
mizes the Youden index.

DIED SURVIVED

HIGH RISK 929 3,345
LOW RISK 54 48,036

index, which is calculated as sensitivity + specificity − 1
(Youden, 1950). The maximal Youden index was 0.87 for
the cutoff value 5.31. This cutoff value resulted in a sensi-
tivity of 95% and specificity of 93%. The corresponding
four-fold table can be seen in Table 2.

Table 3 shows the types of variables in the model. Out of
the 179,857 variables in MIMIC-IV, 1302 were included in
the model due to their association with in-hospital mortal-
ity. Out of these, 1260 denoted positive associations (i.e.,
OR >1, the variable’s occurrence often co-occurs with in-
hospital mortality), and 42 denoted negative associations
(i.e., OR <1, the variable’s occurrence rarely co-occurs with
in-hospital mortality).

The rules are heterogeneous. Every type of variable included
in the study occurred in the final rule set. This shows the
heterogeneous factors that are associated with mortality in
ICUs and EDs.

Figure 5. The receiver operating characteristic curve of one of
the resulting models. The model contains 1302 rules. The x-axis
shows one minus the specificity, the y-axis shows the sensitivity for
different threshold values, which are shown as dots. The red line
indicates the curve of a random coin toss. The ROC is very close
to the top left corner, indicating a high predictive performance.

Two of the top five rules, namely the ones with brain deaths,
highlight two curiosities of the dataset. First, the ICD (In-
ternational Classification of Diseases) coding scheme was
updated from version 9 to version 10 during the data col-
lection. Second, both variables for brain death (ICD-9 and
ICD-10) appear in the top five positive rules. This is surpris-
ing, as one would assume that brain death always co-occurs
with in-hospital mortality, which would lead to an OR of
+∞. As this value is not meaningful for our purposes, it
would have been discarded. While the ORs are very high,
they are finite, indicating that there were cases in which
brain death was diagnosed, but the patient survived the case.
These cases were organ donors. After their death, they were
recorded as being re-admitted to the hospital for the dona-
tion, and, according to the data, the patient survived one of
the cases. Hence, these two rules are the result of a rare doc-
umentation error. This shows how the interpretable nature
of the association rules used for prediction also allow us to
identify patterns in the dataset.

The rules describe differences in in-hospital mortality be-
tween different patient groups in the dataset. We give some
examples of rules of different types. Males had higher
mortality odds than females (OR 1.25 vs. 0.80). The ef-
fect of marital status (single: 0.50; widowed: 2.05) could
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Table 3. The types of variables contained in the model as well as the number of overall, positive (OR >1) and negative (OR <1) rules.

VARIABLE TYPE VARIABLES IN MIMIC-IV OVERALL RULES POSITIVE RULES NEGATIVE RULES

DIAGNOSIS 86,751 656 650 6
ETHNICITY 8 4 2 2
GENDER 2 2 1 1
INSURANCE TYPE 3 3 1 3
LANGUAGE 2 2 1 1
MARITAL STATUS 5 2 1 1
PRESCRIPTION 10,259 461 442 19
PROCEDURE 82,763 144 144 0
SERVICE 21 9 6 3
WARD 43 19 12 7

OVERALL 179,857 1302 1260 42

Table 4. The rules with the five highest and lowest odds ratios
(ORs) in the model. Diagnosis codes are given as International
Classification of Diseases code, in the format version:code.

VARIABLE OR

PRESCRIPTION: MORPHINE INFUSION 856.26
DIAGNOSIS: BRAIN DEATH, 10:G93.82 668.41
DIAGNOSIS: SUBDURAL HEMATOMA, 9:852.25 582.14
DIAGNOSIS: BRAIN DEATH, 9:348.82 413.38
PRESCRIPTION: ANGIOTENSIN II 332.77
. . . . . .
PRESCRIPTION: TRIPLE DYE 0.02
WARD: OBSTETRICS 0.02
SERVICE: OBSTETRICS 0.01
PRESCRIPTION: HEPATITIS B VACCINE 0.01
PRESCRIPTION: PHYTONADIONE 0.00

have been confounded by age, as could the effect of insur-
ance type (Medicare: 2.40; Medicaid: 0.57; other: 0.50).
English-speaking patients were more likely to survive (0.73
vs. 1.36). The ethnicity categories of hispanic/latino (0.47)
and black/african american (0.58) were negatively associ-
ated with in-hospital mortality. The other retained ethnicity
rules indicate missing values (unknown: 4.59; unable to
obtain: 2.25). These rules might hint at critically ill pa-
tients who were unconscious at the time of admission. The
rules of the types service and ward are similar to each other.
One group of rules describes childbirth with a very low
mortality risk with the services ”Newborn” (0.17) and ”Ob-
stetrics” (0.01) and the wards Obstetrics (0.02), Nursery
(0.02), and Labor & Delivery (0.04). As is to be executed,
various ICU wards show higher ORs (cardiac vascular 2.80;
trauma-surgical 7.55; surgical 8.68; medical/surgical 10.42;
neuro-surgical 10.80; medical 13.25). In comparison, EDs
are much less associated with in-hospital mortality (ED
1.90; ED observation 0.17). All 144 rules of type procedure
were positive. Of these, 81 were coded with ICD-9 and
63 with ICD-10. In the ICD-9 rules, common patterns in-
clude catheterizations (eight rules, OR 2.59-21.11), biopsies

(four rules, OR 4.07-11.46), and infusions (seven rules, OR
1.91-25.68), while common patterns in the ICD-10 rules
are drainages (18 rules, OR 5.04-22.06) and insertions of
feeding, infusion, monitoring, and other devices (14 rules,
OR 3.69-73.80). Diagnoses are heterogeneous and describe
different conditions, with some doubling occurring due to
two ICD versions being used in the dataset. Out of the 656
rules, there are only six negative associations, with three
being about single lifeborns (OR 0.08-0.16). The other rules
are encounters for immunizations (ICD-10 Z23, OR 0.06),
suicidal ideation (ICD-9 V62.84, OR 0.07), and unspecified
chest pain (ICD-9 Z86.50, OR 0.11). Prescription rules
are also varied. Notable groups include Heparin (14 rules,
OR 2.11-68.58), sodium chloride (19 rules, OR 1.98-94.94),
and lidocaine (eleven rules, OR 2.10-15.55). Out of the 461
rules, 19 were negative associations.

The set of all rules can be found in the supplementary mate-
rials.

4. Discussion
Associative classification in combination with ORs has
proven useful for in-hospital mortality prediction with very
high AUCs. Statistical significance tests have greatly re-
duced the number of rules in the model while keeping the
predictive performance high. This high performance shows
that the proposed method can cope with a high number of
variables like the almost 180,000 included in the study.

To highlight the model’s interpretability, we give a fictional
example of how it assesses the mortality risk and how this
reasoning can be presented to users.

Assume we have a patient who has been in the ICU for two
hours. The rules in our model have been compared to the
patient’s electronic health records. All nine rules that apply
to the case are shown to providers as in Table 5. These rules
allow us to easily understand what this case is about: it is
a male patient with acidosis and an-/oliguria treated with



Using Associative Classification and Odds Ratios for In-Hospital Mortality Risk Estimation

Table 5. All the rules that apply to our fictional example case. The
codes for diagnoses are from the International Classification of
Diseases, version 10.

VARIABLE TYPE VARIABLE OR

DIAGNOSIS ACIDOSIS, E87.2 10.96
DIAGNOSIS AN-/OLIGURIA, R34 17.27
GENDER MALE 1.25
INSURANCE TYPE OTHER 0.50
LANGUAGE OTHER 1.36
MARITAL STATUS SINGLE 0.50
PRESCRIPTION FUROSEMIDE 4.96
PRESCRIPTION SODIUM BICARBONATE 11.54
WARD EMERGENCY DEPARTMENT 1.90

Furosemide and Sodium Bicarbonate, respectively. The
average OR of these nine rules is 5.58. This is larger than
the cutoff value of 5.31 mentioned above, which indicates
that this patient (currently) has a high in-hospital mortality
risk. Note that additional variables that are added at a later
point in time might change the risk score.

The objective in-hospital mortality risk assessment can be
used in different clinical processes. Examples include staff
planning (as more high-risk patients mean more care is
needed), benchmarking and statistics, resource allocation (to
provide every patient as much care as they currently need),
and decision-making in individual cases, e.g. if palliative
care is to be started.

Apart from the simple algorithm and the widely known met-
ric used in the rules, the interpretability is further improved
by associating every variable by itself with in-hospital mor-
tality. Unlike decision trees, which form more complex
rules, this allows providers to assess each variable’s effect
on the prediction in isolation. This can be seen in the Re-
sults section. The simple form of the risk estimation model
allows us to use it to analyze the underlying data set and
reveal rules that are relevant to in-hospital mortality.

While the method was created for and tested with ICU and
ED data, it is also applicable to general clinical contexts.
The variables in Table 1 are very common and should be
available in most clinical contexts. The rules and the per-
formance of the model are dependent on the scenario and
the quality of the dataset, but the method itself is usable
in general clinical contexts. Similarly, it is also applicable
to variables other than in-hospital mortality after learning
appropriate rules. In-hospital mortality is an example of a
clinical outcome that is influenced by many different vari-
ables. This property also holds for other clinical variables,
including various diagnoses.

Despite the high predictive performance and interpretability
of the model, the present study has some major limitations.
First, we assume that all the information about the case is

readily available. As the case could span over a significant
amount of time, this is not the case in realistic scenarios.
Instead, one would assume that some basic information (in-
cluding gender, ethnicity, marital status, language, insurance
type, service, ward, and first diagnosis) is available, with
other information being added as soon as the corresponding
variables occur in the case. Future research is needed to
analyze how a case’s risk score evolves as more and more
information is added to the case.

Second, we only incorporate categorical data in our variable
selection process. This is in part due to the nature of the
underlying association rules. Quantitative values could be
used after binning them, i.e., forming bins of similar values
and using those bins as categorical values. For the use case
at hand, this was not needed, as the model showed very high
performance using only categorical data. Future research
should focus on how quantitative values can be included in
the model and how they affect the prediction of in-hospital
mortality.

5. Conclusion
We developed and evaluated a novel risk estimation method
for in-hospital mortality in the presence of thousands of
variables. Associative classification in combination with
ORs is a feasible method for in-hospital mortality risk esti-
mation. The learned model provides a very high predictive
performance. Due to it being built of easy-to-interpret rules,
the model itself can easily be interpreted by providers and
used to analyze the underlying dataset.
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C. One-Hot Vector Hybrid Associative Classifier for
Medical Data Classification. PLOS ONE, 9(4):1–13, 04
2014. doi: 10.1371/journal.pone.0095715.

Xie, J., Su, B., Li, C., Lin, K., Li, H., Hu, Y., and Kong, G.
A review of modeling methods for predicting in-hospital
mortality of patients in intensive care unit. Journal of
Emergency and Critical Care Medicine, 1(8):e18, 2017.
doi: 10.21037/jeccm.2017.08.03.

Youden, W. J. Index for rating diagnostic tests. Cancer, 3
(1):32–35, 1950. doi: 10.1002/1097-0142(1950)3:1〈32::
AID-CNCR2820030106〉3.0.CO;2-3.

Yu, P. and Wild, D. J. Fast rule-based bioactivity prediction
using associative classification mining. J Cheminform, 4
(1):e29, Nov 2012a. doi: 10.1186/1758-2946-4-29.

Yu, P. and Wild, D. J. Discovering Associations in
Biomedical Datasets by Link-based Associative Classi-
fier (LAC). PLOS ONE, 7(12):1–11, 12 2012b. doi:
10.1371/journal.pone.0051018.


