
1

FlexRaft: Exploiting Flexible Erasure Coding for
Minimum-Cost Consensus and Fast Recovery

Mi Zhang, Qihan Kang, and Patrick P. C. Lee

Abstract—Consensus protocols like Paxos and Raft provide data consistency and fault tolerance for upper-layer distributed services.
Log replication in these protocols can be supported by erasure coding, which incurs a lower redundancy ratio than full-copy replication
and hence significantly saves network and storage costs for overall performance improvements. However, existing consensus protocols
with erasure coding cannot achieve the minimum network and storage costs during log replication. Our observation is that the optimal
coding scheme varies with the number of healthy servers in a group, such that the coding scheme with the lowest redundancy ratio in
normal cases incurs more network traffic and storage overhead for log replication in the presence of server failures. To this end, we
propose FlexRaft, which dynamically varies the coding scheme used in Raft based on the server status to always achieve the
theoretically minimum redundancy ratio, while maintaining the same liveness as in Raft. To address the issue of an inconsistent coding
scheme between the leader and its followers, we specify the prerequisite of overwriting a log entry and also allow the leader and its
followers to exactly track the coding scheme being used. We further extend FlexRaft into FlexRaft+, which provides a different storage
layout to vary the coding scheme through a novel technique called re-encoding-free replication, so as to enable fast server recovery.
We prove that both FlexRaft and FlexRaft+ maintain Raft safety. We implement a prototype of FlexRaft and FlexRaft+, atop which we
build a distributed key-value store to show its efficacy. Experiments on Alibaba Cloud show that FlexRaft achieves the theoretically
minimum network and storage costs in practice, and reduces the commit latency by 44.51% and 19.37% compared with
state-of-the-art CRaft and HRaft, respectively. FlexRaft+ further reduces the commit latency when the coding scheme is being varied
and improves the server recovery performance, while maintaining a similar performance to FlexRaft in other cases.

✦

1 INTRODUCTION

Consensus protocols coordinate multiple servers to pro-
vide reliable distributed services [18], [19], [26]. As failures
are commonplace in distributed environments (e.g., server
crashes, network partitioning, and message loss), consen-
sus protocols act as a foundation for building distributed
systems with high availability and strong consistency. To
protect distributed services against failures, consensus pro-
tocols typically replicate commands across multiple servers,
so that distributed systems can operate correctly when a
minority of servers fail. Paxos [18], [19] and Raft [26] are two
widely adopted consensus protocols in practical distributed
systems [2], [7], [12], [29].

To guarantee strong consistency, consensus protocols
record data operations as log entries and replicate them to
all servers in a group. Each server maintains a log consisting
of a sequence of commands in the same order, such that the
state machines running in different servers can execute the

• A preliminary version [33] of this paper was presented at the 52nd Inter-
national Conference on Parallel Processing (ICPP 2023). In this extended
version, we extend FlexRaft with a re-encoding-free log replication under
server failures to enable fast server recovery and prove that the FlexRaft
extension still maintains Raft safety.

• M. Zhang is with the State Key Lab of Processors, Research Center
for Advanced Computer Systems, Institute of Computing Technology,
Chinese Academy of Sciences, Beijing, China (E-mail: zhangmi@ict.ac.cn).

• Q. Kang is with the State Key Lab of Processors, Research Center
for Advanced Computer Systems, Institute of Computing Technology,
Chinese Academy of Sciences, University of Chinese Academy of Sciences,
Beijing, China (E-mail: kangqihan17@mails.ucas.ac.cn).

• P. Lee is with the Department of Computer Science and Engineering,
The Chinese University of Hong Kong, Hong Kong, China (E-mail:
pclee@cse.cuhk.edu.hk).

same commands and output the same results. To tolerate
F server failures, consensus protocols need to replicate log
entries in N = (2F + 1) servers. This incurs 2F times the
network traffic from the leader to its followers and N times
the storage cost as each server stores a full copy of the log
entries. The redundancy ratio (i.e., the actual data size divided
by the original data size) of full-copy replication is N times.
Thus, the high redundancy ratio hinders the distributed
systems to achieve low latency and high throughput.

Erasure coding is a well-known low-redundancy ap-
proach to achieving fault tolerance in storage systems. Reed-
Solomon (RS) codes [27] are the most popular erasure codes
deployed in practice. An RS(k,m) code divides a data object
into k fixed-size data chunks, and performs encoding to
generate m parity chunks; note that RS(k,m) is equivalent
to full-copy replication when k = 1. The k + m coded
chunks (i.e., data and parity chunks) are stored in k + m
servers. When a server failure occurs, any k out of the k+m
coded chunks suffice to reconstruct the original content. The
redundancy ratio of RS(k,m) is (k + m)/k, which is only
1/k times compared to full-copy replication. Thus, erasure
coding significantly reduces network and storage costs.

Recent studies apply erasure coding into consensus pro-
tocols to save network and storage costs for high perfor-
mance [15], [25], [31]. RS-Paxos [25] is the first work that
adopts erasure coding to replicate the log entries in Paxos.
To maintain safety (i.e., never return an incorrect result),
RS-Paxos stores the chunks of a log entry in at least F + k
servers, such that the original data can be recovered from the
remaining servers under F server failures. RS-Paxos trades
liveness level (i.e., the number of tolerable failures) for better
performance. To maintain liveness level F as in the original

2

Raft, CRaft [31] converts to full-copy replication when there
are fewer than (F +k) healthy servers. HRaft [15] optimizes
CRaft by replenishing some coded chunks in several healthy
servers instead of switching to full-copy replication directly.

However, existing erasure-coded consensus protocols do
not specify the optimal coding scheme (i.e., the choices of
k and m) to minimize both network and storage costs
during log replication, thereby failing to achieve the lowest
redundancy ratio. The redundancy ratio (k+m)/k depends
on the value of k, as the value of k + m is equal to the
number of servers in a group (i.e., N) where each server
stores a coded chunk of a log entry. When all servers in a
group function correctly, we can choose the largest available
value of k for log replication to minimize the network and
storage costs. However, a larger k also implies that more
servers (i.e., F + k) are required to store coded chunks for
entry commitment. If we use the coding scheme with the
largest k for log replication at the beginning, the network
and storage costs cannot stay at the minimum when server
failures occur. In the presence of server failures, neither
CRaft nor HRaft achieves the minimum redundancy ratio,
as CRaft degrades to full-copy replication while HRaft needs
to store additional coded chunks in the remaining servers.
Thus, existing erasure-coded consensus protocols cannot
maintain the lowest redundancy ratio during log replication
for entry commitment all the time.

Our insight is that the optimal coding scheme for entry
commitment in the consensus protocol has a different value
of k depending on the number of healthy servers in a group.
For example, as shown in Table 1 in §2.3, the optimal coding
scheme (marked with a ⋆) for a Raft group of five servers is
RS(3,2) and RS(2,3) when there is zero and one server failure,
respectively. We argue that the coding scheme should be
dynamically varied based on the latest server status (which
can be estimated by heartbeat messages between the leader
and the followers in Raft [26]). In contrast, both CRaft and
HRaft employ a fixed coding scheme during log replication
regardless of the server status.

In this paper, we propose a flexible erasure coding ap-
proach for Raft called FlexRaft, which provably minimizes
both network and storage costs to commit log entries.
FlexRaft varies the coding scheme and maintains the lowest
redundancy ratio in the presence of server failures. It sets k
as large as possible based on the number of healthy servers
in a group. However, the varying coding scheme requires
overwriting the coded chunks of a log entry with the new
ones, thereby raising new consistency issues between the
leader and its followers: (i) for the same log entry, the chunk
stored in a follower can be mistakenly overwritten by an old
coded chunk, and (ii) some followers may not successfully
update the old chunks before the log entry is committed.
Thus, FlexRaft specifies the prerequisite of overwriting a log
entry, and modifies the AppendEntries RPCs (i.e., the com-
mands initiated by the leader to replicate log entries (with
arguments) or provide heartbeats (without arguments)) to
ensure that the chunks stored in the followers are encoded
with the same coding scheme as the leader. We consider how
to recover a failed server and prove the safety of FlexRaft.
We summarize our contributions as follows.
• We analyze the optimal coding scheme for consensus

protocols under a different number of server failures.

We show that given N ′ healthy servers in a Raft group
(N ′ ≤ N), the coding scheme with k = N ′ − F achieves
the lowest redundancy ratio while keeping the liveness
level F .

• We propose FlexRaft to dynamically vary the coding
scheme used for log replication in the Raft protocol based
on the server status. To guarantee that the leader and its
followers use the same coding scheme for a log entry,
FlexRaft adds a restriction rule to avoid mistakenly up-
dating a coded chunk in a follower, and also updates the
AppendEntries RPCs so that the leader can exactly track
the coding scheme of the stored chunks.

• We further extend FlexRaft with re-encoding-free log
replication, referred to as FlexRaft+. FlexRaft+ provides
a different storage layout to vary the coding scheme, so as
to enable fast server recovery. We prove that both FlexRaft
and FlexRaft+ guarantee Raft safety while maintaining the
same liveness level F as Raft.

• We implement FlexRaft in C++ and build a distributed
key-value store using RocksDB [6] atop FlexRaft. Exper-
iments on Alibaba Cloud [1] show that FlexRaft reduces
the commit latency by 44.51% and 19.37%, respectively,
compared with CRaft and HRaft under two server failures
for a group of seven servers. FlexRaft+ further reduces
the commit latency of FlexRaft by 21.71% when a server
failure occurs.

The source code of our FlexRaft prototype is now
available at: https://github.com/ACS-Storage-Group/
FlexRaft-Code.

2 BACKGROUND AND MOTIVATION

2.1 Basics of Raft Consensus
We first provide the background details of Raft [26]. We
consider a Raft group of N = (2F + 1) servers that can
tolerate any F server failures (F ≥ 1). Each server is in one
of the following three states: leader, follower, and candidate. In
a normal situation, there is one leader in a Raft group and
the remaining servers are followers. The leader handles all
client requests and replicates log entries (i.e., the operations
being executed); the followers respond to the requests from
the leader and candidates, and redirect the client requests to
the leader; the candidate state is used to elect a new leader.
Raft divides time into terms, numbered with consecutive
integers, and each term starts with a leader election.

Raft adopts a strong form of leadership to simplify
the management of log replication. The leader accepts log
entries from clients and replicates them to other servers in
the same Raft group by sending AppendEntries RPCs. Each
log entry tracked by an index (a monotonically increasing
number) stores an update to the state machine along with
the term number when the leader receives the update. When
a log entry is replicated to a majority of servers, the leader
commits and applies the log entry and its previous log
entries, and informs the followers to apply the log entries.
Raft guarantees leader completeness property that the leader
at any term has all committed entries in the previous terms.

2.2 Erasure-Coded Consensus Protocols
RS-Paxos [25] is the first protocol to combine erasure coding
and consensus to reduce both network and storage costs.

https://github.com/ACS-Storage-Group/FlexRaft-Code
https://github.com/ACS-Storage-Group/FlexRaft-Code

3

S1 S2 S3 S4

d1

d2

p0 p1RS(3,2)

HRaft

S0
(leader)

log

entry
log

entry

log

entry

log

entry
CRaft

d1 p0 p1

d2

d2

Fig. 1: Both CRaft and HRaft use RS(3,2) for log replication in
a group of five servers (N = 5). When one server fails, CRaft
switches to full-copy replication while HRaft replenishes the
missing chunk.

It divides the original data of a log entry into k chunks
with equal sizes and encodes the k chunks into m parity
chunks (k > 1,m ≥ 1) using RS(k,m). It then sends one
chunk to each acceptor for log replication. Any k chunks
of data and parity chunks can reconstruct the original log
entry. As the chunk size is a fraction (i.e., 1/k < 1) of the
total data size, RS-Paxos saves the network bandwidth cost
and disk IOs. RS-Paxos is actually a superset of the vanilla
Paxos [18], [19]. It requires that the intersection between
the write quorum Qw and read quorum Qr should be not
less than k to guarantee safety; that is, RS-Paxos should
satisfy Qr + Qw − N ≥ k when using RS(k,m) for storing
log entries, such that at least k chunks can be read from
Qr servers to recover the original data. With a larger k,
it achieves more network and storage savings, but puts a
higher requirement on the write and read quorum. Thus,
compared to the vanilla Paxos using full-copy replication,
RS-Paxos tolerates fewer failed servers (< F) in a group of
N = (2F + 1) servers.

CRaft [31] extends Raft with erasure coding like RS-
Paxos, while maintaining the same liveness level (i.e., the
number of failed servers tolerable by a protocol) as Raft.
To address the liveness problem of RS-Paxos (i.e., tolerating
fewer than F failures), CRaft uses erasure coding and full-
copy replication jointly. When at least F + k servers are
running normally in a Raft group, CRaft uses RS(k,m)
for log replication to reduce network and storage costs;
otherwise, it switches to full-copy replication and keeps the
liveness level F (i.e., CRaft switches to full-copy replication
when the number of failed servers is larger than N−F −k).
Although CRaft maintains the same liveness as the original
Raft, switching to full-copy replication for log replication
causes sharp performance degradation when the number of
healthy servers reduces to less than F + k. Figure 1 shows
that CRaft switches from RS(3,2) to full-copy replication
when one server fails in a group of five servers. Note that
the leader in CRaft keeps a whole copy of each log entry
for efficient reads (same for HRaft [15] as well). When a
leader is newly elected in CRaft, the new leader performs a
LeaderPre operation to deal with any unapplied coded chunk
(i.e., not yet applied to the state machine) before the leader
fully functions. During the LeaderPre operation, the leader
attempts to recover any unapplied entries in sequence by
collecting other coded chunks from its followers, and deletes

TABLE 1: Performance of CRaft and HRaft using different
erasure coding schemes for a group of five servers (N = 5).

(a) No server failure (f = 0)

k
Log Replication Network Cost Storage Cost

CRaft HRaft CRaft HRaft CRaft HRaft
1 full-copy full-copy 4 4 5 5
2 RS(2,3) RS(2,3) 2 2 3 3

⋆ 3 RS(3,2) RS(3,2) 4/3 4/3 7/3 7/3

(b) One server failure (f = 1)

k
Log Replication Network Cost Storage Cost

CRaft HRaft CRaft HRaft CRaft HRaft
1 full-copy full-copy 3 3 4 4

⋆ 2 RS(2,3) RS(2,3) 3/2 3/2 5/2 5/2
3 full-copy RS(3,2)+ 3 5/3 4 8/3

(c) Two server failures (f = 2)

k
Log Replication Network Cost Storage Cost

CRaft HRaft CRaft HRaft CRaft HRaft
⋆ 1 full-copy full-copy 2 2 3 3

2 full-copy RS(2,3)+ 2 2 3 3
3 full-copy RS(3,2)+ 2 2 3 3

We label the optimal coding scheme (used by FlexRaft) under
a different number of server failures with a ⋆. RS(k,m)+ in
HRaft means that it replenishes some coded chunks when
using RS(k,m).

the entries that cannot be recovered.
HRaft [15] mitigates the sharp performance degradation

in CRaft by replenishing some coded chunks in several
healthy servers when failures occur. It adjusts the placement
of the coded chunks and replicates some coded chunks to
healthy servers instead of switching to full-copy replication
if the number of failed servers is greater than N − F − k.
When the leader receives p (F ≤ p ≤ F + k − 1) acknowl-
edgments during log replication (i.e., there are (N − 1 − p)
failed servers), it chooses (F + k− 1− p) coded chunks and
replicates them to F healthy servers before committing a
log entry. In other words, some servers store multiple coded
chunks of a log entry to guarantee safety (i.e., retrieving
enough chunks for data reconstruction). Figure 1 shows
that HRaft stores the missing chunk in two servers under
one server failure when N = 5. Although HRaft avoids
switching to full-copy replication, HRaft cannot always
maintain the minimum storage and network costs during
log replication.

2.3 Motivating Example

We compare the network and storage costs of CRaft and
HRaft with different erasure coding schemes under a dif-
ferent number of server failures. We use a group consisting
of five servers (N = 5), which can tolerate at most two
server failures (F = 2). The network cost is the bandwidth
usage from the leader to its followers for a log entry to be
committed. As the leader stores a full copy of the log, the
storage cost is equal to the network cost plus one [31].

Table 1 shows the network and storage costs of CRaft
and HRaft with different coding schemes where k ranges
from 1 to 3. Here, we denote full-copy replication by k = 1.
In the normal case that no server fails (i.e., f = 0), CRaft
and HRaft introduce the same network and storage costs
when using the same coding scheme. Both CRaft and HRaft

4

achieve the minimum network and storage costs with the
largest k (i.e., k = 3) among all three coding settings.
When using RS(3,2) for log replication, the network and
storage costs are 4/3 and 7/3, respectively. If one server
fails (i.e., f = 1), CRaft with k = 3 switches to full-copy
replication as the number of healthy servers in the group
is less than (F + k) (i.e., 5). The network and storage costs
of CRaft sharply increase to 3 and 4, respectively, the same
as the original Raft. Under one server failure, HRaft with
k = 3 still uses RS(3,2) while storing two coded chunks
in two servers (denoted by RS(3,2)+). The network and
storage costs of HRaft gradually increase to 5/3 and 8/3,
respectively, lower than those of CRaft with k = 3 but
higher than CRaft/HRaft with k = 2. For k = 2, both CRaft
and HRaft can use RS(2,3) for log replication, which incurs
the minimum network and storage costs (i.e., 3/2 and 5/2,
respectively). When two servers fail (i.e., f = 2), CRaft with
k = 2 and k = 3 switches to full-copy replication, while
HRaft needs to store more coded chunks to keep the liveness
level F . For CRaft and HRaft under two server failures, the
network and storage costs are 2 and 3, respectively, equal
to that of the original Raft. Thus, the largest k does not
guarantee the minimum network and storage costs in all
cases; for example, RS(2,3), rather than RS(3,2), incurs the
lowest network and storage costs when one server fails.
Although HRaft avoids switching to full-copy replication
in the presence of server failures, it fails to achieve the
minimum network and storage costs using a coding scheme
with a fixed k.

3 DESIGN OF FLEXRAFT

FlexRaft dynamically adjusts the coding scheme for log
replication according to the cluster status, so as to minimize
both the network and storage costs while maintaining the
liveness level F . We first describe the choice of coding
schemes in FlexRaft (§3.1). We then explain the issues raised
by varying coding schemes and how FlexRaft addresses
them (§3.2). We further optimize FlexRaft (called FlexRaft+)
to realize a re-encoding-free log replication under server
failures (§3.3). Finally, we introduce how FlexRaft and
FlexRaft+ deal with server recovery (§3.4) and provide the
safety and liveness level guarantee (§3.5).

3.1 Choice of Coding Schemes

We first define the terminologies and notations. We consider
a Raft group of N servers, where N = 2F + 1, so as to
tolerate up to F failures. Let N ′ be the total number of
healthy servers in the group (i.e., the servers are alive and
can communicate with each other and the clients [31]), and
f be the number of server failures (i.e., N ′ = N−f). When a
Raft group starts to work, all servers belonging to the group
are healthy and the number of healthy servers is equal to
the total number of servers in the group (i.e., N ′ = N and
f = 0). The number of healthy servers decreases when some
servers crash or lose network connection, or increases when
the failed servers rejoin the group or some new servers are
added to replace the failed servers. Currently, we consider
a Raft group of a fixed size where N does not change. The
Raft leader can estimate the number of healthy servers and

TABLE 2: Coding scheme used in FlexRaft to minimize network
and storage costs under a different number of server failures.

f k Log Replication Network Cost Storage Cost
0 N − F RS(N-F, F) N−1

N−F
N−1
N−F

+ 1

1 N − F − 1 RS(N-F-1, F+1) N−2
N−F−1

N−2
N−F−1

+ 1

2 N − F − 2 RS(N-F-2, F+2) N−3
N−F−2

N−3
N−F−2

+ 1

...
F 1 full-copy N − F − 1 N − F

update the value of N ′ based on the exchanges of the latest
heartbeat messages with its followers.

Coding scheme chosen by FlexRaft. To minimize both the
network and storage costs, FlexRaft dynamically chooses
the coding scheme based on the number of healthy servers
remaining in a group. Given N ′ healthy servers, FlexRaft
uses RS(k,m) code where k = N ′ −F (i.e., N − f −F) and
m = N−k for log replication. Here, we make k+m = N , so
that each server in the group can store a coded chunk (either
original data chunk or parity chunk) of a log entry. Note
that k = 1 means that FlexRaft uses full-copy replication.
FlexRaft chooses the available largest value of k (i.e., N ′−F)
given the number of healthy servers N ′, so as to replicate a
log entry with the lowest redundancy ratio. We prove that
FlexRaft always minimizes the network and storage costs
for log replication below.

Theorem 1. When there are N ′ (F + 1 ≤ N ′ ≤ N) healthy
servers in a Raft group, FlexRaft always minimizes the network
and storage costs for log replication.

Proof. To maintain safety, at least F + k servers should store
the chunks of a log entry before it can be committed, such
that there are at least k chunks in any F + 1 servers [25],
[31]. When N ′ healthy servers exist in a Raft group, at most
N ′ servers store the chunks of a log entry to commit (i.e.,
F + k ≤ N ′). Thus, Raft can use RS(k,m), where k ≤ N ′ −
F , for log replication. The redundancy ratio of RS(k,m) is
N ′/k. As the network and storage costs decrease with the
reduction of the redundancy ratio, a larger value of k incurs
lower storage and network overhead given a fixed N ′. Thus,
FlexRaft always minimizes the network and storage costs
for log replication by using the largest available value of k
(i.e., k = N ′ − F).

Table 2 shows the coding schemes, log replication meth-
ods, network cost, and storage cost of FlexRaft under a
different number of server failures where f increases from 0
to F . Under f server failures, FlexRaft uses a coding scheme
with k = N − f − F for log replication where the network
cost is (N−f−1)/k and the storage cost is (N−f−1)/k+1.
Note that the network and storage costs increase with the
number of server failures. When F servers fail, the only
method for log replication is full-copy replication.

Comparison to CRaft and HRaft. FlexRaft always achieves
the minimum redundancy ratio, introducing lower network
and storage costs than CRaft and HRaft. When the number
of healthy servers N ′ is equal to or greater than F + k, all
protocols can employ RS(k,m) for log replication, where
the network cost is (N ′ − 1)/k. Suppose that we have ∆f
additional failed servers, such that the number of healthy

5

servers N ′ is now less than F + k (i.e., N ′ = F + k −∆f).
The three protocols take different approaches to main-
tain the liveness level F : i) CRaft switches to full-copy
replication, where the network cost increases to 2F − f
[31]; ii) HRaft keeps using RS(k,m) and stores additional
copies of some coded chunks, where the network cost is
(2F − f + F (f − N + F + k))/k [15]; iii) FlexRaft re-
duces the value of k based on the failure status and uses
RS(k −∆f,m) (for k −∆f ≥ 1), where the network cost is
(F + k−∆f − 1)/(k−∆f). Compared to the network cost
when there are (F + k) healthy servers (i.e., (F + k− 1)/k),
the increased cost of HRaft is ∆f(F − 1)/k, while that
of FlexRaft is ∆f(F − 1)/(k(k − ∆f)). Since we have
k − ∆f ≥ 1, the increment of FlexRaft is less than that of
HRaft. Also, as HRaft incurs less network traffic than CRaft
[15], the network cost of FlexRaft is less than that of CRaft as
well. Moreover, as the storage cost equals the network cost
(from the leader to its followers) plus the storage cost of a
full copy in the leader, the storage cost of FlexRaft is also
less than those of CRaft and HRaft.

3.2 Varying the Coding Scheme

The main idea of FlexRaft is to choose the optimal coding
scheme for log replication based on the cluster status. When
failures occur during writes, FlexRaft adjusts the value of k
if there are not enough servers storing the log entries.

Varying the coding scheme during log replication. When
FlexRaft decides to vary the coding scheme for a log en-
try, the leader needs to re-encode the entry with the new
coding scheme and send the new chunks to its followers.
At the beginning of replicating a log entry, FlexRaft first
performs encoding on the data using an initial coding
scheme RS(k,m), where k is determined by the latest N ′

(§3.1). Then the leader distributes the coded chunks to the
followers and waits for the responses from the followers.
Here, we map the chunk ID to the server ID consistently to
determine which server should store which chunk for a log
entry. When a follower receives a chunk from the leader,
the follower appends the chunk to its log and returns a
successful response to the leader. The leader collects the
responses from the followers and decides how to perform
log replication. If the leader receives at least F + k − 1
successful responses, it continues to commit the log entry;
otherwise, the leader varies the coding scheme to maintain
safety since there are fewer than F +k−1 healthy followers
for storing the log entry. FlexRaft then updates N ′ based
on the responses from the followers and switches from the
initial coding scheme to the new coding scheme RS(k′,m′)
where k′ = N ′−F and m′ = N − k′. The leader re-encodes
the log entry using the new coding scheme, and sends the
new chunks to its followers. Each follower overwrites the
old chunks with the new chunks. If the leader receives at
least F + k′ − 1 successful responses, it can commit the log
entry; otherwise, the leader continues to adjust the coding
scheme by decreasing the value of k and performs the above
process until it successfully replicates the log entry. The
smallest value of k is one (i.e., full-copy replication).

Figure 2(a) shows how the coding scheme varies during
log replication in a Raft group of five servers. At the be-
ginning, the leader S0 encodes the log entry using RS(3,2)

S0
(Leader)

S3

S1

S4

S2

k=3, RS(3,2)

c1

c2

c1'

Re-encoding

c2'

Encoding

c3 is NOT
received c3' c3

k'=2, RS(2,3)

all chunks all chunks' all chunks'

c1'

c2'

(a) (b)c4

Fig. 2: The coding scheme varies during log replication in a
group of five servers (N = 5).

and sends four chunks to its followers. However, the leader
only receives three responses from servers S1, S2, and S4,
since S3 does not receive any chunk (e.g., due to network
failures). The leader S0 then varies the coding scheme to
RS(2,3), re-encodes the log entry, and sends the new chunks
to its followers. The followers S1 and S2 overwrite the old
chunk with the new chunk, S3 stores the new chunk directly,
and S4 does not store the new chunk as it now crashes. After
receiving successful responses from servers S1, S2, and S3,
the leader S0 can commit this log entry safely. However,
varying the coding scheme raises new challenges to the
correctness of log replication.

Challenge 1: the chunk in a follower can be mistakenly
overwritten by an old chunk of the same log entry. As the
coding scheme varies during log replication in FlexRaft, the
servers in a group may store the chunks encoded with dif-
ferent coding schemes for a log entry. Thus, the chunk stored
in a follower may be an old one due to chunk overwrites.
For example, as shown in Figure 2(b), the followers S1, S2,
and S3 are expected to store the new chunks c′1, c′2, and c′3,
respectively, after the re-encoding with RS(2,3). However,
due to network delays, the request containing the old chunk
c3 reaches the follower S3 after S3 stores the new chunk c′3.
S3 then overwrites c′3 with c3, but the leader has received a
successful response from S3 that it stores c′3. In this case, the
chunk stored in a follower is inconsistent with that stored
in the leader; in other words, the chunks belonging to a log
entry are now encoded by different coding schemes. Thus,
FlexRaft should guarantee that the chunks of a log entry
stored in the followers are encoded with the same coding
scheme as specified by the leader.

Prerequisite of overwriting a log entry. To avoid mistak-
enly overwriting a chunk in a follower, FlexRaft requires
the follower to check the value of k with the chunk before
overwriting a log entry: if the value of k with the new chunk
is less than the current value of k, the follower overwrites
the current chunk with the new one and responds to the
leader; otherwise, the follower can ignore this message
containing the new chunk. The reason is that the value of
k always decreases when the coding scheme varies during
log replication, and the new chunk to overwrite is encoded
from a coding scheme with a smaller k. Thus, in Figure 2,
if the follower S3 compares the value of k with the chunk
c3 (i.e., k = 3) to the one with the chunk c′3 (i.e., k = 2),

6

S0
(Leader)

S3

S1

S4

S2

k=3, RS(3,2)

c1

c2

c1'

Re-encodingEncoding

c3

k'=2, RS(2,3)

all chunks all chunks'

c1'c1

c2 c2'

c3

Response Response

c3 c3

c4 c4

c2'

Fig. 3: Responses of varying coding schemes during log
replication in a group of five servers (N = 5).

it will refuse to update the current chunk and the above
inconsistent case will not occur.

Challenge 2: some followers may not overwrite the old
chunks successfully before the leader commits the log
entry. Although each follower checks the value of k before
overwriting its chunks, the chunks stored in the follower
may still use a different coding scheme from the leader’s.
One possible case is that the leader requires the followers
to overwrite their existing old chunks, yet some followers
fail to replace the old chunks with the new chunks. Figure 3
depicts such an example in a group of five servers (N = 5).
The leader S0 encodes a log entry with RS(3,2) and sends the
coded chunks to its followers. All followers store the chunks
successfully and return successful responses to the leader.
However, the follower S3’s response does not reach the
leader in time (e.g., due to network failures). The leader S0

only receives three successful responses from S1, S2, and S4

before it decides to vary the coding scheme. Thus, the leader
S0 re-encodes the log entry with RS(2,3) and distributes
the new chunks to the followers. As the AppendEntries
RPC from the leader to the follower S3 is lost and the
follower S4 crashes this time, only the followers S1 and
S2 overwrite the old chunks with the new chunks and
return successful responses to the leader again. However,
the leader S0 mistakenly thinks that three followers have
stored the new chunks and treats log replication as success-
ful, since it also receives the last successful response from
S3. That is, the new chunks being re-encoded are stored in
only two followers, while S3 still stores the old chunk. The
main reason is that the successful response from a follower
to the leader in Raft, which consists of the currentTerm
and a true flag if the follower contains the entry matching
the index of the previous log entry (i.e., preLogIndex) and
the term of prevLogIndex entry (i.e., prevLogTerm), fails to
indicate which server stores which coded chunk. Thus, the
leader cannot distinguish the exact number of stored chunks
belonging to the same coding scheme for a log entry from
the responses of the followers.

Updating AppendEntries RPCs. To make a follower’s log
stay consistent with the leader’s, we add prevK (i.e., the
value of k of the prevLogIndex entry) and ChunkInfo (i.e.,
a tuple of the log index and the value of k) to the Appen-
dEntries RPCs. We include prevK in the request of the Ap-
pendEntries RPCs to allow a follower to detect the chunks

d1′ p1′ p2′

S0
(leader)

S1 S2 S3 S4

d1 d2 p0 p1

RS(2,3)

RS(3,2)

log

entry When S2 gets recovered Need to rewrite each chunk

Fig. 4: Code conversion to the optimal coding scheme for the
minimum storage overhead. When server S2 gets recovered,
the coding scheme switches from RS(2,3) to RS(3,2).

encoded with a different coding scheme. When receiving
an AppendEntries RPC request, the follower checks the
value of prevK after checking the term and prevLogTerm.
If the follower finds that the value of k of the entry in
prevLogIndex does not match prevK (i.e., storing a chunk
encoded with an old coding scheme), the follower can return
false; the leader then decrements nextIndex and retries to
send AppendEntries RPCs. For example, when S3 rejoins
the group as a follower, it can compare prevK and find
that the old chunk c3 should be overwritten. Moreover, we
include the ChunkInfo of the log entries in the requests
and responses of the AppendEntries RPCs. Thus, the leader
sends log entries containing ChunkInfo (included in each
log entry) to the followers and each follower responds to
the leader with the ChunkInfo of the chunks stored, such
that the leader can determine whether the chunks encoded
with the latest coding scheme have been stored in enough
followers. For example, by checking the ChunkInfo in the re-
ceived responses, the leader S0 in Figure 3 can find that one
response should not be accounted as a successful response
to replicate the new chunks, as the chunk c3 rather than the
new chunk c′3 is stored in S3. Thus, the leader will decrease
the value of k (i.e., reducing to full-copy replication) and
retry to replicate the log entry. Thus, by adding prevK and
ChunkInfo to the AppendEntries RPCs, FlexRaft guarantees
that the chunks belonging to a committed log entry are
encoded with the same coding scheme and correctly and
safely stored in the followers.

3.3 Log Replication under Server Failures

Code conversion for the long-term minimum storage
overhead. The minimum redundancy ratio is achieved with
RS(F +1, F) code when all servers in the group are healthy.
Although FlexRaft minimizes the network and storage costs
by varying the coding scheme during log replication, the
log entries committed in the presence of server failures are
encoded with a smaller k than F + 1. To further reduce the
storage cost in the long term, we can convert the log entries
stored with a smaller k to the RS(F + 1, F) code when all
servers are healthy (N ′ = N). It needs to re-encode log
entries and update the chunks stored in all servers, which
inevitably introduces additional encoding overhead and a
large amount of network traffic. Figure 4 shows the process
of code conversion in a group of five servers (N = 5).
FlexRaft uses RS(2,3) for log replication under one server
failure (e.g., server S2 crashes), where each chunk is half
of the original log entry size. Note that we do not show the
chunk that should be stored in the leader S0, since the leader

7

S1 S2 S3 S4

d1 d2 p0 p1RS(3,2)

d21 p20 p21Encode d2

d1 d2 p0 p1RS(3,2)

When S2 gets recovered

S0
(leader)

log

entry

Only need to restore d2

Fig. 5: An example of re-encoding-free log replication under
one server failure in a group of five servers (N = 5), which
maintains the minimum network and storage costs when
varying the coding scheme directly.

S1 S2 S3 S4

d1 p0

f=0

RS(4,3)

S0
(leader)

log

entry

S5 S6

p1 p2d2 d3

d1 p0 p1 p2d3d2

f=1

RS(4,3)

+

RS(3,3)

d1 p0 p1 p2d2
f=2

RS(4,3)

+

RS(2,3)

d3

d21 p20 p21 p22

d31 p30 p31 p32

d1 p1 p2d2
f=3

RS(4,3)

+

RS(1,3)

d3 p0

d2

d3

p0

d2

d3

p0

d2

d3

p0

Fig. 6: An example of re-encoding-free log replication under
a different number of server failures in a group consisting of
seven servers (N = 7).

stores a full copy of each log entry for log replication and
answering client requests. When server S2 is recovered, each
follower needs to change the stored chunk (framed in red) as
the coding scheme varies from RS(2,3) to RS(3,2) to achieve
the minimum redundancy ratio. The leader S0 needs to
perform re-encoding with RS(3,2) and distribute the new
chunks to its followers. That is, the code conversion process
needs to re-encode and distribute the new chunks, thereby
incurring additional computation overhead and increasing
the network cost by (N − 1)/(N − F). Thus, such code
conversion incurs additional re-encoding overhead and net-
work traffic for long-term storage savings.

Re-encoding-free log replication under server failures. To
reduce the code conversion overhead during server recov-
ery, we propose re-encoding-free log replication under server
failures and call the extension FlexRaft+. By re-encoding-
free, we mean that FlexRaft+ does not need to perform re-
encoding to switch to the optimal coding scheme when all
servers in the group are healthy. The key idea of FlexRaft+ is
to keep the optimal coding scheme unchanged when some
servers fail, by storing the missing chunks (i.e., the chunks
that should be stored in the failed servers) with erasure
coding. Unlike FlexRaft, which directly varies the coding
scheme with a decreasing k, FlexRaft+ adds some additional
coded chunks to replace the missing chunks to maintain the

same liveness level and the lowest redundancy ratio. Note
that some existing code conversion techniques [21]–[23],
[32] in distributed storage systems consider how to reduce
the bandwidth and I/O during code conversion, they do
not consider how code conversion is applied to consensus
protocols.

Figure 5 shows an example of re-encoding-free log repli-
cation in a group of five servers when one server S2 fails.
The healthy followers still store the chunks encoded with
the optimal coding scheme RS(3,2), i.e., servers S1, S3,
and S4 store chunks d1, p0, and p1, respectively. For the
chunk d2 that should be stored in the failed server S2,
FlexRaft+ encodes the chunk with RS(2,2) and distributes
the new coded subchunks (i.e., generated from a chunk) to
the remaining healthy servers. That is, FlexRaft+ divides
d2 into two subchunks d20 and d21, computes two parity
subchunks p20 and p21, and stores the four subchunks in the
remaining four servers. As the leader S0 already stores the
full copy of the log entry, we do not need to store additional
chunks and subchunks in the leader. The network traffic
of encoding d2 under RS(3,2) equals that of converting to
RS(2,3) directly. When server S2 is recovered, FlexRaft+ only
needs to restore chunk d2 in S2 and remove the subchunks
for encoding d2 in other servers, so it avoids modifying the
chunks stored in all servers.

FlexRaft+ maintains the same liveness level and the
lowest network and storage costs during log replication
as varying the coding scheme directly in FlexRaft, while
enabling a fast server recovery. In a group of N (N = 2F+1)
servers, FlexRaft+ always adopts the optimal coding scheme
(i.e., RS(F+1, F)) for log replication and stores each missing
chunk with RS(F + 1 − f, F) under f server failures. We
prove that FlexRaft+ maintains Raft safety and liveness
level with the same redundancy ratio as FlexRaft in §3.5.
Figure 6 shows how FlexRaft+ performs log replication
under a different number of server failures in a group of
seven servers (N = 7). When there is no server failure
(f = 0), FlexRaft+ only needs to store the chunks encoded
with the optimal coding scheme RS(4,3). If one server S2

fails, FlexRaft+ encodes the missing chunk d2 with RS(3,3)
and stores the coded subchunks. Under two server failures
(f = 2), FlexRaft+ stores the additional subchunks encoded
with RS(2,3) for the missing two chunks d2 and d3. When
three servers in the group fail, FlexRaft+ replicates the
missing chunks in the remaining healthy servers, as RS(1,3)
actually means 4-way replication. In this way, FlexRaft+
can directly recover the failed server and use the optimal
coding scheme when all servers are healthy. When gener-
ating the subchunks under server failures, FlexRaft+ needs
to perform additional encoding operations, which slightly
increase the write latency (as shown in Figures 9 and 10).
Thus, FlexRaft+ makes a trade-off between server recovery
performance and write latencies.

Compared to HRaft, FlexRaft+ takes a different approach
to store the missing chunks under server failures. FlexRaft+
encodes the missing chunks with a proper coding scheme
to keep the lowest redundancy ratio of FlexRaft, while
HRaft replenishes the missing chunks with replication and
hence introduces a higher redundancy ratio. Thus, FlexRaft+
can achieve the lowest network and storage costs under a
different number of server failures.

8

3.4 Server Recovery
Handling leader failures. When the current leader fails, the
process of leader election starts and a new leader is elected.
For the committed log entries, the newly elected leader has
at least one chunk according to Raft election rules [26], and
the leader can recover the complete log entry by collecting
other chunks from its followers since we require that any
F + 1 servers store k chunks. For the unapplied entries, the
new leader should perform the LeaderPre operation (§2.2)
before it can become a fully-functioning leader [31]. Note
that the chunks stored in the new leader may not use the
same coding scheme when the log entries are committed,
even though the leader’s log is up-to-date. To deal with this
issue, the leader recovers the entries among (commitIndex,
lastLogIndex], i.e., the entries between the highest index of
log entry known to be committed and the index of the last
log entry, and replaces the chunks with the complete log
entries during the LeaderPre operation. As the leader stores
the ChunkInfo for each log entry, the leader can decide
whether a log entry is recoverable based on the value of
k. For those entries that cannot be recovered, the leader
removes them from the log. The leader can process the client
requests normally after the LeaderPre operation.

A newly elected leader may need to perform the decod-
ing operation when serving read requests to an object. If the
leader only has a coded chunk for a data object to be read,
the leader needs to retrieve other coded chunks to decode
the original object. The leader then stores a full copy of the
recovered object for further reads to avoid decoding every
time. That is, the leader handles multiple reads to an object
with at most one decoding operation. Note that CRaft and
HRaft perform the same read procedure as FlexRaft and
FlexRaft+. These Raft protocols with erasure coding make
a trade-off between the network and storage costs during
commitment and the computation overhead during reads.
Recovering a failed follower in FlexRaft and FlexRaft+.
When a server resumes normally, FlexRaft restores the com-
mitted log entries with the same coding scheme (i.e., the
same value of k) to avoid code conversion while FlexRaft+
can directly restore the chunks encoded with the optimal
coding scheme. For a committed log entry, the recovery
costs of both FlexRaft and FlexRaft+ are 1/k of the original
data size, but FlexRaft with a smaller value of k incurs
higher storage and network costs than FlexRaft+. FlexRaft+
can then remove the subchunks encoded for the missing
chunks directly. Both FlexRaft and FlexRaft+ guarantee that
the recovered server stores all previous log entries before
it is counted as a healthy server to function. After the
recovery process completes, FlexRaft and FlexRaft+ increase
the number of healthy servers (i.e., N ′), and vary the coding
scheme accordingly to replicate log entries later.

3.5 Safety Guarantee
We first show that FlexRaft guarantees Raft safety by prov-
ing the Log Matching Property and the Leader Complete-
ness Property. We then prove that FlexRaft+ also maintains
Raft safety and the same liveness level with the same
redundancy ratio as FlexRaft.

Theorem 2. Log Matching Property: if two logs contain an entry
with the same index and term, then the logs are identical (either

a full copy or a coded chunk of the original proposed data) in all
entries up through the given index.

Proof. The original Raft protocol maintains two properties
to constitute the Log Matching Property: 1) if two entries in
different logs have the same index and term, then they store
the same command, and 2) if two entries in different logs
have the same index and term, then the logs are identical
in all preceding entries. The first property stands because
a leader creates at most one entry with a given log index
in a given term, and log entries never change their position
in the log. FlexRaft works as in Raft, although it varies the
coding scheme when the server status changes. The coded
chunk stored with the same index and term may use an old
coding scheme (which will be updated during processing
AppendEntries RPCs and the LeaderPre phase), but stands
for the same command. The second property in Raft is
guaranteed by a simple consistency check performed by
the AppendEntries RPCs. FlexRaft also follows the Appen-
dEntries RPC rules in the original Raft protocol. When the
coding scheme varies for the entry with the same index and
term, FlexRaft adds a restriction rule to avoid mistakenly
overwriting a log entry, and includes prevK and ChunkInfo
in the AppendEntries RPCs to make the followers use the
same coding scheme as the leader. Thus, the Log Matching
Property still holds where the data is a coded chunk when
using erasure coding for the log entry.

Theorem 3. Leader Completeness Property: if a log entry is
committed in a given term, then that entry will be present in
the logs of the leaders for all higher-numbered terms.

Proof. As FlexRaft extends the LeaderPre operation in CRaft,
CRaft guarantees that if a log entry e is committed in
a given term, then e will be present in the logs of the
leaders for all higher-numbered terms, and e will not be
deleted in any higher-numbered term’s LeaderPre [31]. We
then prove that the committed data is recoverable using
the right coding scheme in FlexRaft. For each committed
entry, FlexRaft guarantees that there are at least F +k coded
chunks stored in the cluster. Thus, the leader can always
recover a committed entry by collecting k chunks from
other servers. Therefore, the Leader Completeness Property
stands in FlexRaft.

Theorem 4. FlexRaft+ maintains Raft safety and the liveness
level (F) with the same redundancy ratio as FlexRaft.

Proof. We first prove that FlexRaft+ has the same redun-
dancy ratio as FlexRaft. Compared to FlexRaft, FlexRaft+
keeps the optimal coding scheme RS(F + 1, F) and stores
each missing chunk with RS(F+1−f, F) instead of directly
switching to RS(F + 1 − f, F) under f server failures. For
simplicity, we denote F + 1 and F + 1 − f by k and k′, re-
spectively. The redundancy ratio of FlexRaft with RS(k′, F)
is k′+F

k′ . For FlexRaft+, the redundancy ratio depends on
two parts: the original chunks encoded with RS(k, F) and
the subchunks added for the missing chunks. Assuming
the log entry size is one, each original chunk size is 1

k
and each subchunk size is 1

k · 1
k′ . The redundancy ratio is

equal to the total data size divided by the log entry size, i.e.,
(1k · (k + F − f) + 1

k · 1
k′ · (k′ + F) · f)/1 = k′+F

k′ . Thus, the

9

redundancy ratio of FlexRaft+ is also k′+F
k′ , which equals

that of FlexRaft.
To prove that FlexRaft+ maintains Raft safety and the

same liveness level F as FlexRaft, we only need to prove
that FlexRaft+ can recover the original log entry under
any F server failures. That is, FlexRaft+ also achieves the
liveness level F by tolerating any F server failures. We first
prove that FlexRaft+ can recover the f missing chunks (i.e.,
encoded with RS(k, F)) under any F server failures. As each
missing chunk is encoded with RS(k′, F), there are at least
k′ subchunks left under any F server failures, which are
sufficient to recover each original missing chunk. We then
show that FlexRaft+ can recover the complete content of any
committed Raft log entry. Suppose that a log entry is stored
in N ′ (N ′ = N − f) servers before the entry is committed.
When at most F server failures occur, there are at least
N ′ − F = k′ alive servers where each server stores one
chunk and f subchunks. According to the above proof, we
can successfully reconstruct the f missing chunks. Given k′

chunks stored in the alive servers and f recovered chunks,
we can gather at least k′+f = k′+(k−k′) = k chunks that
are encoded with RS(k, F), which enables the recovery of
the original log entry. Thus, FlexRaft+ maintains Raft safety
and the liveness level F , while having the same redundancy
ratio as FlexRaft.

4 IMPLEMENTATION

We implement a prototype of FlexRaft from scratch in
C++ and also support FlexRaft+ with some modifications
of FlexRaft. We leverage the ISA-L library [4] for erasure
coding operations and use RCF 3.0 [5] for interprocess
communication. To evaluate FlexRaft, we also build a dis-
tributed key-value store based on RocksDB v7.3.1 [6]. Each
server has a constantly running FlexRaft module, a RocksDB
engine as a state machine, and a background working thread
to apply committed entries to the state machine. The whole
system contains about 6K LoC.
Log entry. We modify the structure of the log entry by
adding an EntryType flag and the ChunkInfo, a tuple of (log
index, k). The EntryType flag in a log entry’s metadata indi-
cates whether the command in this entry is a complete copy
or a coded chunk. If this entry is encoded, the ChunkInfo
identifies the coded chunk uniquely, where k is the encoding
parameter used for this entry.
Log replication and commitment. The leader determines
the coding scheme for log replication by counting the num-
ber of healthy servers. The leader sends heartbeat messages
(i.e., empty AppendEntries RPCs) to its followers every
100 ms. To track the server status, the leader records the
time point when it receives RPC messages (RPC requests
and responses) from other servers. If the leader detects that
some servers have not sent any messages for some time (e.g.,
200 ms), the leader considers these servers as unhealthy and
determines the encoding parameter by k = N ′ − F . The
leader then encodes the original data into k + m chunks,
sends the coded chunk to each healthy follower using
AppendEntries RPCs, and waits for responses from the
followers. If the leader receives more than F +k− 1 success
responses within a configured time limit (e.g., 1 second), the
leader checks the ChunkInfo in the responses and commits

this entry if at least F + k servers (including itself) suc-
cessfully store this entry. Otherwise, the leader decreases
the encoding parameter k by one, re-encodes the entry, and
repeats the above process until the log entry gets committed.

Processing in followers. Upon receiving an AppendEntries
request, the follower checks the metadata of this entry to
decide whether to store it or not. For the entry that has
the same term and index as the latest one stored in the
follower’s log, the follower overwrites the old entry using
the newly-received one only if the new entry is encoded
with a smaller k; otherwise, the follower ignores this re-
quest. The follower overwrites the old entries by trimming
its log and appending the new entries. If the log entry has a
different term or index, the follower appends the new entry.
After storing the log entry, the follower returns a response
containing the ChunkInfo to the leader.

FlexRaft+ implementation. We implement FlexRaft+ by
making some modifications to FlexRaft. For FlexRaft+, each
log entry carries both the original chunk and added sub-
chunks. Each subchunk is labeled by SubChunkInfo, a tu-
ple consisting of ChunkId that presents which chunk the
subchunk is encoded from and SubChunkId that marks the
position of the subchunk in its stripe. For example, the
subchunk d21 in Figure 5 can be uniquely identified by Sub-
ChunkInfo of (2, 1), meaning that this subchunk is encoded
from the chunk d2 and it is the second subchunk belonging
to the substripe encoded with RS(2,2). Each SubChunkInfo
consists of two 4-byte integers (i.e., ChunkID and Sub-
ChunkID), accounting for a total of 8 bytes of storage space.
The number of subchunks (and SubChunkInfo) contained
in one AppendEntries RPC is equal to the number of failed
servers during log commitment. For example, for the failure
cases where f = 1, 2, 3, the leader incurs 8, 16, and 24 bytes
of extra space, respectively, in each AppendEntries RPC call.
The extra payload size is negligible (less than 1%) to the
AppendEntries RPC call. We leverage the field ChunkInfo
introduced in FlexRaft to indicate the change of coding
scheme. If the leader detects that one more follower crashes
during the log commitment, it decreases k by one and adds
more subchunks encoded from the newly missing chunk.
Each server in FlexRaft+ separates the storage of the original
chunks and added subchunks (i.e., storing them in different
files) to reduce the overhead of removing the subchunks
during server recovery. Thus, the follower only needs to
overwrite the subchunks when receiving a log entry with
a smaller k.

To recover a failed follower, the leader directly sends
the original coded chunk to the failed server. For example,
the leader sends d2 to S2 during server recovery as shown
in Figure 5. Once the leader has received the responses
from the failed server that the coded chunks have been
stored, the leader notifies other healthy servers to remove
the subchunks, such that the overall storage cost is reduced.
An exceptional case is that the leader may not contain the
original full entry and it has no corresponding coded chunk
for the failed server (e.g., this entry has been committed
by a previous leader). In this case, the leader notifies the
failed follower to contact other healthy servers to collect
enough subchunks and recover the chunk; after the follower
successfully restores the chunk, the follower then notifies

10

other followers to remove the corresponding subchunks and
replies to the leader that the follower recovery completes.

5 EVALUATION

In this section, we show the I/O performance of the key-
value store atop FlexRaft, the breakdown performance, the
overhead, and the scalability of FlexRaft. We run all ex-
periments on Alibaba Cloud [1]. The cluster consists of at
most 11 servers to run key-value service and one individual
server to send client requests. Each server is a cloud instance
equipped with an Xeon CPU of 8 vCPU, 32 GiB DRAM,
and 512 GiB ESSD cloud drive (about 7800 IOPS). In each
experiment, each Raft server spawns two threads in two
vCPUs to execute the Raft protocol and apply log entries,
and starts a thread on-the-fly to handle any incoming RPC
request. Each client sends read/write requests with a single
thread that runs in a vCPU. The network bandwidth is
1 Gbps. We compare FlexRaft and FlexRaft+ with CRaft and
HRaft in the normal case and when some servers fail.

5.1 Write Performance

Normal write latencies. We first compare the write latencies
of FlexRaft and FlexRaft+ with CRaft and HRaft in normal
cases when no server fails. The Raft group has five or seven
servers (i.e., N = 5 or N = 7, respectively, where N = 2F +
1). For the coding scheme, we configure all possible values
of k for CRaft and use the largest k for HRaft; FlexRaft and
FlexRaft+ choose the optimal coding scheme automatically.
When N = 5, CRaft can use RS(3,2) or RS(2,3) as its coding
scheme; when N = 7, CRaft can use RS(4,3), RS(3,4), or
RS(2,5). HRaft uses the largest value of k, i.e., RS(3,2) when
N = 5 and RS(4,3) when N = 7. The key size is 16 bytes
(same for the following experiments), and the value size
varies from 4 KiB to 2 MiB. For each value size, the client
generates 10000 PUT requests.

Figures 7 and 8 show the write latencies of CRaft, HRaft,
FlexRaft, and FlexRaft+ under different value sizes when
N = 5 and N = 7, respectively. When N = 5, CRaft
(k = 3) has a lower latency than CRaft (k = 2), reducing
the latency by 4.05-20.73% since CRaft (k = 3) saves the
network bandwidth cost. FlexRaft and HRaft achieve the
same performance as CRaft (k = 3) since both use the largest
k to minimize the redundancy ratio. When N = 7, CRaft
(k = 4) achieves the lowest latency among all three config-
urations. Compared to CRaft (k = 3) and CRaft (k = 2),
CRaft (k = 4) reduces the latency by up to 18.15% and
35.32%, respectively. The latencies of FlexRaft, FlexRaft+,
and HRaft are close to that of CRaft (k = 4) under the same
value size since they use the same coding scheme with the
lowest redundancy ratio. Thus, both FlexRaft and FlexRaft+
minimize the network and storage costs for log replication
in normal cases.

Write performance under server failures. We evaluate the
write performance under one server failure when N = 5.
We use the same configuration as the above experiment.
Figure 9 plots the write latencies of different value sizes
under one server failure. As the number of healthy servers is
below F + k, CRaft (k = 3) converts to full-copy replication

and HRaft replicates two additional coded chunks, incur-
ring higher network and storage costs. In this case, FlexRaft
varies the coding scheme to RS(2,3), achieving the lowest
latency as CRaft (k = 2). Compared to CRaft (k = 3) and
HRaft, FlexRaft reduces the latency by at most 32.82% and
8.43%, respectively. FlexRaft+ achieves similar write perfor-
mance to FlexRaft, because both of them incur the minimum
network and storage costs. As FlexRaft+ needs to perform
encoding once more (i.e., generating the subchunks) and
store the subchunks separately, FlexRaft+ increases the write
latencies of FlexRaft by 3.27% on average under different
value sizes.

We then measure the write performance under a differ-
ent number of server failures when N = 7. Figures 10a
and 10b show the write latencies under one server failure
and two server failures, respectively. When one server fails,
FlexRaft and CRaft (k = 3) achieve the lowest write latencies
among all coding schemes, while CRaft (k = 4) has the high-
est latencies as it converts to full-copy replication. FlexRaft
reduces the latencies of CRaft (k = 4), CRaft (k = 2), and
HRaft by up to 54.28%, 28.97%, and 9.25%, respectively.
When there are two failed servers, FlexRaft uses RS(2,5)
for log replication to minimize the redundancy ratio and
incurs the minimum network traffic and storage overhead.
Both CRaft (k = 4) and CRaft(k = 3) switch to full-
copy replication, while HRaft stores more coded chunks.
Compared to CRaft (k = 4) and HRaft, FlexRaft reduces
the write latency by 37.32% and 14.10%, respectively when
the value size is 2 MiB. The write latency of FlexRaft+ is
similar to that of FlexRaft as they incur the same network
and storage costs, where FlexRaft+ increases the latency by
at most 3.26% and 2.89% under one server failure and two
server failures, respectively. The small latency increase in
FlexRaft+ comes from the additional coding overhead of
subchunks, which is negligible as the network transfer time
accounts for the majority of the total processing time (shown
in §5.3).

5.2 Performance Under YCSB Workloads

We compare the performance of FlexRaft and FlexRaft+ to
HRaft and CRaft under YCSB [13] workloads when N = 7.
We configure the largest value of k (k = 4) for CRaft and
HRaft. We launch four client threads to generate 10000 re-
quests following a Zipf distribution with a Zipfian constant
of 0.99. Here, we fix the value size as 2 MiB.

Figure 11 shows the throughput of CRaft, HRaft,
FlexRaft, and FlexRaft+ under YCSB workload A (50%
reads, 50% updates), B (95% reads, 5% updates), C (100%
reads), D (95% read-latest, 5% inserts), and F (50% reads,
50% read-modify-writes), when there is one failed server
and two failed servers, respectively. Here, we do not show
the results of workload E (95% scans, 5% updates) as our
prototype does not support scan operations currently. Com-
pared to CRaft and HRaft, FlexRaft increases the throughput
of write-heavy workloads (A and F) by 37.28-115.14% and
9.47-18.76%, respectively, because FlexRaft minimizes the
network and storage costs during writes. For read-only
workload (C), all protocols achieve similar throughput as
they directly read data from the leader. For read-intensive
workloads (B and D), FlexRaft improves the throughput

11

 0

20

40

60

80

4 16 64 128 256 512 1024 2048
Value Size (KiB)

A
ve

ra
g
e
 W

ri
te

 L
a
te

n
c
y
 (

m
s
)

CRaft (k=3)
CRaft (k=2)
HRaft (k=3)
FlexRaft
FlexRaft+

Fig. 7: Write latency in normal cases
when N = 5.

 0

 20

 40

 60

 80

100

4 16 64 128 256 512 1024 2048
Value Size (KiB)

A
ve

ra
g
e
 W

ri
te

 L
a
te

n
c
y
 (

m
s
)

CRaft (k=4)
CRaft (k=3)
CRaft (k=2)
HRaft (k=4)
FlexRaft
FlexRaft+

Fig. 8: Write latency in normal cases
when N = 7.

 0

 20

 40

 60

 80

100

4 16 64 128 256 512 1024 2048
Value Size (KiB)

A
ve

ra
g
e
 W

ri
te

 L
a
te

n
c
y
 (

m
s
)

CRaft (k=3)
CRaft (k=2)
HRaft (k=3)
FlexRaft
FlexRaft+

Fig. 9: Write latency under one server
failure when N = 5.

 0

 20

 40

 60

 80

100

120

140

4 16 64 128 256 512 1024 2048
Value Size (KiB)

A
ve

ra
g

e
 W

ri
te

 L
a

te
n

c
y
 (

m
s
)

CRaft (k=4)
CRaft (k=3)
CRaft (k=2)
HRaft (k=4)
FlexRaft
FlexRaft+

(a) One server failure

 0

 20

 40

 60

 80

100

120

140

4 16 64 128 256 512 1024 2048
Value Size (KiB)

A
ve

ra
g

e
 W

ri
te

 L
a

te
n

c
y
 (

m
s
)

CRaft (k=4)
CRaft (k=3)
CRaft (k=2)
HRaft (k=4)
FlexRaft
FlexRaft+

(b) Two server failures

Fig. 10: Write latency under some server failures when N = 7.

 0

200

400

600

800

A B C D F

T
h

ro
u

g
h

p
u

t
(M

b
p

s
)

CRaft HRaft FlexRaft FlexRaft+

(a) One server failure

 0

200

400

600

800

A B C D F

T
h

ro
u

g
h

p
u

t
(M

b
p

s
)

CRaft HRaft FlexRaft FlexRaft+

(b) Two server failures

Fig. 11: Performance under YCSB workloads when
N = 7.

N=5, f=1 N=7, f=1 N=7, f=2

CRaft
HRaft

FlexRaft

FlexRaft+
CRaft

HRaft

FlexRaft

FlexRaft+
CRaft

HRaft

FlexRaft

FlexRaft+

 0

 20

 40

 60

 80

100

120

L
a

te
n

c
y
 (

m
s
)

Client Processing Network Applying

Fig. 12: Breakdown performance of a put operation.

of CRaft and HRaft by 8.90-17.88% and 1.40-5.74%, respec-
tively. FlexRaft+ achieves similar performance to FlexRaft
under different YCSB workloads, where the throughput of
FlexRaft+ is 2.26% lower at most (when the fraction of write
operations is high) due to its additional encoding overhead
in the presence of server failures. Thus, FlexRaft achieves
the best performance by reducing the network and storage
costs during writes.

5.3 Microbenchmarks

We study the breakdown performance of a single PUT
operation in the presence of server failures. We divide
the whole process of a PUT operation into the following
parts: (i) the communication latency between the client and
the leader (denoted by client); (ii) the total time spent in
handling the request and encoding (denoted by processing);
(iii) the latency of sending AppendEntries RPCs in parallel
to replicate an entry (denoted by network); and (iv) the time
of applying a log entry to the state machine (denoted by
applying). Note that the sum of the processing time and
network latency is indeed the commit latency of a log entry.
The client time is calculated by deducting the processing,
network, and applying times from the total response time
observed in the client (i.e., the time from sending a request
until receiving the response). In common cases, there are
one RTT between the client and the leader, and one RTT
between the leader and each of its followers. Note that the

network time varies due to the difference in payload size.
We fix the value size as 2 MiB and send 10000 PUT requests
from the client. We configure the largest value of k for CRaft
and HRaft to reduce the redundancy ratio, i.e., k = 3 when
N = 5, and k = 4 when N = 7.

Figure 12 shows the breakdown performance of CRaft,
HRaft, FlexRaft, and FlexRaft+. CRaft, HRaft, and FlexRaft
have similar client, processing, and applying latencies, as
they go through the same workflow. FlexRaft+ incurs 53.76-
70.91% higher processing latencies than FlexRaft due to the
additional encoding overhead of generating subchunks on
the leader. However, the encoding impact on the overall
write latency in FlexRaft+ is negligible, as the processing
latency only accounts for about 5.18% of the total write
latency. The network latency, depending on the network
bandwidth cost, determines the overall write latency. For
N = 5, FlexRaft reduces the network latencies of CRaft
and HRaft by 41.02% and 10.45% under one server failure,
resulting in 39.95% and 8.19% reduction of commit latencies.
For N = 7, compared to CRaft and HRaft, FlexRaft reduces
the commit latencies by 61.20% and 14.26%, respectively un-
der one server failure, and 44.51% and 19.37%, respectively
under two server failures. The reduction of commit latencies
confirms the saving of network traffic; for example, FlexRaft
reduces the network bandwidth costs of CRaft and HRaft
by 50% and 20% in theory under two server failures when
N = 7, respectively. FlexRaft+ achieves the same network
latencies as FlexRaft does as they transfer the same size of
payload for each entry to be committed. Thus, FlexRaft and
FlexRaft+ minimize the network bandwidth and storage
costs using a flexible coding scheme for log replication.

5.4 Overhead of FlexRaft
The overhead of updated AppendEntries RPCs. We com-
pare the updated AppendEntries RPCs in FlexRaft to the
original RPCs in Raft. We measure the completion time
of one AppendEntries RPC (including one request and
one response) carrying one log entry, labeled as RPC time.
We vary the payload size of the log entry from 4 KiB to

12

0
.7

0
1

0
.8

1
6

1
.2

3
4

1
.8

6

3
.1

2
6 5
.5

4

1
0
.3

7
2

1
9
.9

0
1

0
.7

0
4

0
.8

2
2

1
.2

5
3

1
.8

7
6

3
.1

1
9 5
.5

2
3

1
0
.3

9
2

1
9
.8

8
6

 0

 5

10

15

20

4 16 64 128 256 512 1024 2048
Payload Size (KiB)

R
P

C
 T

im
e
 (

m
s
)

Original
Updated

Fig. 13: RPC time of AppendEntries re-
quests.

 0

 25

 50

 75

100

125

150

f=0 f−>1 f=1 f−>2 f=2

C
o

m
m

it
 L

a
te

n
c
y
 (

m
s
)

Raft
CRaft

HRaft
FlexRaft

FlexRaft+

Fig. 14: The overhead of varying
the coding scheme.

 0

10

20

30

40

50

RS(4,3) RS(3,4) RS(2,5)

R
e

a
d

 L
a

te
n

c
y
 (

m
s
)

Raft
FlexRaft (1)

FlexRaft+ (1)
FlexRaft (10)

FlexRaft+ (10)

Fig. 15: Decoding overhead during reads.

16KiB 256KiB 2048KiB

1 5 10 20 50 100 1 5 10 20 50 100 1 5 10 20 50 100
 0

 25

 50

 75

100

125

150

0.0

0.5

1.0

1.5

Number of unapplied log entries

L
a

te
n

c
y
 (

m
s
)

L
a

te
n

c
y
 (

s
)

FlexRaft FlexRaft+

Fig. 16: Duration of Leaderpre operations.

2048 KiB. Figure 13 plots the RPC time of the original and
the updated AppendEntries. The RPC time of the updated
AppendEntries is almost the same as that of the original
across different payload sizes. FlexRaft only adds 16 B to the
request and 8 B to the response to include the EntryType and
ChunkInfo, which are negligible compared to the payload
sizes. As FlexRaft+ reuses the AppendEntries RPCs, the
overhead of the updated AppendEntries in both FlexRaft
and FlexRaft+ is negligible.
The overhead of varying the coding scheme. We study
the overhead of varying the coding scheme in FlexRaft and
FlexRaft+. We measure the write latency under a different
number of server failures for a group of seven servers (i.e.,
N = 7). Here, we fix the value size as 2 MiB. Figure 14 shows
the average commit latencies of Raft, CRaft, HRaft, FlexRaft,
and FlexRaft+ over 10000 times. Note that the x-axis in
Figure 14 shows the timeline of different server failure cases:
(i) all servers are healthy (i.e., f = 0), (ii) one of the servers
fails during log replication (i.e., f → 1), (iii) the server status
of all servers stabilizes under a server failure (i.e., f = 1),
(iv) one additional server fails during log replication (i.e.,
f → 2), and (v) the server status of all servers stabilizes
under two server failures (i.e., f = 2). All three protocols
with erasure coding achieve the same latency using RS(4,3)
in normal cases, reducing the commit latency of Raft by
69.03%. When a server fails during log replication (i.e.,
f → 1), CRaft reduces to full-copy replication, while HRaft
needs to store one more chunk in three followers; FlexRaft
re-encodes the log entry with RS(3,4) and distributes the
new chunks to the remaining followers; FlexRaft+ only
needs to encode the missing chunks with RS(3,3) and store
the subchunks in five servers. The additional network costs
of CRaft, HRaft, FlexRaft, and FlexRaft+ are 5, 3/4, 5/3, and
5/12 respectively. Thus, the write latency of CRaft is the
largest, which is 11.67% higher than that of Raft and about
four times the normal latency with erasure coding. HRaft
and FlexRaft increase the normal write latency by 63.45%
and 90.28%, respectively, but this only occurs once when

the server fails during writes. FlexRaft+ achieves the lowest
commit latency in the presence of failure, which is 9.11% and
21.71% lower than those of HRaft and FlexRaft, respectively.
Like HRaft, FlexRaft+ does not vary the coding scheme
directly and overwrites existing chunks on the follower
nodes, which helps reduce the commit latency of FlexRaft.
Compared to HRaft, FlexRaft+ reduces the network and
storage costs by only storing the encoded subchunks for the
missing chunk instead of replicating the missing chunk.

When the server status remains unchanged under one
server failure, FlexRaft achieves the lowest commit latency
and reduces the latency of CRaft and HRaft by 61.20% and
14.26%, respectively. FlexRaft+ achieves a similar perfor-
mance to FlexRaft, because they incur the same network
and storage costs. Note that CRaft performs the same as
Raft when one server fails. When one more server fails
during writes (i.e., f → 2), FlexRaft switches to RS(2,5),
resulting in 11.96% higher latency than HRaft; FlexRaft+
encodes the two missing chunks with RS(2,3), increasing the
latency by 8.46% compared to HRaft. When the number of
failed servers increases from one to two, HRaft performs the
best by replicating the missing chunks directly, while both
FlexRaft and FlexRaft+ need to perform re-encoding. When
there are two failed servers, FlexRaft reduces the latencies
of CRaft and HRaft by 44.51% and 19.37%, respectively.
FlexRaft+ also achieves a similar performance to FlexRaft
under two server failures. The commit latency of CRaft
under two server failures is lower than that under one
failure since CRaft has one fewer follower storing a full copy
of the log entries which reduces the network and storage
costs. While FlexRaft incurs additional network transfer
by varying the coding scheme when a server fails during
the log replication, FlexRaft achieves the lowest latency by
minimizing the network and storage costs when the cluster
status remains stable (i.e., f = 0, 1, 2). As FlexRaft+ adopts
the re-encoding-free log replication instead of varying the
coding scheme directly, FlexRaft+ achieves the best perfor-
mance under the stable cluster status and when the server
failure first occurs (i.e., f → 1).
Decoding overhead during reads. We compare the read
performance of FlexRaft and FlexRaft+ to that of Raft.
Figure 15 shows the read latencies of Raft, both FlexRaft
and FlexRaft+ at the first time to read (denoted by FlexRaft
(1) and FlexRaft+ (1), respectively), and both FlexRaft and
FlexRaft+ with 10 read times (denoted by FlexRaft (10) and
FlexRaft+ (10), respectively) under different coding schemes
when N = 7. Compared to Raft, FlexRaft (1) increases
the read latencies by 88.60-92.35%, while FlexRaft (10) only
increases by 4.34-6.62%. FlexRaft+ incurs slightly higher

13

256KiB 2048KiB

1 10 100 1 10 100
 0

 25

 50

 75

100

0.00

0.25

0.50

0.75

1.00

Number of unapplied log entries

L
a
te

n
c
y
 (

m
s
)

L
a
te

n
c
y
 (

s
)

FlexRaft FlexRaft+

(a) Recovering one follower when f = 1

256KiB 2048KiB

1 10 100 1 10 100
 0

 30

 60

 90

120

150

0.0

0.5

1.0

1.5

Number of unapplied log entries

L
a
te

n
c
y
 (

m
s
)

L
a
te

n
c
y
 (

s
)

FlexRaft FlexRaft+

(b) Recovering one follower when f = 2

256KiB 2048KiB

1 10 100 1 10 100
 0

120

240

360

480

600

0

2

4

6

Number of unapplied log entries

L
a
te

n
c
y
 (

m
s
)

L
a
te

n
c
y
 (

s
)

FlexRaft FlexRaft+

(c) Recovering two followers when f = 2

Fig. 17: Duration of follower recovery under different server failures.

 0

15

30

45

60

f=3−>2 f=2−>1 f=1−>0

S
to

ra
g
e
 C

o
s
t
(G

iB
)

CRaft HRaft

FlexRaft FlexRaft+

(a) N = 7

 0

20

40

60

80

f=3−>2 f=2−>1 f=1−>0

S
to

ra
g
e
 C

o
s
t
(G

iB
)

CRaft HRaft

FlexRaft FlexRaft+

(b) N = 9

Fig. 18: Storage cost in the followers.

 0

 50

100

150

f=1 f=2 f=3C
o
m

m
it
 L

a
te

n
c
y
 (

m
s
)

CRaft HRaft

FlexRaft FlexRaft+

(a) N = 9

 0

 50

100

150

f=2 f=3 f=4C
o
m

m
it
 L

a
te

n
c
y
 (

m
s
)

CRaft HRaft

FlexRaft FlexRaft+

(b) N = 11

Fig. 19: Commit latency of CRaft, HRaft, FlexRaft, and
FlexRaft+ with a larger number of servers in a group.

decoding overhead than FlexRaft as it needs to first decode
the missing chunks and then recover the original value. The
read latency of FlexRaft+ (1) is 101.81-106.42% higher than
the read latency of Raft, while that of FlexRaft+ (10) is only
8.98% higher than that of Raft due to the data cache on
the leader node. Thus, the decoding operation has a limited
negative impact on the read performance when the leader
does not crash frequently (i.e., the leader already stores a
full copy for read requests).

5.5 Server Recovery

Duration of the LeaderPre operation under the leader
failure. We measure the duration of the LeaderPre operation
when the leader fails and a new leader is elected; here,
we consider N = 7. As the LeaderPre operation only
recovers the unapplied log entries, we vary the number
of unapplied log entries (from 1 to 100) with different
value sizes. Figure 16 shows the duration of the LeaderPre
operation, which increases with the number of unapplied
log entries. For the small values (e.g., 16 KiB), it takes about
4 ms and 14 ms for FlexRaft to recover 10 and 100 log
entries, respectively. For the values with a medium size (e.g.,
256 KiB), the LeaderPre operation in FlexRaft lasts about
18 ms and 136 ms when there are 10 and 100 unapplied log
entries, respectively. For the large values (e.g., 2 MiB), it
takes about 106 ms for FlexRaft to recover 10 entries and
1.4 s to recover 100 entries. Compared to FlexRaft, FlexRaft+
increases the LeaderPre duration by 4.19% on average due
to its additional decoding overhead. Thus, the newly-elected

leader in both FlexRaft and FlexRaft+ can quickly complete
the LeaderPre operation, making a limited impact on system
availability.

Follower recovery. We compare the follower recovery la-
tency of FlexRaft and FlexRaft+ to show the recovery
efficiency of re-encoding-free log replication adopted by
FlexRaft+. Figure 17 plots the follower recovery latency
under different server failures when N = 7. When one
follower fails, FlexRaft+ reduces the recovery latency of
FlexRaft by 19.62-35.42%, because FlexRaft+ can directly
send the missing chunk with a smaller k (i.e., using the opti-
mal coding scheme) to the follower. If two follower servers
fail, FlexRaft+ reduces the recovery latency of FlexRaft by
39.06-59.28% and 42.43-67.16% when recovering one fol-
lower or both failed followers, respectively. The reduction in
recovery latency of FlexRaft+ comes from the re-encoding-
free log replication scheme, which reduces the data transfer
size from 1/(F + 1 − f) to 1/(F + 1) of the log entry
to recover a failed follower. The recovery performance im-
provement of FlexRaft+ over FlexRaft when recovering two
failed followers is higher than the theoretical improvement,
because the large data size to transfer in FlexRaft triggers the
re-transfer process due to the network timeout sometimes.
Therefore, FlexRaft+ greatly improves the follower recovery
performance by using the re-encoding-free log replication.

Storage cost in the followers. To demonstrate the storage
efficiency of FlexRaft+, we measure the storage cost of
different consensus protocols. As each protocol needs to
store a whole copy of each log entry in the leader, we
compare the storage cost of the committed log entries in
the followers. In this experiment, we first make the leader
commit 10000 log entries of 1 MiB in the presence of server
failures; we then restart one failed follower to trigger the
follower recovery process; finally, we calculate the total
storage cost by summing up the storage costs of all follow-
ers. Figures 18a and 18b show the storage costs of CRaft,
HRaft, FlexRaft, and FlexRaft+ when N = 7 and N = 9,
respectively. FlexRaft+ achieves the lowest storage cost in all
failure cases. Compared to FlexRaft, FlexRaft+ reduces the
storage cost by 27.58-37.89% and 19.56-25.66% for N = 7
and N = 9, respectively. FlexRaft+ achieves a lower storage
cost than FlexRaft, as it sends less data to the recovered
follower (i.e., a chunk of 1/(F +1) in FlexRaft+ and a chunk
of 1/(F + 1− f) in FlexRaft). FlexRaft+ reduces the storage
cost of HRaft by 12.49-21.43%, because FlexRaft+ only stores
the coded subchunks rather than the original chunks.

14

5.6 Scalability of FlexRaft
We evaluate the performance of CRaft, HRaft, and FlexRaft
with a larger number of servers in a group. As all three pro-
tocols achieve the lowest commit latency using the largest
available value of k, we compare their commit latencies
under a different number of server failures. We set the
payload size of each log entry as 2 MiB and plot the average
commit latencies over 10000 times. Figure 19 shows the
commit latencies of CRaft, HRaft, and FlexRaft under a
different number of server failures in a group of N = 9 and
N = 11 servers. For a group of 9 servers, FlexRaft reduces
the commit latency of CRaft and HRaft by 43.20-71.00%
and 17.14-24.87%, respectively. Also, FlexRaft reduces the
commit latency of CRaft and HRaft by 43.12-71.45% and
24.01-31.47%, respectively, when more than one server fails
in a group of 11 servers. FlexRaft+ achieves almost the same
commit latencies as FlexRaft due to the same network and
storage costs. The evaluation results demonstrate that both
FlexRaft and FlexRaft+ achieve higher performance than
CRaft and HRaft for a large-scale cluster in the presence
of server failures.

6 RELATED WORK

Improving the performance of consensus protocols. Dis-
tributed systems employ consensus algorithms to provide
high reliability and availability for upper-layer applications.
Paxos [18], [19] is one commonly used consensus protocol
in distributed systems, such as Chubby [9] and Spanner [9].
Many variants of Paxos [8], [11], [20], [24], [28], [34] have
been proposed in the literature to improve the performance
of Paxos-based systems. Mencius [20] proposes Round-robin
Paxos with rotating leaders to alleviate the single-leader
bottleneck. EPaxos [24], [28] extends vanilla Paxos in a de-
centralized fashion to achieve optimal commit latency. SD-
Paxos [34] presents a semi-decentralized replication, which
overlaps the separated replicating and ordering processes
to achieve one-round-trip latency under three/five-replica
configurations. WPaxos [8] proposes a multi-leader Paxos
to achieve low latency and high throughput in WAN de-
ployments. PigPaxos [11] decouples the decision-making
from the communication at the leader using an in-network
aggregation and piggybacking technique.

Raft [26] is a widely used consensus algorithm de-
signed for easy understanding and implementation, which
is equivalent to Multi-Paxos. There have been many opti-
mizations proposed to improve the performance of the orig-
inal raft protocols in recent years [10], [16], [17], [30]. Par-
allelRaft [10] realizes a parallelized version of Raft, which
removes the original Raft’s strict serialization for high I/O
concurrency. HovercRaft [17] extends the Raft protocol by
eliminating CPU and I/O bottlenecks to achieve both scal-
ability and fault tolerance. KV-Raft [30] introduces commit
return and immediate read into vanilla Raft, to accelerate the
write and read performance of distributed key-value storage
systems respectively. NB-Raft [16] increases the parallelism
and throughput of Raft by enabling multiple entries from
the same client to be processed in parallel.
Optimizing consensus algorithms with erasure coding.
Some studies [15], [25], [29], [31] extend the replication-
based Paxos and Raft protocols with erasure coding (based

on RS codes [27]) for higher performance with lower over-
head. Erasure coding has been widely applied in distributed
storage systems [3], [14] to protect data against server fail-
ures with a low redundancy ratio. The adoption of erasure
coding in consensus algorithms introduces a new approach
to improve the overall system performance by reducing the
redundancy overhead. RS-Paxos [25] is the first consensus
protocol that combines erasure coding into Paxos protocol,
but reduces the liveness level. Pando [29] leverages erasure
coding in geo-distributed storage to reduce costs for pre-
serving consistency. CRaft [31] applies erasure coding to
Raft while keeping the same liveness level as the original
Raft protocol, but it degrades to full-copy replication when
the number of failed servers exceeds a certain threshold.
HRaft [15] addresses the degradation problem of CRaft
by maintaining additional coded data in healthy servers
instead of switching to full-copy replication when server
failure occurs.

7 CONCLUSIONS

This paper proposes FlexRaft which minimizes the network
and storage costs by dynamically adjusting the coding
scheme used for log replication in Raft. It uses the opti-
mal coding scheme with the available largest k based on
the server status. When varying the coding scheme dur-
ing writes, FlexRaft restricts the overwriting of the coded
chunks and updates the AppendEntries RPCs to make sure
that all servers store the right coded chunks. We further pro-
pose re-encoding-free log replication in FlexRaft+ to enable
fast server recovery. Our evaluation results demonstrate that
both FlexRaft and FlexRaft+ minimize the network and
storage costs for log replication in Raft, while FlexRaft+
enables fast server recovery.

Acknowledgments. This work is supported by the Strate-
gic Priority Research Program of the Chinese Academy of
Sciences (Grant No. XDB44030200), the Major Research Plan
of the National Natural Science Foundation of China (Grant
No. 92270202), and Research Grants Council of Hong Kong
(GRF 14214622 and AoE/P-404/18). The corresponding au-
thor is Patrick P. C. Lee.

REFERENCES

[1] Alibaba cloud. https://us.alibabacloud.com/.
[2] etcd: A Distributed, Reliable Key-Value Store for the Most Critical

Data of a Distributed System. https://etcd.io/.
[3] HDFS 3.1. https://hadoop.apache.org/release/3.1.1.html.
[4] ISA-L. https://github.com/intel/isa-l.
[5] RCF. https://www.deltavsoft.com/.
[6] RocksDB. https://github.com/facebook/rocksdb/tree/v7.3.1.
[7] TiKV: A Distributed Transactional Key-Value Database. https://

tikv.org/.
[8] A. Ailijiang, A. Charapko, M. Demirbas, and T. Kosar. WPaxos:

Wide Area Network Flexible Consensus. IEEE Transactions on
Parallel and Distributed Systems, 31(1):211–223, 2019.

[9] M. Burrows. The Chubby Lock Service for Loosely-Coupled
Distributed Systems. In Proc. of USENIX OSDI, 2006.

[10] W. Cao, Z. Liu, P. Wang, S. Chen, C. Zhu, S. Zheng, Y. Wang,
and G. Ma. PolarFS: An Ultra-low Latency and Failure Resilient
Distributed File System for Shared Storage Cloud Database. In
Proc. of VLDB Endowment, 2018.

[11] A. Charapko, A. Ailijiang, and M. Demirbas. PigPaxos: Devouring
the Communication Bottlenecks in Distributed Consensus. In Proc.
of ACM SIGMOD, 2021.

https://us.alibabacloud.com/
https://etcd.io/
https://hadoop.apache.org/release/3.1.1.html
https://github.com/intel/isa-l
https://www.deltavsoft.com/
https://github.com/facebook/rocksdb/tree/v7.3.1
https://tikv.org/.
https://tikv.org/.

15

[12] Y. L. Chen, S. Mu, J. Li, C. Huang, J. Li, A. Ogus, and D. Phillips.
Giza: Erasure Coding Objects Across Global Data Centers. In Proc.
of USENIX ATC, 2017.

[13] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears.
Benchmarking Cloud Serving Systems with YCSB. In Proc. of ACM
SoCC, 2010.

[14] C. Huang, H. Simitci, Y. Xu, A. Ogus, B. Calder, P. Gopalan, J. Li,
S. Yekhanin, et al. Erasure Coding in Windows Azure Storage. In
Proc. of USENIX ATC, 2012.

[15] Y. Jia, G. Xu, C. W. Sung, S. Mostafa, and Y. Wu. HRaft: Adaptive
Erasure Coded Data Maintenance for Consensus in Distributed
Networks. In Proc. of IEEE IPDPS, 2022.

[16] T. Jiang, X. Huang, S. Song, C. Wang, J. Wang, R. Li, and J. Sun.
Non-Blocking Raft for High Throughput IoT Data. In Proc. of IEEE
ICDE, 2023.

[17] M. Kogias and E. Bugnion. HovercRaft: Achieving Scalability and
Fault-tolerance for Microsecond-scale Datacenter Services. In Proc.
of ACM EuroSys, 2020.

[18] L. Lamport. The Part-Time Parliament. ACM Trans. on Comput.
Syst., 16(2):133–169, 1998.

[19] L. Lamport et al. Paxos Made Simple. ACM Trans. on Sigact News,
32(4):18–25, 2001.

[20] Y. Mao, F. P. Junqueira, and K. Marzullo. Mencius: Building
Efficient Replicated State Machines for WANs. In Proc. of USENIX
OSDI, 2008.

[21] F. Maturana, V. C. Mukka, and K. Rashmi. Access-optimal Linear
MDS Convertible Codes for All Parameters. In Proc. of IEEE ISIT,
2020.

[22] F. Maturana and K. Rashmi. Convertible Codes: Enabling Efficient
Conversion of Coded Data in Distributed Storage. IEEE Trans. on
Information Theory, 68(7):4392–4407, 2022.

[23] F. Maturana and K. Rashmi. Bandwidth Cost of Code Conver-
sions in Distributed Storage: Fundamental Limits and Optimal
Constructions. IEEE Trans. on Information Theory, 2023.

[24] I. Moraru, D. G. Andersen, and M. Kaminsky. There Is More
Consensus in Egalitarian Parliaments. In Proc. of ACM SOSP, 2013.

[25] S. Mu, K. Chen, Y. Wu, and W. Zheng. When Paxos Meets
Erasure Code: Reduce Network and Storage Cost in State Machine
Replication. In Proc. of ACM HPDC, 2014.

[26] D. Ongaro and J. Ousterhout. In Search of an Understandable
Consensus Algorithm. In Proc. of USENIX ATC, 2014.

[27] I. S. Reed and G. Solomon. Polynomial Codes over Certain Finite
Fields. Journal of the Society for Industrial and Applied Mathematics,
8(2):300–304, 1960.

[28] S. Tollman, S. J. Park, and J. Ousterhout. EPaxos Revisited. In Proc.
of USENIX NSDI, 2021.

[29] M. Uluyol, A. Huang, A. Goel, M. Chowdhury, and H. V. Mad-
hyastha. Near-Optimal Latency Versus Cost Tradeoffs in Geo-
Distributed Storage. In Proc. of USENIX NSDI, 2020.

[30] Y. Wang, Z. Wang, Y. Chai, and X. Wang. Rethink the Linearizabil-
ity Constraints of Raft for Distributed Key-Value Stores. In Proc. of
IEEE ICDE, 2021.

[31] Z. Wang, T. Li, H. Wang, A. Shao, Y. Bai, S. Cai, Z. Xu, and
D. Wang. CRaft: An Erasure-Coding-Supported Version of Raft
for Reducing Storage Cost and Network Cost. In Proc. of USENIX
FAST, 2020.

[32] S. Wu, Z. Shen, P. P. Lee, Z. Bai, and Y. Xu. Elastic Reed-Solomon
Codes for Efficient Redundancy Transitioning in Distributed Key-
Value Stores. IEEE/ACM Trans. on Networking, 2023.

[33] M. Zhang, Q. Kang, and P. P. Lee. Minimizing Network and
Storage Costs for Consensus with Flexible Erasure Coding. In
Proc. of ICPP, 2023.

[34] H. Zhao, Q. Zhang, Z. Yang, M. Wu, and Y. Dai. SDPaxos: Building
Efficient Semi-Decentralized Geo-replicated State Machines. In
Proc. of ACM SoCC, 2018.

Mi Zhang received the B.Eng. degree in Soft-
ware Engineering from Shandong University in
2014, and the Ph.D. degree in Computer Sci-
ence and Engineering from the Chinese Uni-
versity of Hong Kong in 2019. She is now an
assistant researcher at the Institute of Comput-
ing Technology, Chinese Academy of Sciences.
Her current research interests include distributed
storage systems and storage reliability.

Qihan Kang received the B.Eng. degree in
Compute Science and Technology from Univer-
sity of Chinese Academy of Sciences in 2021.
He is now a Master student at the Institute
of Computing Technology, Chinese Academy of
Sciences. His research interests include key-
value stores and disaggregated memory sys-
tems.

Patrick P. C. Lee received the B.Eng. degree
(first-class honors) in Information Engineering
from the Chinese University of Hong Kong in
2001, the M.Phil. degree in Computer Science
and Engineering from the Chinese University of
Hong Kong in 2003, and the Ph.D. degree in
Computer Science from Columbia University in
2008. He is now a Professor of the Department
of Computer Science and Engineering at the
Chinese University of Hong Kong. His research
interests are in various applied/systems topics

on improving the dependability of large-scale software systems, in-
cluding storage systems, distributed systems and networks, and cloud
computing.

	Introduction
	Background and Motivation
	Basics of Raft Consensus
	Erasure-Coded Consensus Protocols
	Motivating Example

	Design of FlexRaft
	Choice of Coding Schemes
	Varying the Coding Scheme
	Log Replication under Server Failures
	Server Recovery
	Safety Guarantee

	Implementation
	Evaluation
	Write Performance
	Performance Under YCSB Workloads
	Microbenchmarks
	Overhead of FlexRaft
	Server Recovery
	Scalability of FlexRaft

	Related Work
	Conclusions
	References
	Biographies
	Mi Zhang
	Qihan Kang
	Patrick P. C. Lee

