
Harnessing Parallelism for Fast Data Repair in MSR-Coded
Storage

XIAOLU LI, HAN YUAN, XUAN LIU, and JUNLONG ZHANG, Huazhong University of Science
and Technology, China
PATRICK P. C. LEE, The Chinese University of Hong Kong, China
YUCHONG HU and DAN FENG, Huazhong University of Science and Technology, China

Minimum-storage regenerating (MSR) codes are provably optimal erasure codes that minimize the repair
bandwidth (i.e., the amount of traffic being transferred during a repair operation), while minimizing storage
redundancy, in distributed storage systems. However, the practical repair performance of MSR codes still
has significant room for improvements, as their mathematical structure makes repair operations difficult to
parallelize. In this paper, we present HyperParaRC, a parallel repair framework for MSR codes. HyperParaRC
leverages the sub-packetization nature of MSR codes to parallelize the repair of sub-blocks and balance repair
load (i.e., the amount of traffic sent or received by a node) across available nodes. We first demonstrate that
there exists a trade-off between repair bandwidth and maximum repair load. We then propose an affinity-based
heuristic for HyperParaRC, which approximately minimizes the maximum repair load by examining the
bandwidth incurred during sub-block computations and significantly reduces the search time for large coding
parameters compared with our earlier work, ParaRC. Based on our affinity-based heuristic, we further design
a full-node recovery mechanism for HyperParaRC that combines both intra-stripe and inter-stripe parallel
repair scheduling to repair multiple lost blocks in a failed node. We prototype HyperParaRC on Hadoop HDFS
and evaluate it on Alibaba Cloud. Our evaluation results show that HyperParaRC reduces both single-block
repair and full-node recovery times compared with state-of-the-art repair approaches.

CCS Concepts: • Information systems→ Storage recovery strategies; Distributed storage.

Additional Key Words and Phrases: Erasure coding, Distributed Storage Systems

ACM Reference Format:
Xiaolu Li, Han Yuan, Xuan Liu, Junlong Zhang, Patrick P. C. Lee, Yuchong Hu, and Dan Feng. 2024. Harnessing
Parallelism for Fast Data Repair in MSR-Coded Storage. ACM Trans. Storage 1, 1, Article 1 (January 2024),
37 pages. https://doi.org/0000001.0000001

This work was supported in part by the National Natural Science Foundation of China (62302175 and 62272185), Research
Grants Council of Hong Kong (AoE/P-404/18), and Research Matching Grant Scheme. Corresponding author: Patrick P. C.
Lee (pclee@cse.cuhk.edu.hk).

An earlier version of this article appeared in [22]. In this extended version, we propose an affinity-based heuristic that
quickly identifies an efficient repair solution with both low repair bandwidth and low minimum-maximum repair load
under large coding parameters. We further design an intra-stripe and inter-stripe parallel repair scheduling algorithm for
the full-node recovery of MSR codes based on our affinity-based heuristic. We implement our extended system, namely
HyperParaRC, and evaluate it on Alibaba Cloud via large-scale simulations and real-cloud experiments.
Authors’ Contact Information: Xiaolu Li; Han Yuan; Xuan Liu; Junlong Zhang, Huazhong University of Science and
Technology, Wuhan, China; Patrick P. C. Lee, The Chinese University of Hong Kong, Hong Kong, China; Yuchong Hu; Dan
Feng, Huazhong University of Science and Technology, Wuhan, China.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2024 ACM.
ACM 1553-3093/2024/1-ART1
https://doi.org/0000001.0000001

ACM Trans. Storage, Vol. 1, No. 1, Article 1. Publication date: January 2024.

https://doi.org/0000001.0000001
https://doi.org/0000001.0000001

1:2 Li et al.

1 INTRODUCTION
Erasure coding has been widely deployed in practical distributed storage systems to provide fault
tolerance against data loss in failed storage nodes, while incurring significantly lower redundancy
overhead than traditional replication [45]. Among many erasure codes, Reed-Solomon (RS) codes
are the most popular and are reportedly deployed in production, such as Google [11], Facebook
[27], Backblaze [5], and CERN [30]. However, RS codes are known to incur high repair bandwidth
(i.e., the amount of traffic being transferred during a repair operation) when repairing a failed node,
as the repair of any lost block needs to retrieve multiple coded blocks from other available nodes
for decoding, leading to bandwidth amplification.
Many repair-friendly erasure codes have been proposed in the literature to reduce the repair

bandwidth of RS codes. Examples include regenerating codes [10, 28, 32, 38, 43], locally repairable
codes [15, 19, 37], and piggybacking codes [34, 35]. In particular, minimum-storage regenerating
(MSR) codes [10] are theoretically proven to be repair-optimal, such that they minimize the repair
bandwidth for repairing a single node failure while preserving the minimum storage redundancy as
in RS codes (i.e., the redundancy is the minimum among any erasure code that tolerates the same
number of node failures). For example, compared with the (14,10) RS code adopted by Facebook
[27, 34] (i.e., 10 original uncoded blocks are encoded into 14 RS-coded blocks), MSR codes with the
same coding parameters can reduce the repair bandwidth by 67.5%. Given the theoretical guarantees
of MSR codes, many follow-up efforts have proposed practical constructions for MSR codes and
evaluated their performance in real-world distributed storage systems (e.g., [13, 28, 32, 43]). For
example, Clay codes [43] are shown to minimize both repair bandwidth and I/Os (i.e., the amount of
disk I/Os to local storage during a repair operation is the same as the minimum repair bandwidth),
support general coding parameters, and be deployed and integrated in Ceph [6].
While MSR codes provably minimize the repair bandwidth, their practical repair performance

remains bottlenecked by the node where the lost block is decoded, as the node needs to retrieve
more data from other available nodes than the amount of lost data; in other words, bandwidth
amplification still exists, albeit less severely than with RS codes. To mitigate the repair bottleneck
issue, recent studies [24, 26] have shown how to parallelize and load-balance the repair for RS
codes across multiple available nodes by decomposing the repair operation into partial repair
sub-operations that are executed in different nodes in parallel and combining the partially repaired
blocks into the final decoded block. Thus, it is natural to ask whether we can also decompose and
parallelize the repair for MSR codes like RS codes. Unfortunately, the answer is negative: the repair
for RS codes (which belong to scalar codes) satisfies the additive associativity of linear combinations
and the repair operation can be decomposed; in contrast, MSR codes (which belong to vector codes)
have a different mathematical structure from RS codes, such that the repair of MSR codes needs to
solve a system of linear combinations and cannot be directly decomposed (see §2 for details).
This motivates an alternative to parallelize the repair of MSR codes. Our insight is that MSR

codes build on sub-packetization, in which a block is partitioned into sub-blocks and the repair of a
lost block in MSR codes involves retrieving a subset of sub-blocks from other available nodes for
decoding. The sub-blocks of a lost block can be represented as different linear combinations, and
are finally decoded by solving the system of linear combinations. Based on sub-packetization, our
idea is to distribute the repair of sub-blocks across different available nodes and later combine the
repaired sub-blocks to reconstruct the lost block. An open question is how to schedule the parallel
repair of MSR codes in order to balance the repair load (i.e., the amount of traffic sent or received
by a node) across the available nodes.

In this paper, we present HyperParaRC, a novel parallel repair framework for MSR codes designed
to balance the repair load across available nodes and hence accelerate the repair operation, while

ACM Trans. Storage, Vol. 1, No. 1, Article 1. Publication date: January 2024.

Harnessing Parallelism for Fast Data Repair in MSR-Coded Storage 1:3

maintaining low repair bandwidth. HyperParaRC enhances ParaRC, proposed in our conference
version [22] for the parallel repair of MSR codes, in two key aspects. First, HyperParaRC significantly
reduces the search time of ParaRC to find efficient repair solutions, which even outperform those
returned by ParaRC in various settings. Second, while ParaRC focuses on improving single-block
repair performance via intra-stripe parallelism, HyperParaRC combines both intra-stripe and inter-
stripe parallelism to achieve high full-node recovery performance. To summarize, this paper makes
the following contributions:

• We observe that there exists a trade-off between repair bandwidth and maximum repair load. To
formally analyze the trade-off, we model the repair operation of MSR codes as a directed acyclic
graph (DAG) [23] and solve the parallel repair problem as a DAG coloring problem. We identify
an extreme point, the min-max repair load (MLP) point, which minimizes the maximum repair
load with the smallest possible repair bandwidth.

• We show that finding the MLP is generally computationally expensive. Even though our earlier
proposed ParaRC uses a pruning-based heuristic to efficiently identify an approximate MLP,
its search time remains significant for large coding parameters (e.g., on the order of days). In
this paper, we find that the repair solutions are closely related to a property called affinity,
which captures the likelihood that a sub-block can be computed from some locally stored input
sub-blocks (i.e., without incurring the bandwidth for retrieving them from other nodes), and the
Pareto-optimal solutions tend to have high affinitywith low bandwidth in sub-block computations.
For HyperParaRC, we propose an affinity-based heuristic that quickly identifies an approximate
MLP in sub-seconds for large coding parameters, significantly faster than the pruning-based
heuristic in ParaRC.

• We design a full-node recovery scheduling algorithm that performs both intra-stripe and inter-
stripe parallel repair scheduling based on affinity to achieve high recovery performance.

• We prototype HyperParaRC atop Hadoop 3.3.4 HDFS [3] and evaluate HyperParaRC on Alibaba
Cloud [1], including large-scale simulations and real-cloud experiments. HyperParaRC reduces
the single-block repair time by 68.2% compared with the centralized repair for Clay codes and by
21.3% compared with ParaRC. Also, HyperParaRC reduces the full-node recovery time of ParaRC
by 45.5% via both intra-stripe and inter-stripe parallel repair scheduling. HyperParaRC reduces
the full-node recovery time of the default repair method in Hadoop 3.3.4 HDFS by 70.9%. We
open-source our HyperParaRC prototype at: https://github.com/ukulililixl/hyperpararc.

2 BACKGROUND ANDMOTIVATION
2.1 Basics of Erasure Coding
We review the basics of erasure coding. We consider a large-scale distributed storage system that
organizes data and performs reads/writes in fixed-size blocks, such that the block size is large enough
(e.g., 128MiB in Hadoop 3.3.4 HDFS [3] and 256MiB in Facebook [33]) to mitigate I/O overhead.
In this work, we target the distributed storage environments where the network bandwidth and
disk I/Os are the bottlenecks, as opposed to the computational overhead for encoding and decoding
operations in erasure coding.

There are many approaches to construct erasure codes, among which Reed-Solomon (RS) codes
[36] are the most widely deployed (e.g., [5, 11, 27, 30]). Specifically, an (𝑛, 𝑘) RS code, configured
by two parameters 𝑘 and 𝑛 (where 𝑛 > 𝑘), encodes every set of 𝑘 original uncoded blocks into 𝑛
coded blocks, such that any 𝑘 out of 𝑛 coded blocks suffice to decode the 𝑘 original uncoded blocks.
Each set of 𝑛 coded blocks is called a stripe. In this work, we focus on a single stripe, while multiple
stripes are independently and identically encoded. Each stripe is stored in 𝑛 distinct nodes, so as to
tolerate any 𝑛 − 𝑘 node (or block) failures. RS codes satisfy three practical properties: (i) generality,

ACM Trans. Storage, Vol. 1, No. 1, Article 1. Publication date: January 2024.

https://github.com/ukulililixl/hyperpararc

1:4 Li et al.

B0N0

B1N1

B2N2

B3N3

B0N0

B0 = a1B1+a2B2

B 2
B 1

B0N0

B1N1

B2N2

B3N3

B0N0
b0,0
b0,1
b0,2
b0,3

b1,0
, b1,1

b 2,0
, b 2,1

b 3,0
, b

3,1

B0N0

B1N1

B2N2

B3N3

B0N0

a1B1+a2B2

a1B1

(a) Centralized repair
for RS codes

(b) Centralized repair
for Clay codes

(c) Repair pipelining
for RS codes

Fig. 1. Repair examples: (a) conventional repair for the (4, 2) RS code; (b) centralized repair for the (4, 2)
Clay code (which minimizes the repair bandwidth); and (c) repair pipelining for the (4, 2) RS code (which
minimizes the maximum repair load).

where 𝑛 and 𝑘 can be general parameters (provided that 𝑛 > 𝑘), (ii) maximum distance separable
(MDS), where the redundancy overhead 𝑛/𝑘 is the minimum for tolerating any 𝑛 − 𝑘 node failures,
and (iii) systematic, where the 𝑘 uncoded blocks are kept in the 𝑛 coded blocks (i.e., the uncoded
blocks remain directly accessible after encoding).
We elaborate on the mathematical properties of RS codes to help motivate our work. In this

paper, we treat the uncoded and coded blocks equivalently in a systematic stripe and simply refer
to them as ‘‘blocks’’ in our discussion. Let 𝐵0, 𝐵1, · · · , 𝐵𝑛−1 be the 𝑛 blocks of a stripe in an (𝑛, 𝑘)
RS code that are respectively stored in 𝑛 nodes, denoted by 𝑁0, 𝑁1, · · · , 𝑁𝑛−1. Each block can be
expressed as a linear combination of 𝑘 blocks of the same stripe under Galois Field arithmetic. For
example, we have 𝐵0 =

∑𝑘
𝑖=1 𝑎𝑖𝐵𝑖 for some coding coefficients 𝑎𝑖 ’s (1 ≤ 𝑖 ≤ 𝑘).

Despite the popularity, RS codes are known to incur high repair penalty, since repairing a single
lost block in RS codes needs to transfer multiple blocks of the same stripe from other available
nodes. The repair penalty manifests in two aspects. First, the repair incurs high repair bandwidth,
defined as the amount of traffic transferred over the network during a single-block repair operation.
In general, an (𝑛, 𝑘) RS code incurs a repair bandwidth of 𝑘 times the block size when repairing a
lost block. Figure 1(a) shows an example of the conventional centralized repair for the (4, 2) RS
code. To repair a lost block (say 𝐵0), the new node (say 𝑁0) downloads any 𝑘 = 2 blocks (say 𝐵1 and
𝐵2 from 𝑁1 and 𝑁2, respectively), so as to repair 𝐵0 via the linear combination of the downloaded
blocks. Thus, the repair bandwidth is 2 blocks.
Second, the conventional centralized repair also incurs high maximum repair load, where the

repair load of a node is defined as the amount of traffic that the node sends or receives, whichever
is larger, during a repair operation, and the maximum repair load is the largest repair load among
all nodes. In the centralized repair, the new node has the most traffic among all nodes, as it receives
an amount of traffic that is 𝑘 times the block size, while each other available node sends one block
only. Thus, the performance of the centralized repair is bottlenecked by the new node. For example,
from Figure 1(a), the new node 𝑁0 has the most received traffic, and the maximum repair load is
also 2 blocks.

Thus, the repair performance in RS codes is dominated by both repair bandwidth and maximum
repair load. We argue that while many studies focus on reducing the repair bandwidth (§2.2)
or reducing the maximum repair load (§2.3), there exists a trade-off in minimizing both of the
performance metrics (§2.4).

ACM Trans. Storage, Vol. 1, No. 1, Article 1. Publication date: January 2024.

Harnessing Parallelism for Fast Data Repair in MSR-Coded Storage 1:5

In this work, we mainly consider two types of repair operations: (i) single-block repair, where
a storage system repairs a lost block or a client issues a degraded read to a lost block, and (ii)
full-node recovery, where a storage system repairs all lost blocks of a failed node. Both types of
repair operations assume that there is only one lost block in a stripe, as single failures are the most
common failure scenario in current erasure-coding deployment [15, 33]. Multiple lost blocks in a
stripe are less common, but become a valid problem in wide-stripe deployment [14, 17]. We pose
the analysis of multiple lost blocks for wide stripes as future work.

2.2 Reducing Repair Bandwidth
Existing studies on erasure coding reduce the repair bandwidth by proposing new erasure code
constructions. Examples include regenerating codes [10, 13, 28, 32, 38, 42, 43], locally repairable
codes [15, 37], and piggybacking codes [34, 35]. In this paper, we focus on minimum-storage
regenerating (MSR) codes (first proposed in [10]), which theoretically minimize the repair bandwidth
for repairing a single lost block, with the minimum redundancy (i.e., MDS property) as RS codes.
MSR codes differ from RS codes by performing sub-packetization, which divides a block into

multiple sub-blocks and performs encoding and repair at the sub-block granularity. Specifically,
an (𝑛, 𝑘) MSR code partitions each block 𝐵𝑖 (0 ≤ 𝑖 ≤ 𝑛 − 1) into𝑤 sub-blocks (𝑤 > 1), denoted by
𝑏𝑖,0, 𝑏𝑖,1, · · · , 𝑏𝑖,𝑤−1, such that each sub-block is encoded through a linear combination of 𝑘 ×𝑤

sub-blocks from 𝑘 blocks (under Galois Field arithmetic). To repair any lost block (or𝑤 sub-blocks
therein), MSR codes only transfer sub-blocks from the other nodes, such that the total amount of
traffic of the transferred sub-blocks is minimized.

Classical MSR codes [10] require that the available nodes read all their locally stored sub-blocks,
encode them, and transfer the encoded sub-blocks to the new node (with the minimum repair
bandwidth) to repair the lost block. In this work, we consider two state-of-the-art MSR codes,
namely Clay codes [43] and Butterfly codes [28], both of which have been implemented and
empirically evaluated. Our goal is to show the applicability of our work to different MSR codes,
using Clay codes and Butterfly codes as two representatives. In particular, Clay codes minimize
both repair bandwidth and I/Os (a.k.a. repair-by-transfer [38]) for general coding parameters 𝑛
and 𝑘 , while Butterfly codes minimize both repair bandwidth and I/Os for the 𝑘 uncoded blocks
in a systematic stripe and support 𝑛 − 𝑘 = 2 only. Thus, we use Clay codes as our major baseline
throughout the paper.

We first provide an overview of Clay codes. At a high level, Clay codes repair a lost block in three
steps: (i) pairwise reverse transformation (PRT), which couples sub-blocks in pairs and generates
intermediate sub-blocks; (ii) MDS decoding, which performs linear combinations on 𝑘 sub-blocks
to decode intermediate sub-blocks and a subset of repaired sub-blocks; and (iii) pairwise forward
transformation (PFT), which again couples sub-blocks in pairs to generate the remaining repaired
sub-blocks, such that the lost block is completely repaired. In Clay codes, the number of sub-blocks
𝑤 is given by𝑤 = (𝑛 − 𝑘) ⌈𝑛/(𝑛−𝑘) ⌉ .

Let us take the (4, 2) Clay code (where𝑤 = 4) as an example, as shown in Figure 1(b). Let 𝑐𝑖 be the
𝑖𝑡ℎ intermediate sub-block generated in the repair. Also, let ⟨...⟩𝑖 denote some linear combination
of sub-blocks within the brackets, where the subscript 𝑖 differentiates the linear combinations
with different coding coefficients. To repair a lost block, say 𝐵0, the new node 𝑁0 downloads two
sub-blocks 𝑏𝑖,0 and 𝑏𝑖,1 from each 𝑁𝑖 , where 1 ≤ 𝑖 ≤ 3. 𝑁0 repairs the four sub-blocks of 𝐵0 as
follows. First, in the PRT step, 𝑁0 generates two intermediate sub-blocks 𝑐0 and 𝑐1 by coupling 𝑏2,1
and 𝑏3,0:

𝑐0 = ⟨𝑏2,1, 𝑏3,0⟩0, 𝑐1 = ⟨𝑏2,1, 𝑏3,0⟩1. (1)

ACM Trans. Storage, Vol. 1, No. 1, Article 1. Publication date: January 2024.

1:6 Li et al.

Second, in the MDS decoding step, 𝑁0 performs linear combinations on 𝑏2,0 and 𝑐0, and on 𝑏3,1 and
𝑐1. It repairs 𝑏0,0 and 𝑏0,1, and generates two intermediate sub-blocks 𝑐2 and 𝑐3:

𝑏0,0 = ⟨𝑏2,0, 𝑐0⟩2, 𝑐2 = ⟨𝑏2,0, 𝑐0⟩3,

𝑏0,1 = ⟨𝑏3,1, 𝑐1⟩4, 𝑐3 = ⟨𝑏3,1, 𝑐1⟩5.
(2)

Finally, in the PFT step, 𝑁0 repairs 𝑏0,2 by coupling 𝑏1,0 and 𝑐2, and repairs 𝑏0,3 by coupling 𝑏1,1 and
𝑐3:

𝑏0,2 = ⟨𝑏1,0, 𝑐2⟩6, 𝑏0,3 = ⟨𝑏1,1, 𝑐3⟩7. (3)

The (4, 2) Clay code minimizes the repair bandwidth to 1.5 blocks (it downloads six sub-blocks).
Compared with the (4, 2) RS code, the (4, 2) Clay code reduces the repair bandwidth by 25%. Note
that the maximum repair load of the Clay code is also 1.5 blocks (same as the repair bandwidth),
which is the amount of traffic downloaded in the new node.

We also consider Butterfly codes [28] in this paper. For an (𝑛, 𝑘) Butterfly code (𝑛 − 𝑘 = 2),
we focus on the repair of the first 𝑘 original uncoded blocks in a systematic stripe (whose repair
bandwidth and I/Os are both minimized). An (𝑛, 𝑘) Butterfly code divides each block into𝑤 = 2𝑘−1

sub-blocks. When repairing a lost block, a new node first downloads half of the sub-blocks from
each available node. It then selects different subsets of sub-blocks among all the received sub-blocks
and performs XOR operations to repair the𝑤 sub-blocks of the lost block. For example, to repair a
lost block for the (4, 2) Butterfly code, the new node downloads half of the sub-blocks from each of
the three available nodes, such that both repair bandwidth and maximum repair load are 1.5 blocks.

2.3 Reducing Maximum Repair Load
Some studies reduce the maximum repair load by decomposing and parallelizing a repair operation
across the available nodes [24, 26]. In this work, we focus on repair pipelining [24], which reduces
the time of repairing a lost block to almost the same as the time of directly reading a block.

Repair pipelining is mainly designed for RS codes [36]. It divides a single-block repair operation
into multiple sub-block repair operations and evenly distributes sub-block repair operations across
all nodes. For example, suppose that we use repair pipelining to repair a lost block 𝐵0 for an (𝑛, 𝑘) RS
code. It first divides each block 𝐵𝑖 (0 ≤ 𝑖 ≤ 𝑛 − 1) into multiple sub-blocks, denoted by 𝑏𝑖,0, 𝑏𝑖,1, · · · .
Recall that each block can be expressed as a linear combination of 𝑘 blocks (§2.1), say 𝐵0 =

∑𝑘
𝑖=1 𝑎𝑖𝐵𝑖

for some coding coefficients 𝑎𝑖 ’s. Repair pipelining makes two observations. First, each sub-block
in 𝐵0 is also a linear combination of the 𝑘 sub-blocks at the same block offset with the same coding
coefficients, i.e., 𝑏0, 𝑗 =

∑𝑘
𝑖=1 𝑎𝑖𝑏𝑖, 𝑗 , for the 𝑗-th sub-block. Second, the linear combination is addition

associative, meaning that 𝑏0, 𝑗 can be computed from the linear combinations of partial terms.
To repair 𝐵0, repair pipelining works as follows. First, 𝑁1 starts the repair of 𝑏0,0 by sending

𝑎1𝑏1,0 from its local storage to 𝑁2. Second, 𝑁2 combines the received 𝑎1𝑏1,0 with 𝑎2𝑏2,0 from its local
storage to form 𝑎1𝑏1,0+𝑎2𝑏2,0. Third,𝑁2 sends 𝑎1𝑏1,0+𝑎2𝑏2,0 to𝑁3; meanwhile,𝑁1 can start the repair
of 𝑏0,1 by sending 𝑎1𝑏1,1 from its local storage to 𝑁2 without interfering with 𝑁2’s transmission.
Finally, the last available node 𝑁𝑘 reconstructs 𝑏0, 𝑗 for each 𝑗-th sub-block and sends 𝑏0, 𝑗 to 𝑁0.
Repair pipelining reduces the maximum repair load to the same as the block size. For example,

Figure 1(c) shows an example of repair pipelining for the (4, 2) RS code. The maximum repair load
is only 1 block since each of the 𝑘 available nodes sends or receives one block of data; it is even less
than that in Clay codes (Figure 1(b)). Note that the repair bandwidth remains 2 blocks, the same as
in the conventional repair for RS codes (Figure 1(a)), since 𝑘 available nodes transfer 𝑘 blocks of
data in total.

ACM Trans. Storage, Vol. 1, No. 1, Article 1. Publication date: January 2024.

Harnessing Parallelism for Fast Data Repair in MSR-Coded Storage 1:7

B0N0

B1N1

B2N2

B3N3

N2

b3,0

N1

b3,1

N0b1,1

c0 = < b2,1, b3,0 >0

c1 = < b2,1, b3,0 >1

b0,0 = < b2,0, c0 >2

c2 = < b2,0, c0 >3 b0,2 = < b1,0, c2 >6

b0,1 = < b3,1, c1 >4

c3 = < b3,1, c1 >5

b0,3 = < b1,1, c3 >7

(a) Repair bandwidth = 1.75 blocks; Max. repair load = 1.25 blocks

B0N0

B1N1

B2N2

B3N3

c0 = < b2,1, b3,0 >0

c2 = < b2,0, c0 >3

c1 = < b2,1, b3,0 >1

c3 = < b3,1, c1 >5

b0,0 = < b2,0, c0 >2

b0,1 = < b3,1, c1 >4

b0,2 = < b1,0, c2 >6

b0,3 = < b1,1, c3 >7b2,0

b3,0
b2,1

b3,0

b2,1

b3,1

b2,0

N1

N2

N3

c0 c2

c1
c3

b3,1

b1,0 b1,1

(b) Repair bandwidth = 3.25 blocks; Max. repair load = 2 blocks

Fig. 2. Examples of the parallel repair for the (4, 2) Clay code. The example in figure (a), with more careful
repair scheduling, has both less repair bandwidth and less maximum repair load than the example in figure (b).

2.4 Motivation and Challenges
From §2.3, a natural question to ask is whether we can apply repair pipelining to MSR codes (§2.2)
to reduce the maximum repair load. Unfortunately, the answer is negative, mainly because the
repair of sub-blocks is not based on the addition associativity as in RS codes; instead, it is done by
solving a system of linear combinations (e.g., see Equations (1)-(3) in §2.2 for Clay codes). Thus, we
cannot pipeline the repair of individual sub-blocks of MSR codes as in RS codes.

Nevertheless, the sub-packetization nature of MSR codes offers an opportunity for parallelizing
a repair operation to reduce the maximum repair load. First, the repair of a sub-block in MSR codes
only requires a subset of available sub-blocks; for example, in the (4, 2) Clay code, each sub-block
is a linear combination of two currently stored or intermediate sub-blocks. Thus, we can distribute
the repair operations of sub-blocks across different nodes for load balancing. Second, in erasure
coding implementation, each block is further divided into smaller-sized units (called packets), so
that the repair of a block can be parallelized at the packet level (see §6 for implementation details).
Figure 2(a) shows a parallel repair example for the (4, 2) Clay code. First, in the PRT step, 𝑁2

generates 𝑐0 and 𝑐1 from 𝑏3,0 (retrieved from 𝑁3) and 𝑏2,1 (locally stored in 𝑁2). Second, in the
MDS decoding step, 𝑁2 decodes 𝑐2 and 𝑏0,0 from 𝑏2,0 (locally stored in 𝑁2) and 𝑐0 (generated in the
PRT step), while 𝑁0 generates 𝑐3 and 𝑏0,1 from 𝑐1 (retrieved from 𝑁2) and 𝑏3,1 (retrieved from 𝑁3).
Finally, in the PFT step, 𝑁1 repairs 𝑏0,2 from 𝑏1,0 (locally stored in 𝑁1) and 𝑐2 (retrieved from 𝑁2),
while 𝑁0 repairs 𝑏0,3 from 𝑏1,1 (retrieved from 𝑁1) and 𝑐3 (generated in the MDS decoding step).

ACM Trans. Storage, Vol. 1, No. 1, Article 1. Publication date: January 2024.

1:8 Li et al.

Repair bandwidth Maximum repair load
RS; centralized 2 blocks (highest) 2 blocks (highest)
Clay; centralized 1.5 blocks (lowest) 1.5 blocks (high)
RS; parallel 2 blocks (highest) 1 block (lowest)
Clay; parallel 1.75 blocks (medium) 1.25 blocks (medium)

Table 1. Summary of the four repair methods for (𝑛, 𝑘) = (4, 2).

Also, 𝑁0 retrieves the repaired 𝑏0,0 and 𝑏0,2 from 𝑁2 and 𝑁1, respectively. In this example, the repair
operation can be parallelized in two aspects: (i) the repair of 𝑏0,1 and 𝑏0,3 in 𝑁0, as well as the repair
of 𝑏0,2 in 𝑁1, can be performed in parallel; and (ii) the sub-block repair operations in 𝑁0, 𝑁1, and
𝑁2 can be parallelized at the packet level. Thus, the maximum repair load is 1.25 blocks (i.e., the
five sub-blocks 𝑏0,0, 𝑏0,2, 𝑏1,1, 𝑏3,1, and 𝑐1 retrieved by 𝑁0).

Such a parallel repair approach may amplify the repair bandwidth, as some sub-blocks are reused
more than once by different nodes. For example, the sub-blocks 𝑏2,1 and 𝑏3,0 are used to compute
𝑐1, 𝑐2, and 𝑏0,0. Each of the three sub-blocks will be transmitted over the network. Thus, instead of
transmitting each of the sub-blocks 𝑏2,1 and 𝑏3,0 only once as in the centralized repair (Figure 1(b)),
the parallel repair now includes the sub-blocks 𝑏2,1 and 𝑏3,0 in three transmissions. The repair
bandwidth increases from the minimum point of 1.5 blocks to 1.75 blocks.

How to carefully schedule the parallel repair of different sub-blocks is a critical issue. Figure 2(b)
shows another example of the parallel repair of the (4, 2) Clay code, where the repair is less
efficiently scheduled. In this example, the sub-blocks 𝑏2,0, 𝑏2,1, and 𝑏3,0 are all transmitted twice.
Thus, the repair bandwidth is 3.25 blocks, while the maximum repair load is 2 blocks.

In summary, the parallel repair of MSR codes can be scheduled to balance the trade-off between
repair bandwidth and maximum repair load, as shown in Table 1 for the (4, 2) Clay code. Our goal
in this paper is to design a parallel repair framework that can effectively balance the trade-off for
general coding parameters of MSR codes.

3 MODEL AND ANALYSIS
Before we design the parallel repair framework for MSR codes, we first formulate a generic repair
model that characterizes the trade-offs between repair bandwidth and maximum repair load for
different repair solutions, either centralized (e.g., Figures 1(a) and 1(b)) or parallel (e.g., Figures 1(c)
and 2). In this section, we design our repair model (§3.1) and evaluate both repair bandwidth and
maximum repair load for a repair solution (§3.2). Finally, we analyze the trade-offs between repair
bandwidth and maximum repair load for different repair solutions on RS and MSR codes (§3.3).

3.1 Characterizing Repair Solutions
Design requirements. We first identify three design requirements for our repair model to char-
acterize repair solutions based on our example in Figure 2:

• R1: It can describe the linear combination relationships of sub-blocks (e.g., 𝑏0,0 is the linear
combination of 𝑏2,0, 𝑏2,1, and 𝑏3,0).

• R2: It can describe which node is scheduled to execute a repair operation for each sub-block and
how the repair operation is executed (e.g., 𝑁2 downloads 𝑏3,0 from 𝑁3 and generates 𝑏0,0 with its
locally stored 𝑏2,0 and 𝑏2,1).

• R3: It can describe how the repaired sub-blocks are collected (e.g., 𝑏0,0, 𝑏0,1, 𝑏0,2, and 𝑏0,3 can be
repaired in different nodes, but are finally collected by 𝑁0 for reconstructing block 𝐵0).

ACM Trans. Storage, Vol. 1, No. 1, Article 1. Publication date: January 2024.

Harnessing Parallelism for Fast Data Repair in MSR-Coded Storage 1:9

1294 58

16 17

13

18

0 1

19

2 3

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

B0 B1 B2 B3

20:T_1
25:T_0

1294 58

16 17

13

18

0 1

19

2 3

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

B0 B1 B2 B3

20:T_1
25:T_0

(a) Layout (b) ECDAG

Fig. 3. An ECDAG example of repairing 𝐵0 using the (4, 2) Clay code (𝑤 = 4).

Our repair model builds on the ECDAG abstraction [23], which characterizes and schedules
erasure coding operations in distributed storage systems. Note that an ECDAG can model the
linear combination relationships of sub-blocks (i.e., R1 addressed), but cannot directly schedule the
repair operations for different sub-blocks in different nodes (i.e., R2 and R3 not addressed). In the
following, we first introduce the ECDAG abstraction, and then explain how it can be extended to
address all our requirements.
Basics of an ECDAG.We provide an overview of an ECDAG. An ECDAG𝐺 = (𝑉 , 𝐸) is a directed
acyclic graph (DAG) that describes an erasure coding operation (including the repair of a block),
where 𝑉 is the set of vertices and 𝐸 is the set of edges. A vertex 𝑣ℓ ∈ 𝑉 (where ℓ ≥ 0) refers
to either a sub-block that is stored in a node (i.e., ℓ = 𝑖 × 𝑤 + 𝑗 for 𝑏𝑖, 𝑗 , where 𝑖, 𝑗 ≥ 0) or an
intermediate sub-block that is generated on-the-fly but will not be finally stored (i.e., ℓ ≥ 𝑛 ×𝑤).
With a slight abuse of notation, we refer to a sub-block with its vertex 𝑣ℓ , where ℓ is the index. An
edge 𝑒 (ℓ1, ℓ2) ∈ 𝐸 means that the sub-block 𝑣ℓ1 is an input to the linear combination for computing
the sub-block 𝑣ℓ2 . We refer to 𝑣ℓ1 as an input vertex of 𝑣ℓ2 , and 𝑣ℓ2 as an output vertex of 𝑣ℓ1 . Note
that the repair workflows vary across blocks, so the repair of each block will lead to a different
ECDAG instance.
We use Clay codes [43] as an example to show how an ECDAG describes its repair workflow.

Figure 3(a) shows the block layout of the (4, 2) Clay code (where 𝑤 = 4) in an ECDAG, and
Figure 3(b) shows the repair flow for block 𝐵0, which we introduce in §2.2. First, in the PRT step,
we couple sub-blocks 𝑣9 (𝑏2,1) and 𝑣12 (𝑏3,0) as a pair and perform linear combinations to generate
two intermediate sub-blocks 𝑣16 (𝑐0) and 𝑣17 (𝑐1). Second, in the MDS decoding step, we decode
sub-blocks 𝑣0 (𝑏0,0) and 𝑣18 (𝑐2) from sub-blocks 𝑣8 (𝑏2,0) and 𝑣16 (𝑐0), and we decode sub-blocks 𝑣1
(𝑏0,1) and 𝑣19 (𝑐3) from sub-blocks 𝑣13 (𝑏3,1) and 𝑣17 (𝑐1). Note that the sub-blocks 𝑣0 (𝑏0,0) and 𝑣1
(𝑏0,1) of 𝐵0 are repaired. Finally, in the PFT step, we couple sub-blocks 𝑣4 (𝑏1,0) and 𝑣18 (𝑐2) to repair
sub-block 𝑣2 (𝑏0,2), and also couple sub-blocks 𝑣5 (𝑏1,1) and 𝑣19 (𝑐3) to repair sub-block 𝑣3 (𝑏0,3). 𝐵0 is
now fully repaired.
pECDAG. We extend the ECDAG abstraction into the pECDAG abstraction to support the sched-
uling of parallel sub-block repair operations, so that we can model the trade-off between repair
bandwidth and maximum repair load. Specifically, a pECDAG makes two extensions over an
ECDAG. First, it associates each vertex with a color that corresponds to a node, such that the node
is responsible for generating or storing all sub-blocks associated with the same-colored vertices
(i.e., R2 addressed). Second, it connects all repaired sub-blocks, which may reside in different nodes,
to a vertex 𝑅, which represents a data collector (i.e., R3 addressed). Figure 4(a) shows the pECDAG
for the parallel repair in Figure 2.

For example, from Figure 4(a), 𝑁2 (i.e., yellow-colored) computes the sub-block 𝑣17 (𝑐1) in Figure 2
and sends it to 𝑁0 (i.e., red-colored), which repairs the sub-blocks 𝑣1 (𝑏0,1) and 𝑣3 (i.e., 𝑏0,3). Also, 𝑁2

ACM Trans. Storage, Vol. 1, No. 1, Article 1. Publication date: January 2024.

1:10 Li et al.

1294 58

16 17

13

18

0 1

19

2 3

R

N1

N3

N2

N0

Node
In Out

N0 5 0

N1 1 2

N2 1 3

N3 0 2

1294 58

16 17

13

18

0 1

19

2 3

R

N1

N3

N2

N0

Node
In Out

N0 5 0

N1 1 2

N2 1 3

N3 0 2

(a) pECDAG (b) Traffic table

Fig. 4. A pECDAG example of (4, 2) Clay code with𝑤 = 4 to repair 𝐵0.

computes the sub-blocks 𝑣0 (𝑏0,0) and 𝑣18 (𝑐2). It sends 𝑣18 to 𝑁1 (i.e., green-colored), which repairs
the sub-block 𝑣2 (𝑏0,2). Finally, 𝑁0 collects all the repaired sub-blocks for the reconstruction of 𝐵0.

To help our discussion, we refer to the topmost vertices (i.e., 𝑣4, 𝑣5, 𝑣8, 𝑣9, 𝑣12, and 𝑣13 in Figure 4(a))
as the leaf vertices, which correspond to sub-blocks in available nodes. We refer to the vertex 𝑅 as
the root vertex. We refer to the remaining vertices (i.e., 𝑣0, 𝑣1, 𝑣2, 𝑣3, 𝑣16, 𝑣17, 𝑣18, 𝑣19 in Figure 4(a)) as
intermediate vertices, which represent intermediate sub-blocks generated in a repair operation. Note
that the colors of leaf vertices are determined by the nodes that store available blocks, while the
color of the root vertex is determined by the node selected to persist the repaired block. Different
color combinations of the intermediate vertices can lead to different repair solutions for repairing
a lost block.

3.2 Evaluating Repair Solutions
Given (𝑛, 𝑘,𝑤) and the block to repair, there are different ways to color the vertices of a pECDAG,
so there are multiple possible pECDAG instances that correspond to different repair solutions for
repairing a single lost block. We associate each pECDAG instance with a traffic table, so as to
efficiently quantify the repair bandwidth and maximum repair load of the corresponding repair
solution.

Definition of a traffic table. A traffic table maintains the amount of data that each node sends or
receives when repairing a block. For each node in the system, the traffic table records the number
of incoming sub-blocks received by the node and the number of outgoing sub-blocks sent by the
node. The repair bandwidth is the total number of incoming sub-blocks (or equivalently, the total
number of outgoing sub-blocks) of all nodes, while the maximum repair load is the largest number
of incoming or outgoing sub-blocks of a node across all nodes. For example, Figure 4(b) shows the
traffic table for the parallel repair solution shown in Figure 2, in which the repair bandwidth is
7 sub-blocks and the maximum repair load is 5 sub-blocks.

Construction of a traffic table.We show how we generate the traffic table for a given pECDAG
instance. We initialize a traffic table 𝑇 with two arrays 𝑇 .𝐼𝑛 and 𝑇 .𝑂𝑢𝑡 , which record the numbers
of incoming and outgoing sub-blocks for each node, respectively. For each vertex 𝑣𝑖 , we traverse
each edge 𝑒 (𝑣𝑖 , 𝑣 𝑗). Let 𝑁 ′ and 𝑁 ′′ be two nodes with respect to the colors of 𝑣𝑖 and 𝑣 𝑗 , respectively.
If 𝑣𝑖 and 𝑣 𝑗 have different colors, we increment 𝑇 .𝑂𝑢𝑡 [𝑁 ′] and 𝑇 .𝐼𝑛[𝑁 ′′] by one; however, if there
exist two edges, say 𝑒 (𝑣𝑖 , 𝑣 𝑗) and 𝑒 (𝑣𝑖 , 𝑣ℎ), such that 𝑣 𝑗 and 𝑣ℎ have the same color that is different
from 𝑣𝑖 ’s color, we only increment 𝑇 once for the corresponding pairs of nodes. The rationale is
that the sub-block 𝑣𝑖 only needs to be transmitted once to calculate the sub-blocks 𝑣 𝑗 and 𝑣ℎ .

For example, in Figure 4(a), both 𝑣18 and 𝑣0 have the same color as 𝑣8, we do not need to update the
traffic table. For 𝑣17, as 𝑣1 has a different color, we count 𝑒 (𝑣17, 𝑣1) as a transmission and increment

ACM Trans. Storage, Vol. 1, No. 1, Article 1. Publication date: January 2024.

Harnessing Parallelism for Fast Data Repair in MSR-Coded Storage 1:11

0

1

2

3

4

5

6

0 1 2 3
Maximum repair load (blocks)

R
ep

ai
r b

an
dw

id
th

 (b
lo

ck
s)

RS
RP
Clay

Parallel repair solutions
Pareto curve

MLP
0

1

2

3

4

5

6

0 1 2 3 4
Maximum repair load (blocks)

R
ep

ai
r b

an
dw

id
th

 (b
lo

ck
s)

RS
RP
Butterfly

Parallel repair solutions
Pareto curve

MLP

(a) (4, 2) Clay code (𝑤 = 4) (b) (6, 4) Butterfly code (𝑤 = 8)

Fig. 5. Trade-off analysis between repair bandwidth and maximum repair load.

the traffic table. As 𝑣19 and 𝑣1 have the same color, we do not need to increment the traffic table for
𝑒 (𝑣17, 𝑣19).

3.3 Trade-off Analysis
Based on a pECDAG and its traffic table, we study the trade-off between repair bandwidth and
maximum repair load for repair solutions. Our idea is to enumerate all possible color combinations
of a pECDAG (i.e., all possible repair solutions for repairing a single lost block) and find the
corresponding traffic table for each color combination. Note that the colors of the leaf vertices
and the root vertex are fixed (§3.1). Thus, for a pECDAG, we only need to enumerate the color
combinations for the intermediate sub-blocks and repaired sub-blocks. Currently, we assume that
the repair operation of a stripe is scheduled among the nodes (i.e., 𝑛 nodes for an (𝑛, 𝑘) code) that
store the blocks of the stripe, so as to limit the interference across different stripes.

We consider the repair scenarios of two MSR codes: the (4, 2) Clay code and the (6, 4) Butterfly
code. We consider the repair of block 𝐵0 (i.e., the first block of a stripe) and construct a pECDAG
for each of them. We apply a brute-force search to enumerate all color combinations; for each
color combination, we generate the traffic table and obtain the corresponding repair bandwidth
and maximum repair load. We show the spectrum of repair bandwidth and maximum repair load
for different color combinations under the (4, 2) Clay code (Figure 5(a)) and the (6, 4) Clay code
(Figure 5(b)). In the figures, we highlight the points corresponding to the centralized repair for RS
codes (RS), repair pipelining for RS codes (RP), and the centralized repair for Clay codes (Clay) or
Butterfly codes (Butterfly) for comparisons.

We find that different color combinations for an MSR code present different trade-offs between
repair bandwidth and maximum repair load. Among all the color combinations, we focus on the
Pareto-optimal points (i.e., the red points in Figure 5), which represent the cases that cannot further
reduce the repair bandwidth (resp. maximum repair load) without increasing the maximum repair
load (resp. repair bandwidth). Among the Pareto-optimal points, we define the min-max repair load
point (MLP), which minimizes the maximum repair load, and whose repair bandwidth is minimized
given this optimal maximum repair load. Note that the MLP does not guarantee the absolute
minimum repair bandwidth. For example, for the (4, 2) Clay code, the MLP coincides with the point

ACM Trans. Storage, Vol. 1, No. 1, Article 1. Publication date: January 2024.

1:12 Li et al.

of RP; for the (6, 4) Butterfly code, the MLP reduces the repair bandwidth by 15.6% compared with
RP, while achieving the same maximum repair load as RP.

This observation indicates that the parallel repair of an MSR code may further improve the repair
performance of a distributed storage system if we can find the MLP. However, it is non-trivial to
find the MLP in general. While the brute-force approach can always find the MLP, it also has high
complexity. For a pECDAG of an (𝑛, 𝑘) MSR code with𝑤 sub-blocks in a block, the lower bound of
the number of vertices being colored is𝑤 (i.e., when there is no intermediate sub-block, we only
need to color the𝑤 repaired sub-blocks). In this case, the lower bound of the total number of color
combinations is 𝑛𝑤 . For Clay codes, the lower bound is 𝑛 (𝑛−𝑘) ⌈𝑛/(𝑛−𝑘)⌉ , while for Butterfly codes, the
lower bound is 𝑛2𝑘−1 . For example, for the (14, 10) Clay code, the number of color combinations is
no less than 14256, while for the (12, 10) Butterfly code, the number of combinations is no less than
12512, which are not solvable in polynomial time. Thus, for reasonably large (𝑛, 𝑘), it is important
to reduce the running time of finding the MLP.

4 HEURISTIC DESIGN
As the brute-force approach is generally time-consuming for finding the MLP, especially for large
coding parameters, we propose to design a heuristic to find an approximate MLP that is close to
the MLP. Our goal is to find an efficient parallel repair solution represented in a pECDAG that
keeps both repair bandwidth and maximum repair load as low as possible.
In our conference version [22], we design a pruning-based heuristic (§4.1) that significantly

reduces the search space compared with the brute-force approach, yet it still incurs substantial
running time. In this section, we analyze the trade-off points from §3.3 and identify a property, called
affinity, which is correlated with repair bandwidth and maximum repair load (§4.2). Finally, we
propose an affinity-based heuristic that can quickly find an approximate MLP and its corresponding
repair solution (§4.3). While our discussion in §4.1-§4.3 focuses on Clay codes [43], we also show
how the heuristics are applied to Butterfly codes [28] (§4.4). Finally, we summarize our main
insights from the heuristics (§4.5).

4.1 Pruning-based Heuristic
We first provide an overview of the pruning-based heuristic [22]; note that the pECDAG shown
in Figure 4(a) (§3.1) is generated by the pruning-based heuristic to repair the block 𝐵0 for (4, 2)
Clay code. Its high-level idea is to search all the color combinations for a pECDAG, while pruning
some branches to reduce the search space. Intuitively, the pruning-based heuristic can be viewed
as searching for the solution based on Pareto optimality, such that it searches for the MLP on the
Pareto curve and prunes the dominated solutions that have both larger repair bandwidth and larger
maximum repair load than a solution in the Pareto curve.

We define an un-searched pool, which keeps the pECDAGs that will be searched, and a candidate
pool, which records the candidate pECDAG solutions that may be returned. At the beginning, we
generate a random pECDAG, in which the color of each intermediate vertex is randomly selected
from a set of candidate colors that represent the nodes storing the available blocks and the node
selected for storing the repaired block. We add the random pECDAG to the un-searched pool and
the candidate pool for initialization.

We iteratively retrieve a pECDAG from the un-searched pool. Each time we retrieve a pECDAG,
we enumerate all the neighbors of this pECDAG, where each neighbor is generated by changing the
color of only one intermediate vertex of the pECDAG that we retrieved. We compare each neighbor
with the pECDAGs in the candidate pool, and add it into the candidate pool if it has lower repair
bandwidth or lower maximum repair load than the existing pECDAGs in the candidate pool. Also,

ACM Trans. Storage, Vol. 1, No. 1, Article 1. Publication date: January 2024.

Harnessing Parallelism for Fast Data Repair in MSR-Coded Storage 1:13

we remove an existing pECDAG from the candidate pool if it has both higher repair bandwidth
and higher maximum repair load than a newly added pECDAG. For the pECDAGs that have been
added to the candidate pool, we also add them to the un-searched pool for our future search.

The heuristic stops when the un-searched pool is empty. Then, we select the pECDAG with the
minimum maximum repair load in the candidate pool as an approximate MLP.
While the pruning-based heuristic significantly reduces the search space compared with the

brute-force approach, it does not provide any guarantee of how much running time can be reduced.
It still incurs substantial running time for large coding parameters; for example, it takes 57.2 hours
(over two days) for the (14, 10) Clay code (§7). Also, the repair solution returned by the pruning-
based heuristic applies only to the single-block repair of a single stripe. For full-node recovery
involving multiple lost blocks of a failed node, we need to find a separate repair solution for each
lost block, which corresponds to different stripes, and the search time can further increase.

4.2 Analysis for pECDAGs
We explore a new heuristic that identifies an approximate MLP with an algorithmic running time
guarantee. Before designing the new heuristic, we first analyze the pECDAGs with different color
combinations to understand the properties that enable pECDAGs to achieve both lower repair
bandwidth and lower maximum repair load.

Consider two vertices 𝑣𝑖 and 𝑣 𝑗 of a pECDAG, where 𝑣𝑖 is an input vertex of 𝑣 𝑗 . If both vertices
have the same color, then the generation of the sub-block 𝑣 𝑗 does not incur the transfer of the
input sub-block 𝑣𝑖 ; otherwise, the input sub-block 𝑣𝑖 must be transferred from one node to another,
increasing both repair bandwidth and maximum repair load. Our intuition is that having the
same color for both 𝑣𝑖 and 𝑣 𝑗 is important to reduce repair bandwidth and maximum repair load.
We validate our intuition and examine more color combinations by considering the colors of the
intermediate vertices and the root vertex of a pECDAG. Note that we do not consider leaf vertices,
which do not have any input vertex.

Affinity.We define a property, called affinity, to describe if a vertex shares the color with some of
its input vertices. Specifically, for a vertex 𝑣 , if its color is the same with at least one of its input
vertices, we say that 𝑣 has affinity. For example, in Figure 4(a), 𝑣16 has affinity as it shares the same
color with 𝑣9. The root vertex 𝑅 also has affinity. On the other hand, 𝑣19 does not have affinity, as
its color differs from both of its input vertices 𝑣13 and 𝑣17.
We now define the affinity ratio (AR) of a pECDAG to describe the fraction of vertices that

have affinity over all intermediate vertices and the root vertex. For example, in Figure 4(a), there
are seven vertices with affinity, including 𝑣16, 𝑣17, 𝑣18, 𝑣2, 𝑣0, 𝑣3, and 𝑅, over all eight intermediate
vertices and the root vertex. Thus, the AR of the pECDAG in Figure 4(a) is 7

9 = 0.78.

AR analysis.We analyze the ARs of different pECDAGs for the (14, 10) Clay code and the (12, 10)
Butterfly code. For each code, we collect the pECDAGs retrieved from the un-searched pool during
the execution of our pruning-based heuristic (§4.1) in the search for an approximate MLP. In total,
we have collected 9,108 and 5,900 pECDAGs for the (14, 10) Clay code and the (12, 10) Butterfly
code, respectively. For each pECDAG, we calculate the repair bandwidth, the maximum repair load,
and the corresponding AR.
Figure 6 shows how the AR changes with respect to repair bandwidth and maximum repair

load; for clarity, we only sample 10% of the collected pECDAGs to show their results instead of
plotting all data points in the figures. From both Figures 6(a) and 6(b), we observe that there is a
clear decreasing trend of the AR as both repair bandwidth and maximum repair load increase.

We also measure the Pearson correlation coefficients [29] between the AR and the repair band-
width and between the AR and the maximum repair load over all collected pECDAGs, based on the

ACM Trans. Storage, Vol. 1, No. 1, Article 1. Publication date: January 2024.

1:14 Li et al.

0.00

0.25

0.50

0.75

1.00

0 5 10 15 20
Repair bandwidth (blocks)

A
R

(14,10) Clay (12,10) Butterfly

0.00

0.25

0.50

0.75

1.00

0 5 10 15 20
Maximum repair load (blocks)

A
R

(14,10) Clay (12,10) Butterfly

(a) AR vs. repair bandwidth (b) AR vs. maximum repair load

Fig. 6. AR analysis for the (14,10) Clay code and the (12,10) Butterfly code.

(14, 10) Clay (12, 10) Butterfly
cor(repair bandwidth, AR) -0.96 -0.90

cor(maximum repair load, AR) -0.61 -0.98

Table 2. Pearson correlation coefficient analysis for the (14, 10) Clay code and the (12, 10) Butterfly code.

following equation:

𝑐𝑜𝑟 (𝑋,𝑌) =
∑𝑛

𝑖=1 (𝑋𝑖 − 𝑋) (𝑌𝑖 − 𝑌)√∑𝑛
𝑖=1 (𝑋𝑖 − 𝑋)2

√∑𝑛
𝑖=1 (𝑌𝑖 − 𝑌)2

, (4)

where𝑋 and𝑌 denote the expectations of𝑋 and𝑌 , respectively. Table 2 shows a negative correlation
of the AR with respect to both repair bandwidth and maximum repair load for both the (14, 10)
Clay code and the (12, 10) Butterfly code.

From the above analysis, a pECDAG with a high AR has a high likelihood of reducing both repair
bandwidth and maximum repair load. Our goal is to design a heuristic to find a pECDAG with a
high AR.

4.3 Affinity-based Heuristic
Based on our findings in §4.2, we propose an affinity-based heuristic to find an approximate MLP
in polynomial running time. Unlike the pruning-based heuristic (§4.1), whose goal is to search
for a suitable pECDAG within a pool of pECDAGs, the affinity-based heuristic aims to properly
generate colors for a suitable pECDAG. Its main idea is to always select one of the colors of the
input vertices for each intermediate vertex in a pECDAG, thereby increasing the AR. Specifically,
the affinity-based heuristic comprises three steps.
Step 1: Initialization. We first initialize a pECDAG 𝐺 , in which each leaf vertex is associated
with a color based on where its corresponding available sub-block is stored, and the root vertex
is also associated with a color based on where the repaired block is stored. All the intermediate
vertices have unassigned colors. We also initialize an empty traffic table 𝑇 with zero input and
output traffic.
Step 2: Topological sorting. We perform a topological sorting on the intermediate vertices in 𝐺 .
For example, for the pECDAG in Figure 4(a), the sorted sequence of intermediate vertices is: 𝑣16,
𝑣17, 𝑣18, 𝑣0, 𝑣1, 𝑣19, 𝑣2, and 𝑣3.
Step 3: Affinity-based coloring. We iteratively associate a color with each intermediate vertex
based on the topological ordering. Specifically, for each intermediate vertex 𝑣 , we examine the set

ACM Trans. Storage, Vol. 1, No. 1, Article 1. Publication date: January 2024.

Harnessing Parallelism for Fast Data Repair in MSR-Coded Storage 1:15

1294 58

16 17

13

18

0 1

19

2 3

R

N1

N3

N2

R

Node

set 17 with

N0 N1 N2 N3

In 0 0 1 0

Out 0 0 0 1

In Out

N0 0 0

N1 0 0

N2 1 0

N3 0 1

set 17 with

1294 58

16 17

13

18

0 1

19

2 3

R

1294 58

16 17

13

18

0 1

19

2 3

R

N0 N1 N2 N3

In 0 0 1 1

Out 0 0 1 1

Fig. 7. Example of associating colors with intermediate vertices in the affinity-based heuristic.

(denoted by C) of all current colors of its input vertices. For each color 𝑐 ∈ C, we compute the
corresponding repair bandwidth and maximum repair load if 𝑐 is associated with 𝑣 . Among all
colors in C, we select the color that minimizes the maximum repair load; if a tie occurs, we select
the color that also minimizes the repair bandwidth; if a tie occurs again, we randomly select a color
from the tie. Once we identify the color associated with 𝑣 , we also update the traffic table 𝑇 for the
computations of repair bandwidth and maximum repair load in the next iteration. We repeat the
process for each intermediate vertex in the topological ordering until all intermediate vertices are
processed.
Example. We first show how to assign a color to a vertex in the (4, 2) Clay code using the
affinity-based heuristic. Then, we show how the complete pECDAG is generated by this heuristic.
Figure 7 shows an example of how the affinity-based heuristic associates intermediate vertices

with colors. Suppose that we start right after 𝑣16 has been associated with a yellow color corre-
sponding to 𝑁2, meaning that 𝑁3 will send a sub-block to 𝑁2 (i.e., In[𝑁2] and Out[𝑁3] have a value
one, while other entries a value zero). Based on the topological ordering, we now associate 𝑣17 with
a color. Note that 𝑣17 has two input vertices, 𝑣9 and 𝑣12, in which 𝑣9 is associated with a yellow
color corresponding to 𝑁2, and 𝑣12 is associated with a blue color corresponding to 𝑁3. Thus, we
can associate 𝑣17 with either a yellow or blue color. If we associate 𝑣17 with a yellow color, both
repair bandwidth and maximum repair load remain unchanged. However, if we associate 𝑣17 with a
blue color, the maximum repair load remains one, but the repair bandwidth increases to two since
the sub-block for 𝑣9 will be transferred from 𝑁2 to 𝑁3. Thus, we associate 𝑣17 with a yellow color.

Figure 8(a) shows a complete example of the pECDAG generated by the affinity-based heuristic.
Compared to the pECDAG generated by the pruning-based heuristic shown in Figure 4(a) (§3.1),
the colors assigned to vertices 𝑣19, 𝑣1, and 𝑣3 are different. In Figure 4(a), the vertices are all red

ACM Trans. Storage, Vol. 1, No. 1, Article 1. Publication date: January 2024.

1:16 Li et al.

1294 58

16 17

13

18

0 1

19

2 3

R

N1

N3

N2

N0

Node
In Out

N0 4 0

N1 2 2

N2 2 4

N3 0 2

1294 58

16 17

13

18

0 1

19

2 3

R

N1

N3

N2

N0

Node
In Out

N0 4 0

N1 2 2

N2 2 4

N3 0 2

(a) pECDAG (b) Traffic table

Fig. 8. A pECDAG example of (4, 2) Clay code with𝑤 = 4 to repair 𝐵0 with affinity-based heuristic.

(i.e., 𝑅 computes sub-blocks 𝑣19, 𝑣1, and 𝑣3). In Figure 8(a), 𝑣19 and 𝑣1 are yellow (i.e., 𝑁2 computes
sub-blocks 𝑣19 and 𝑣1), while 𝑣3 is green (i.e., 𝑁1 computes the sub-block 𝑣3). Also, Figure 8(b) shows
that the affinity-based heuristic reduces the maximum repair load from 5 sub-blocks (Figure 4(b))
to 4 sub-blocks.
Complexity analysis.We now analyze the computational time complexity of the affinity-based
heuristic. We consider a pECDAG with 𝑉 vertices and 𝐸 edges. Let 𝛼 be the maximum number
of input vertices of any vertex in the pECDAG (i.e., 𝛼 is the maximum number of sub-blocks
needed to generate a sub-block during a repair operation); note that we have 𝛼 < 𝑉 in general. In
Step 1, we directly associate a color for each of the leaf vertices and the root vertex, resulting in a
complexity of 𝑂 (𝑉). In Step 2, we perform topological sorting, whose complexity is 𝑂 (𝑉 + 𝐸). In
Step 3, the number of colors that we examine for each intermediate vertex is at most 𝛼 , resulting in a
complexity of𝑂 (𝛼𝑉). Thus, the overall complexity of the affinity-based heuristic is𝑂 ((𝛼 +2)𝑉 +𝐸).

4.4 Application for Butterfly Codes
We now explain how the pECDAG can be applied to Butterfly codes [28] for parallel repair, using
the (6, 4) Butterfly code with 𝑤 = 8 as an example. Each block is divided into 𝑤 = 8 sub-blocks,
and four uncoded blocks are encoded into six coded blocks (i.e., 𝐵0, 𝐵1, 𝐵2, 𝐵3, 𝐵4, and 𝐵5) stored
across six independent nodes (i.e., 𝑁0, 𝑁1, 𝑁2, 𝑁3, 𝑁4, and 𝑁5). Suppose that we repair a lost block
(say 𝐵0) in a new node (say 𝑁0).

Figure 9(a) illustrates the pECDAG for the centralized repair of the (6, 4) Butterfly code. 𝑁0
downloads four sub-blocks (i.e., half of the block size) from other five nodes 𝑁1, 𝑁2, 𝑁3, 𝑁4, and 𝑁5,
resulting in 20 sub-blocks for both repair bandwidth and maximum repair load. Consequently, 𝑁0
becomes the bottleneck. The affinity ratio for the conventional repair is 1

9 , as only 𝑅 has affinity.
Figures 9(b) and 9(c) depict the parallel repair solutions generated by the pruning-based heuristic

(§4.1) and the affinity-based heuristic (§4.3), respectively. The pruning-based heuristic reduces
the maximum repair load to 8 sub-blocks, and increases the affinity ratio to 6

9 compared to the
centralized repair. The affinity-based heuristic reduces the maximum repair load to 9 sub-blocks,
while increasing the affinity ratio to 8

9 compared to the centralized repair.
We note that increasing the affinity ratio does not always result in a lower maximum repair load

for Butterfly codes (although it still reduces the maximum repair load compared to the centralized
repair). The main reason is attributed to the structure of Butterfly codes. In the pECDAG for the (6,4)
Butterfly code, each input vertex connects to multiple output vertices (i.e., 𝑣17 connects to 𝑣1, 𝑣5, and
𝑣7), but these output vertices do not share many input vertices (i.e., 𝑣1, 𝑣5, and 𝑣7 share 𝑣17, but their
other input vertices are distinct). Consequently, an input sub-block is often sent to multiple nodes
to compute different sub-blocks, even though the affinity ratio is high. For example, in Figure 9(c),
𝑣1, 𝑣5, and 𝑣7 all have affinity as each of them has the same color as one of its input vertices (e.g.,

ACM Trans. Storage, Vol. 1, No. 1, Article 1. Publication date: January 2024.

Harnessing Parallelism for Fast Data Repair in MSR-Coded Storage 1:17

8

0

16 24

32

9 17 25

33

1 2

10 18 26

34

3

11 19 27

35

4 5

43 42

6

41

7

40

R

centralize

In Out

N0 20 0
N1 0 4
N2 0 4
N3 0 4
N4 0 4
N5 0 4

N0 N1 N2

N3 N4 N5

Node

Traffic Table

(a) Centralized repair

8

0

16 24

32

9 17 25

33

1 2

10 18 26

34

3

11 19 27

35

4 5

43 42

6

41

7

40

R

pruning-based

In Out

N0 0 8
N1 4 0
N2 8 8
N3 7 5
N4 4 0
N5 5 7

N0 N1 N2

N3 N4 N5

Node

Traffic Table

(b) Pruning-based heuristic

8

0

16 24

32

9 17 25

33

1 2

10 18 26

34

3

11 19 27

35

4 5

43 42

6

41

7

40

R

affinity-based

In Out

N0 3 8
N1 4 9
N2 7 9
N3 9 4
N4 3 4
N5 8 0

N0 N1 N2

N3 N4 N5

Node

Traffic Table

(c) Affinity-based heuristic.

Fig. 9. Example of repairing 𝐵0 using the (6, 4) Butterfly code (𝑤 = 8) using the pECDAG.

𝑣33, 𝑣25, and 𝑣40, respectively). However, sub-block 𝑣17 needs to be sent to 𝑁4 (pink-colored), 𝑁3
(blue-colored), and 𝑁5 (brown-colored) to compute sub-blocks 𝑣1, 𝑣5, and 𝑣7, respectively, thereby
incurring a high maximum repair load (even though the pECDAG has a high affinity ratio). In
contrast, Clay codes typically have multiple output vertices sharing the same set of input vertices.
For example, in Figure 8(a) (§4.3), 𝑣16 and 𝑣17 share input vertices 𝑣9 and 𝑣12. By assigning 𝑣16 and
𝑣17 the same color, we avoid sending 𝑣9 and 𝑣12 to different nodes multiple times and keep a low
maximum repair load. Nevertheless, both pruning-based and affinity-based heuristics generate
parallel repair solutions with comparable repair bandwidth and maximum repair load, while the

ACM Trans. Storage, Vol. 1, No. 1, Article 1. Publication date: January 2024.

1:18 Li et al.

affinity-based heuristic offers guaranteed algorithmic runtime. We evaluate the performance on
Butterfly codes in §7.1.

4.5 Summary
We summarize the main insights of this section. The pruning-based heuristic (§4.1) aims to search
for an efficient parallel repair solution, represented by a pECDAG, starting from a random solution
to minimize repair bandwidth and maximum repair load. However, it neither explains why certain
solutions achieve lower repair bandwidth and maximum repair load, nor offers runtime guarantees.
Our affinity analysis (§4.2) reveals that parallel repair solutions with high affinity ratios generally
exhibit lower repair bandwidth and maximum repair load, thereby providing insights into their
performance. Building on the affinity analysis, the affinity-based heuristic (§4.3) generates repair
solutions by assigning vertex colors based on input vertices to reduce repair bandwidth and
maximum repair load. Although the affinity-based heuristic may slightly underperform the pruning-
based heuristic for Butterfly codes (§4.4), its resulting repair solutions still have comparable repair
bandwidth and maximum repair load to the pruning-based heuristic, while providing algorithmic
runtime guarantees.

5 FULL-NODE RECOVERY
In this section, we extend our single-block repair design to full-node recovery, which repairs all lost
blocks of a single failed node. Since the lost blocks span multiple stripes that are stored in different
sets of nodes across the storage system, it is critical to effectively exploit system-wide parallelism
for fast full-node recovery. We first demonstrate that our current single-block repair design, which
focuses on intra-stripe-only parallel repair scheduling, still suffers from load imbalance in full-
node recovery (§5.1). We then propose a co-design of intra-stripe and inter-stripe parallel repair
scheduling, which schedules not only the parallel repair operations for sub-blocks within each lost
block (i.e., intra-stripe parallel repair), but also the parallel repair operations across multiple lost
blocks (i.e., inter-stripe parallel repair) (§5.2).

5.1 Limitations of Intra-Stripe-Only Parallel Repair
We consider full-node recovery in a hot-standby scenario, in which the storage system reserves a
configurable number of hot-standby nodes that initially do not store any block. Full-node recovery
repairs the lost blocks of a failed node and stores them on hot-standby nodes, which incur the
highest repair load among all nodes. Thus, minimizing the maximum repair load across hot-standby
nodes is critical for improving repair performance. Compared to the centralized repair of MSR
codes, intra-stripe-only parallel repair only reduces the maximum repair load for repairing a single
block (of a single stripe). However, it still causes load imbalance when repairing multiple blocks
(across multiple stripes) in parallel. We depict via an example why intra-stripe-only parallel repair
scheduling leads to load imbalance in full-node recovery.
Figure 10 shows the example. We consider a system with five active storage nodes 𝑁0, 𝑁1, 𝑁2,

𝑁3, and 𝑁4, and two hot-standby nodes 𝐻0 and 𝐻1. We distribute three stripes 𝑠0 (with blocks 𝐵0,
𝐵1, 𝐵2, and 𝐵3), 𝑠1 (with blocks 𝐵4, 𝐵5, 𝐵6, and 𝐵7), and 𝑠2 (with blocks 𝐵8, 𝐵9, 𝐵10, and 𝐵11) encoded
under the (4, 2) Clay code across different nodes in the system, as shown in Figure 10. Suppose
that 𝑁0 fails. We perform full-node recovery and distribute the repaired blocks (i.e., 𝐵2, 𝐵4, and 𝐵10)
across 𝐻0 and 𝐻1.
Figure 10(a) shows an example of intra-stripe-only parallel repair. We store the three repaired

blocks in the hot-standby nodes in a round-robin manner, such that 𝐵2 and 𝐵10 are repaired and
stored in 𝐻0, while 𝐵4 is repaired and stored in 𝐻1. We apply the affinity-based heuristic (§4) to
schedule the repair for each block. We observe that in the repair of each lost block, the maximum

ACM Trans. Storage, Vol. 1, No. 1, Article 1. Publication date: January 2024.

Harnessing Parallelism for Fast Data Repair in MSR-Coded Storage 1:19

N0 N1 N2 N3 N4

B2

H0

B3 B0B1

B4 B6B5 B7

B2

2

2
S0

B4
2

S1

Intra only

2

H1

10

S2 B8 B11B10 B9 B10

N0 N1 N2 N3 N4 H0 H1
In 0 4 0 4 4 8 4
Out 0 6 4 4 10 0 0

B1 B0

2

22

2

22

20241208 _ offline_init (Afffinity)

2

2

N0 N1 N2 N3 N4

B2

H0

B3 B0B1

B4 B6B5 B7

B2

2

2 2
S0

B4
1

S1

Intra & inter

1-3 2
3-5 2
1-5 2
4-1 2

2

H1

8

S2 B8 B11B10 B9 B10

N0 N1 N2 N3 N4 H0 H1
In 0 4 3 4 2 8 4
Out 0 6 7 4 8 0 0

2

1 2

20241208 _ offline_init(Affintiy) + tuning

1

2

22

22

(a) Intra-stripe-only parallel repair (b) Intra-stripe and inter-stripe parallel repair

Fig. 10. Motivating example of intra-stripe and inter-stripe parallel repair scheduling for full-node recovery.

repair load is minimized to four sub-blocks (i.e., equivalent to the size of one block) based on
the affinity-based heuristic. However, when we aggregate the repair of all three lost blocks, the
aggregate maximum repair load becomes ten sub-blocks (in 𝑁4), even exceeding the number of
sub-blocks received by 𝐻0. Load imbalance manifests in this example, as the repair operations of
different blocks interfere with each other.

We argue that it is possible to apply different load allocations to the repair operations of different
lost blocks, such that the interference among the repair operations can be mitigated. Figure 10(b)
shows one such example, in which the load allocation for the repair of 𝐵10 is the same as in
Figure 10(a), while the load allocations for the repair of 𝐵2 and 𝐵4 are different and 𝑁4 only sends
eight sub-blocks. Thus, the aggregate maximum repair load reduces to eight sub-blocks. This
motivates us to explore a co-design for intra-stripe and inter-stripe parallel repair scheduling in
full-node recovery.

5.2 Intra-Stripe and Inter-Stripe Parallel Repair
We now describe a co-design of intra-stripe and inter-stripe parallel repair for full-node recovery.
Since the allocated resources for background routines are often capped [17, 44], instead of scheduling
the repair of all lost blocks in the whole system, we partition all stripes in the entire system into
stripe groups, each with a fixed number of stripes. We perform repair scheduling independently for
each stripe group.
Our full-node recovery approach builds on the fast generation of intra-stripe parallel repair

solutions from the affinity-based heuristic, so as to achieve effective inter-stripe parallel repair
scheduling. At a high level, for each stripe group, it generates an initial repair solution for each lost
block in the stripe group based on the affinity-based heuristic. It adjusts the repair solutions for
some lost blocks to reduce the overall maximum repair load. The detailed steps to generate parallel
repair scheduling for a stripe group are described as follows.
Step 1: Initialization.We first initialize an empty global traffic table, which records the aggregate
incoming and outgoing traffic caused by the repair of all lost blocks in a stripe group. We will
update the global traffic table in the following steps.

ACM Trans. Storage, Vol. 1, No. 1, Article 1. Publication date: January 2024.

1:20 Li et al.

1 2

Global traffic table before step 3:

Maximum repair load = 10, in N4

3

List L
(B2, (N4, 4))
(B4, (N4, 4))

Indentifying lost blocks:

4

Sorting:
B2 B4

Value 4 4

5

Step 3.2: Re-coloring

6

20241211- offlint_init(Affinity) +
tuning

N0 N1 N2 N3 N4 H0 H1

In 0 4 3 4 2 8 4
Out 0 6 7 4 8 0 0

Re-coloring B2and B4:

7

Maximum repair load = 8

N0 N1 N2 N3 N4 H0 H1

In 0 4 0 4 4 8 4
Out 0 6 4 4 10 0 0

8

Fig. 11. Example of inter-stripe repair scheduling for full-node recovery.

Step 2: Coloring.We perform intra-stripe repair scheduling. We first generate an initial repair
solution for each of the lost blocks. For each initial repair solution to be generated for a lost block,
we use the global traffic table that aggregates the repair traffic from the previously generated
initial repair solutions as the input. Specifically, we first construct a pECDAG for the lost block
by associating the colors with the intermediate vertices and the root vertex. For the intermediate
vertices, we apply the affinity-based heuristic (§4) to generate the colors that reduce the aggregate
maximum repair load. For the root vertex, we select a color that represents a hot-standby node
selected from the existing hot-standby nodes in a round-robin manner.

Step 3: Optimization. We optimize the current full-node recovery solution in multiple iterations.
In each iteration, we aim to identify the lost blocks for regenerating their repair solutions, such
that the aggregate maximum repair load can be further reduced.

Step 3.1: Identifying lost blocks.We define a list 𝐿 of records, each of which keeps a mapping of
(𝐵, (𝑁,𝑏)) (indexed by 𝐵) that specifies that repairing a lost block 𝐵 will incur a repair bandwidth 𝑏
to node 𝑁 . We first compute the current aggregate maximum repair load (denoted by ℓ𝑚𝑎𝑥) based
on the current repair solutions. We then identify the nodes whose incoming or outgoing bandwidth
is equal to ℓ𝑚𝑎𝑥 (note that multiple nodes can have the same incoming or outgoing bandwidth
equal to ℓ𝑚𝑎𝑥). For each identified node (say 𝑁), we find the lost blocks whose repair bandwidth
(denoted by 𝑏) contributes the most to ℓ𝑚𝑎𝑥 of 𝑁 (note that multiple lost blocks can contribute the
same most repair bandwidth to the maximum repair load of 𝑁). For each such lost block (denoted
by 𝐵), we add a record (𝐵, (𝑁,𝑏)) to 𝐿, meaning that the repair of 𝐵 incurs a repair bandwidth of 𝑏
to 𝑁 . Since the repair of 𝐵 can also contribute the most repair bandwidth (say 𝑏 ′) to another node
(say 𝑁 ′), we append the mapping to the existing record, say (𝐵, (𝑁,𝑏), (𝑁 ′, 𝑏 ′)).

Step 3.2: Re-coloring. We re-generate the repair solution based on 𝐿. For each lost block 𝐵 in
𝐿, we sum the repair bandwidth incurred by all nodes in 𝐿, and sort the lost blocks in 𝐿 by the
sum of repair bandwidth in descending order. Then, for each lost block 𝐵 in the sorted list 𝐿, we
first remove its repair bandwidth from the global traffic table, and then re-color the corresponding
pECDAG based on the affinity-based heuristic. If the new aggregate maximum repair load can be
reduced after re-coloring, we repeat Step 3 for further possible optimization; otherwise, we stop
the optimization.

ACM Trans. Storage, Vol. 1, No. 1, Article 1. Publication date: January 2024.

Harnessing Parallelism for Fast Data Repair in MSR-Coded Storage 1:21

...

Controller

control flow data flow

DataNode

Agent

DataNode

Agent

DataNode

Agent

NameNode

PRS Generator

Client

metadata flow

Fig. 12. System architecture.

Example.We follow the same example in Figure 10 to show inter-stripe repair scheduling in Step 3
can further reduce the aggregate maximum repair load. Figure 11 depicts the steps. We start with
the global traffic table generated by the intra-stripe-only parallel repair shown in Figure 10(a).
In Step 3.1, we find that the maximum repair load is ten sub-blocks, located in 𝑁4 (1). We

analyze the repair bandwidth in 𝑁4 and find that repairing 𝐵2 and 𝐵4 contributes four sub-blocks
each to the maximum repair load in 𝑁4. Thus, we update 𝐿 with two records (𝐵2, (𝑁4, 4)), and
(𝐵4, (𝑁4, 4)) (2). In this example, since the maximum repair load only occurs in 𝑁4, each record in
𝐿 only includes the repair bandwidth incurred by 𝑁4.
In Step 3.2, we first find that the repair of 𝐵2 and the repair of 𝐵4 both have the sum of the

repair bandwidth equal to four sub-blocks (3). We sort them by the sum of repair bandwidth in
descending order. Suppose that the order is 𝐵2 and 𝐵4. We re-generate the repair solution for 𝐵2,
followed by 𝐵4 (4). After the optimization, the maximum repair load reduces from ten to eight
sub-blocks.

6 HyperParaRC DESIGN
We design and implement HyperParaRC, a parallel repair framework designed to balance repair
bandwidth and maximum repair load for MSR-coded storage systems. We first describe the archi-
tecture of HyperParaRC (§6.1) and then elaborate on the implementation details of HyperParaRC
(§6.2).

6.1 Architecture
We have built HyperParaRC based on OpenEC [23], an erasure coding framework that supports
the deployment of custom erasure coding solutions in existing distributed storage systems. Hyper-
ParaRC runs as a middleware system and leverages OpenEC to deploy MSR codes on Hadoop HDFS
[3]. HDFS stores data in fixed-size blocks and comprises a NameNode and multiple DataNodes: the
NameNode manages the storage of all DataNodes and maintains the metadata of all stored blocks,
while the DataNodes provide storage for the blocks. HyperParaRC performs encoding across HDFS
blocks: for an (𝑛, 𝑘) code, HyperParaRC encodes every 𝑘 uncoded HDFS blocks (i.e., data blocks)
into 𝑛 − 𝑘 coded HDFS blocks (i.e., parity blocks) to form a stripe, which is stored in 𝑛 DataNodes.

Figure 12 shows the architecture of HyperParaRC when it is integrated with HDFS. HyperParaRC
includes a PRS generator, a controller that runs within the NameNode, and multiple agents, each of
which runs within a DataNode. We also deploy a client that issues repair requests to HyperParaRC.
We now elaborate on each component in detail.
PRS generator. The PRS generator computes parallel repair solutions for single-block repair and
full-node recovery. For single-block repair, it pre-calculates a parallel repair solution based on the

ACM Trans. Storage, Vol. 1, No. 1, Article 1. Publication date: January 2024.

1:22 Li et al.

affinity-based heuristic proposed in §4.3 and stores the results before the system starts [18]; this
offline approach is suitable since the number of repair scenarios is limited for moderate ranges of
(𝑛, 𝑘) that are commonly used in practice [31]. When repairing a block, the PRS generator sends
the parallel repair solution to the controller to coordinate the actual repair operations.
For full-node recovery, the PRS generator takes an online approach to generate parallel repair

solutions for different stripe groups. It obtains the stripe metadata from the controller and generates
parallel repair solutions for different stripe groups based on the co-design of intra-stripe and inter-
stripe parallel repair scheduling proposed in §5.2. Each time the PRS generator forms a parallel
repair solution for a stripe group, it sends the solution to the controller for actual repair operations
and proceeds to generate a parallel repair solution for the next stripe group. This masks the time
overhead of generating parallel repair solutions and ensures that the performance bottleneck lies
in actual repair operations rather than solution generation.
Controller. The controller coordinates the parallel repair operations for the lost blocks encoded
with MSR codes. For single-block repair, it reads the metadata of the block from HDFS to determine
the location of other blocks in the same stripe. Then, the controller requests the parallel repair
solution from the PRS generator. Finally, it translates the pECDAG into a set of basic tasks defined in
OpenEC [23]. For full-node recovery, it reads the metadata of the lost blocks and divides them into
stripe groups. For each stripe group, it requests parallel repair solutions from the PRS generator and
translates the solution into basic tasks. There are four types of basic tasks: (i) reading sub-blocks
from disk, (ii) fetching sub-blocks from other nodes, (iii) computing intermediate sub-blocks and
repaired sub-blocks, and (iv) persisting the repaired sub-blocks as the final repaired blocks.
Agent. Agents are responsible for executing repair tasks generated by the controller to cooper-
atively repair lost blocks. Specifically, each agent reads locally stored blocks, performs erasure
coding computations, and persists repaired blocks. An agent also sends or receives sub-blocks or
intermediate sub-blocks via other agents. Thus, all the agents work together to repair blocks.
Client. A client sends repair requests to HyperParaRC. Specifically, it sends a request to the
controller. Upon receiving a repair request, the controller starts to schedule the repair operation.
The client waits until HyperParaRC finishes the repair operation. Note that a client can be co-located
with an agent in a DataNode or run in a standalone machine outside of the DataNodes.

6.2 Implementation
Wehave implemented HyperParaRC in C++with around 10 K LoC and integrated HyperParaRC into
Hadoop-3.3.4 HDFS [3] (HDFS-3 for short). HyperParaRC uses Redis [8] for internal communications
among the controller, agents, and clients. It uses Intel’s Intelligent Storage Acceleration Library (ISA-
L) [7] to perform encoding and decoding operations for erasure codes. It supports both centralized
and parallel repair operations for MSR codes.
Implementation optimization for repair operations. To generate basic tasks for parallel repair,
we need to carefully co-locate sub-block repair operations to avoid redundant data transmissions.
For example, when deploying the pECDAG in Figure 4(a), we need to co-locate the repair of
sub-blocks 𝑣18 and 𝑣0, to ensure that the sub-blocks 𝑣8 and 𝑣16 are only downloaded once in 𝑁2
during the sub-block repair operation. To achieve this, we first divide the vertices into groups
based on topological sorting, in which we can co-locate the sub-block repair operations for the
vertices of the same color within the same group.

For example, the vertices in Figure 4(a) can be divided into the following five groups according
to topological sorting: (i) 𝑣4, 𝑣5, 𝑣8, 𝑣9, 𝑣12, and 𝑣13; (ii) 𝑣16 and 𝑣17; (iii) 𝑣0, 𝑣1, 𝑣18, and 𝑣19; (iv) 𝑣2 and
𝑣3; and (v) 𝑅. In group (ii), as 𝑣16 and 𝑣17 have the same color, we can co-locate the two sub-block
repair operations, ensuring that 𝑁2 only downloads sub-block 𝑣12 from 𝑁3 once to compute the

ACM Trans. Storage, Vol. 1, No. 1, Article 1. Publication date: January 2024.

Harnessing Parallelism for Fast Data Repair in MSR-Coded Storage 1:23

two sub-blocks. Similarly, we can co-locate the sub-block repair operations specified by 𝑣0 and 𝑣18
in 𝑁2, and the sub-block repair operations specified by 𝑣1 and 𝑣19 in 𝑁0.
HDFS-3 integration. To improve parallelism, HyperParaRC divides the encoding of a stripe of
blocks into the encoding of multiple small sub-stripes, where a data unit in each node of a sub-stripe
is called a packet. In MSR codes, each packet contains𝑤 sub-packets. Each sub-stripe encodes 𝑘 ×𝑤

sub-packets into 𝑛 ×𝑤 MSR-coded sub-packets, where the size of a sub-packet is as small as 64 KiB.
Thus, we implement sub-packetization across sub-packets instead of sub-blocks as in OpenEC [23],
so that HyperParaRC can encode different sub-stripes in parallel to fully utilize system resources.
Note that HDFS-3 does not directly support MSR codes, so we rely on OpenEC to generate

MSR-coded blocks and store them in HDFS-3. To enable parallel repair for MSR codes in HDFS-3,
we run the HyperParaRC controller within the NameNode and run each HyperParaRC agent
within a DataNode. The controller maintains a stripe store for MSR-coded stripes, which records the
metadata of each stripe, including the blocks of the same stripe and the location of each block. We
store the metadata of HDFS-3 blocks in the stripe store of HyperParaRC, allowing the controller to
retrieve metadata from the stripe store when repairing a lost block.
Support for RS codes. In addition to MSR codes, HyperParaRC also supports RS codes. It im-
plements both conventional centralized repair and parallel repair based on repair pipelining [24].
In repair pipelining, we divide a packet into sub-packets and pipeline the repair of different sub-
packets across a repair path (i.e., each sub-packet is viewed as a slice in repair pipelining [24]).
Note that RS codes have no sub-packetization and a sub-stripe encodes 𝑘 packets into 𝑛 RS-coded
packets.

7 EVALUATION
We evaluate the performance of HyperParaRC on Alibaba Cloud [1]. The PRS generator operates
on an ecs.r7.2xlarge instance with 8 vCPUs and 64GiB RAM. The controller, agents (storage
nodes), and hot-standby nodes operate on up to 25 ecs.r7.xlarge instances, each with 4 vCPUs
and 32GiB RAM (this setting includes up to 20 agents and 4 hot-standby nodes). Each instance is
equipped with a 100GiB enhanced SSD at performance level PL0 [2] and runs Ubuntu 18.04. All
instances are interconnected via a 10Gbps network. We aim to answer the following questions in
our experiments:
• Q1: How does the affinity-based heuristic perform in finding the approximate MLP? (§7.1)
• Q2: How does the co-design of intra-stripe and inter-stripe parallel repair scheduling perform in
finding the full-node recovery solutions? (§7.2)

• Q3: How does HyperParaRC perform under testbed experiments in terms of single-block repair
and full-node recovery? (§7.3 and §7.4)

• Q4: What is the performance overhead of HyperParaRC when it runs atop HDFS-3 and how does
it improve the repair performance of HDFS-3? (§7.5)

7.1 Performance of Finding the Approximate MLP
We start with single-block repair. We evaluate the algorithmic running time of finding the approxi-
mate MLP and examine how the resulting approximate MLP is related to the maximum repair load
and the repair bandwidth.
(Exp#1) Algorithmic running time of finding the approximate MLP.We first examine how
the affinity-based heuristic improves the running time performance of the pruning-based heuristic
in finding an approximate MLP using the PRS generator (which runs on an ecs.r7.2xlarge
instance). We compare the algorithmic running times of both heuristics with the brute-force
approach, which can generate an exact MLP but only support small coding parameters.

ACM Trans. Storage, Vol. 1, No. 1, Article 1. Publication date: January 2024.

1:24 Li et al.

(𝑛, 𝑘,𝑤) Brute-force Pruning Affinity
(4, 2, 4) 264.1 s 1.8 s 0.81ms
(12, 8, 64) - 425.9 s 0.95ms
(14, 10, 256) - 57.2 h 345.8ms
(16, 12, 256) - 61.9 h 369.8ms

(a) Clay codes
(𝑛, 𝑘,𝑤) Brute-force Pruning Affinity
(6, 4, 8) 34.2 s 0.3 s 0.292ms

(12, 10, 512) - 31.64 h 0.7 s
(b) Butterfly codes

Table 3. (Exp#1) Algorithm running times of generating an MLP for single-block repair in the brute-force
approach, the pruning-based heuristic (§4.1), and the affinity-based heuristic (§4.3). Note that both the
pruning-based and affinity-based heuristics can only return an approximate MLP.

Table 3 shows the results for different combinations of (𝑛, 𝑘) for Clay and Butterfly codes (note
that the value of 𝑤 is determined by 𝑛 and 𝑘 based on the codes). The brute-force approach can
only find the MLP for the (4, 2) Clay code and the (6, 4) Butterfly code, but cannot return the
solution for large (𝑛, 𝑘) within reasonable time. Compared with the brute-force approach, both the
pruning-based and affinity-based heuristics can generate an approximate MLP in a much shorter
time. However, the pruning-based heuristic still takes a long time to search for an approximate
MLP, while HyperParaRC reduces the running time to sub-seconds. For example, for the (14, 10)
Clay code, the pruning-based heuristic generates an approximate MLP in 57.2 h (i.e., over two days),
while the affinity-based heuristic reduces the running time to 345.8ms.

(Exp#2) Comparisons of maximum repair load and repair bandwidth. We compare the
maximum repair load and repair bandwidth of five repair approaches: (i) the centralized repair
for RS codes (RS); (ii) repair pipelining (RP) for RS codes [24]; (iii) the centralized repair for MSR
codes (Clay or Butterfly) (§2.2); (iv) the parallel repair of MSR codes based on the pruning-based
heuristic proposed in ParaRC [22] (§4.1) (ParaRC); and (v) the parallel repair of MSR codes based
on the affinity-based heuristic proposed in §4.3 (HyperParaRC).
Table 4 shows the results for different coding parameters of Clay codes and Butterfly codes.

HyperParaRC reduces the repair bandwidth of RS and RP, while reducing the maximum repair load
of MSR codes. For example, for the (14, 10) Clay code, HyperParaRC reduces the repair bandwidth
of RS and RP from 10 blocks to 4.61 blocks, while achieving the minimum possible maximum repair
load of 1 block. It also reduces the maximum repair load of the centralized repair of Clay codes from
3.25 blocks to 1 block, while incurring higher repair bandwidth. Similar trends are also observed
for Butterfly codes.
Compared with ParaRC, HyperParaRC even reduces both the maximum repair load and the

repair bandwidth for Clay codes under large (𝑛, 𝑘) (i.e., (12, 8), (14, 10), and (16, 12)), while it has
higher repair bandwidth than ParaRC with similar maximum repair loads for other cases. One
possible reason for the improvements of HyperParaRC over ParaRC for Clay codes under large
(𝑛, 𝑘) is that there are a large number of intermediate vertices where HyperParaRC can adjust the
colors to reduce both the maximum repair load and the repair bandwidth.
Thus, HyperParaRC can generate an approximate MLP that provides a better trade-off of the

maximum repair load and the repair bandwidth than RS, RP, and the centralized repair for MSR
codes, with significantly low algorithmic running time.

ACM Trans. Storage, Vol. 1, No. 1, Article 1. Publication date: January 2024.

Harnessing Parallelism for Fast Data Repair in MSR-Coded Storage 1:25

(𝑛, 𝑘,𝑤) RS RP Clay ParaRC HyperParaRC
(4, 2, 4) (2, 2) (1, 2) (1.5, 1.5) (1.25, 1.75) (1, 2)
(12, 8, 64) (8, 8) (1, 8) (2.75, 2.75) (1.03, 4.78) (1, 3.25)
(14, 10, 256) (10, 10) (1, 10) (3.25, 3.25) (1.06, 6.29) (1, 4.61)
(16, 12, 256) (12, 12) (1, 12) (3.75, 3.75) (1.09, 6.93) (1, 5.21)

(a) Clay codes
(𝑛, 𝑘,𝑤) RS RP Butterfly ParaRC HyperParaRC
(6, 4, 8) (4, 4) (1, 4) (2.5, 2.5) (1, 3.5) (1.13, 4.25)

(12, 10, 512) (10, 10) (1, 10) (4.09, 4.09) (1.16, 8.66) (1.55, 11.72)
(b) Butterfly codes

Table 4. (Exp#2) Comparisons of (maximum repair load, repair bandwidth) of different repair approaches,
measured in terms of the number of blocks.

We observe that the reduction in maximum repair load and repair bandwidth varies across
different (𝑛, 𝑘) for the same MSR code and across different MSR codes. This variation is due to
the distinct graph structures of pECDAGs for different parameters and codes, and their pECDAGs
differ in the numbers of vertices and edges. Consequently, the improvements from parallel repair
scheduling also vary. Given that HyperParaRC’s performance depends on the choices of MSR
codes and coding parameters, we recommend initially deploying the affinity-based heuristic in
real systems, while also running the pruning-based heuristic offline. The parallel repair solution
returning the lowest repair bandwidth and maximum repair load is then applied.

7.2 Simulations for Full-node Recovery
We consider full-node recovery under large-scale simulations. We evaluate the performance of the
co-design of intra-stripe and inter-stripe parallel repair scheduling (§5.2) in terms of the (aggregate)
maximum repair load, the (aggregate) repair bandwidth, and the algorithmic running time to
generate repair solutions for all lost blocks. We run our simulations on the ecs.r7.2xlarge
instance (which hosts the PRS generator).
In our simulations, we consider a cluster of 100 storage nodes. The cluster is configured with

1,000 stripes that are randomly distributed across storage nodes. We ensure that each stripe contains
a block stored in a pre-selected storage node that will later be treated as a failed node, so as to
allow for the repair of 1,000 blocks in full-node recovery. By default, we focus on the (14,10) Clay
code and recover the lost blocks in four hot-standby repair nodes (in addition to the 100 storage
nodes). We configure the stripe group size as four stripes and distribute the four repaired blocks of
each stripe group across the four hot-standby nodes. We plot the average results over five runs,
including the error bars showing the 95% confidence interval based on the Student’s t-distribution.
We compare six repair approaches for full-node recovery, including RS, RP, the centralized

repair for MSR codes, ParaRC, HyperParaRC-base, and HyperParaRC. Note that for the first four
approaches, each block is repaired as described in Exp#2 (§7.1), while the repaired block is placed
across hot-standby nodes in a round-robin manner. For HyperParaRC-base, each block is repaired
by the approximate MLP generated by the affinity-based heuristic without inter-stripe parallel
repair scheduling. HyperParaRC is the complete version that applies intra-stripe and inter-stripe
parallel repair scheduling for full-node recovery.

ACM Trans. Storage, Vol. 1, No. 1, Article 1. Publication date: January 2024.

1:26 Li et al.

2
5

0
.2

2
6

3
.2

3
3

3
.66
8

7
.5

5
4

5
.0

2
0

0
0

.0

2
5

4
.0

2
6

9
.2

3
4

9
.08
1

2
.0

5
7

9
.0

2
5

0
0

.0

2
5

3
.4

2
7

2
.8

3
5

7
.89

3
7

.5
6

3
1

.6
3

0
0

0
.0

6
0

0
.2

7
4

5
.0

5
8

5
.2

1
7

1
9

.4
5

8
0

.6
2

5
0

0
.0

0

1000

2000

3000

4000

5000

(12,8)Clay (14,10)Clay (16,12)Clay (12,10)Butterfly

A
g

g
re

g
a

te
 m

a
x
im

u
m

 r
e

p
a

ir
 lo

a
d

RS
RP

Clay or Butterfly
ParaRC

HyperParaRC-base
HyperParaRC

(a) Aggregate maximum repair load
3

9
5

1
.4

3
9

8
8

.6
5

1
4

0
.0

2
7

5
0

.0
8

0
0

0
.0

8
0

0
0

.0

4
7

7
7

.4
4

8
1

2
.2

6
4

8
4

.2
3

2
5

0
.0

1
0

0
0

0
.0

1
0

0
0

0
.0

5
3

2
9

.0
5

3
7

1
.2

7
1

0
8

.4
3

7
5

0
.0

1
2

0
0

0
.0

1
2

0
0

0
.0

1
0

3
3

0
.0

1
1

3
1

1
.8

8
6

1
2

.6
5

8
9

5
.6

1
0

0
0

0
.0

1
0

0
0

0
.0

0

5000

10000

15000

20000

(12,8)Clay (14,10)Clay (16,12)Clay (12,10)Butterfly

A
g

g
re

g
a

te

 r
e

p
a

ir
 b

a
n

d
w

id
th

RS
RP

Clay or Butterfly
ParaRC

HyperParaRC-base
HyperParaRC

(b) Aggregate repair bandwidth

Fig. 13. (Exp#3) Impact of MSR codes on full-node recovery in simulations.

(Exp#3) Impact of MSR codes on full-node recovery in simulations. We focus on the (12, 8)
Clay code, the (14, 10) Clay code, the (16, 12) Clay code, and the (12, 10) Butterfly code to evaluate
the maximum repair load and the repair bandwidth. Figure 13 shows the results.
For Clay codes, HyperParaRC-base significantly reduces the aggregated maximum repair load

compared with RS, RP, Clay, and ParaRC. Applying intra-stripe and inter-stripe parallel repair
scheduling, HyperParaRC further slightly reduces the aggregated maximum repair load compared
with HyperParaRC-base. For example, for the (16, 12) Clay code, HyperParaRC-base reduces the
maximum repair load by 90.9%, 56.8%, 70.9%, and 23.8% compared with RS, RP, Clay, and ParaRC,
respectively. HyperParaRC slightly reduces the maximum repair load by 7.1% compared with
HyperParaRC-base. Both HyperParaRC-base and HyperParaRC have much less repair bandwidth
than RS, RP, and ParaRC, while HyperParaRC only slightly reduces the repair bandwidth compared
with HyperParaRC-base. For example, for the (16, 12) Clay code, HyperParaRC-base reduces the
repair bandwidth by 55.2%, 55.2%, and 24.4% compared with RS, RP, and ParaRC, respectively.
Note that the repair bandwidth of HyperParaRC cannot be less than that of Clay codes, which
theoretically minimize the repair bandwidth.

For Butterfly codes, we observe different findings. For the (12, 10) Butterfly code, HyperParaRC-
base reduces the maximum repair load by 70.2% and 56.7% compared with RS and Butterfly,
respectively. However, the maximum repair load of HyperParaRC-base is larger than those of
RP and ParaRC. The reason is that HyperParaRC-base repairs each block based on the affinity-
based heuristic without inter-stripe parallel repair scheduling. As shown in §7.1, the affinity-
based heuristic for Butterfly codes, while reducing the algorithmic running time, can incur high

ACM Trans. Storage, Vol. 1, No. 1, Article 1. Publication date: January 2024.

Harnessing Parallelism for Fast Data Repair in MSR-Coded Storage 1:27

3
7

8
.6

4
0

4
.2

5
3

0
.8

8
1

2
.0

9
5

9
.6

2
5

0
0

.0

2
9

4
.6

3
3

2
.2

4
4

2
.48
1

2
.0

7
7

1
.8

2
5

0
0

.0

2
6

7
.6

3
0

0
.2

3
9

5
.08
1

2
.0

6
7

6
.2

2
5

0
0

.0

2
5

8
.0

2
8

2
.8

3
6

4
.88

1
2

.0
6

1
8

.8
2

5
0

0
.0

2
5

4
.0

2
6

9
.2

3
4

9
.08

1
2

.0
5

7
9

.0
2

5
0

0
.0

0

1000

2000

3000

4000

20 40 60 80 100

The number of storage nodes

A
g

g
re

g
a

te
 m

a
x
im

u
m

 r
e

p
a

ir
 lo

a
d

RS
RP

Clay or Butterfly
ParaRC

HyperParaRC-base
HyperParaRC

Fig. 14. (Exp#4) Impact of the number of nodes on full-node recovery in simulations.
2

5
4

.0
2

6
9

.2
3

4
9

.08
1

2
.0

5
7

9
.0

2
5

0
0

.0

1
6

2
.8

1
8

9
.2

2
5

0
.6

4
0

6
.0

4
2

5
.6

1
2

5
0

.0

1
2

4
.2

1
4

5
.2

1
9

1
.4

2
0

4
.0

3
2

5
.06
3

0
.0

9
6

.0
1

1
2

.2
1

4
8

.0
1

0
4

.0
2

6
0

.8
3

2
1

.2

0

1000

2000

3000

4 8 16 32

Number of hot-standby nodes

A
g

g
re

g
a

te
 m

a
x
im

u
m

 r
e

p
a

ir
 lo

a
d

RS
RP

Clay or Butterfly
ParaRC

HyperParaRC-base
HyperParaRC

Fig. 15. (Exp#5) Impact of the number of hot-standby nodes on full-node recovery in simulations.

maximum repair load and repair bandwidth. Nevertheless, after applying intra-stripe and inter-
stripe parallel repair scheduling, HyperParaRC reduces the maximum repair load by 19.4% and the
repair bandwidth by 8.6% compared with HyperParaRC-base, thereby showing the significance of
intra-stripe and inter-stripe parallel repair scheduling.
(Exp#4) Impact of the number of nodes on full-node recovery in simulations. We study
the performance of HyperParaRC when the number of nodes is varied. Figure 14 shows the results.
The maximum repair load of RS and Clay is not influenced by the number of nodes, as the bottleneck
lies in the hot-standby node. For RP, ParaRC, HyperParaRC-base, and HyperParaRC, the maximum
repair load decreases as the number of nodes increases. Among all approaches, HyperParaRC incurs
the smallest maximum repair load, benefiting from the intra-stripe and inter-stripe parallel repair
scheduling. For example, when there are 20 nodes, HyperParaRC-base reduces the maximum repair
load by 83.8%, 57.8%, 50.2%, and 23.9%, compared with RS, RP, Clay, and ParaRC, respectively.
HyperParaRC further reduces the maximum repair load by 6.3% compared with HyperParaRC-base.
(Exp#5) Impact of the number of hot-standby nodes on full-node recovery in simulations.
We study the performance of HyperParaRC when the number of hot-standby nodes is varied. We
configure the number of stripes in a stripe group to be the same as the number of hot-standby nodes.
Figure 15 shows the results. Increasing the number of hot-standby nodes leads to less aggregate
maximum repair load by distributing the repaired blocks across hot-standby nodes. With the same
number of hot-standby nodes, HyperParaRC always has the least maximum repair load among
all approaches. For example, when there are 16 hot-standby nodes, HyperParaRC reduces the
maximum repair load by 80.3%, 61.8%, 39.1%, 35.1%, and 14.5% compared with RS, RP, Clay, ParaRC,
and HyperParaRC-base, respectively.

ACM Trans. Storage, Vol. 1, No. 1, Article 1. Publication date: January 2024.

1:28 Li et al.

0

3

6

9

12

100 200 300 400 500 600 700 800 900 1000
Number of blocks

T
im

e
(m

in
)

Fig. 16. (Exp#6) Algorithmic running time of finding full-node recovery solutions.

(Exp#6) Algorithmic running time of finding full-node recovery solutions. We evaluate
the algorithmic running time of HyperParaRC in finding full-node recovery solutions by varying
the number of lost blocks to be repaired in full-node recovery from 100 to 1,000; note that the time
does not include the actual repair operations of reconstructing lost blocks. Figure 16 shows the
results. The algorithmic running time increases linearly with the number of blocks being repaired.
HyperParaRC only needs 10.4 minutes to generate a full-node recovery solution for 1,000 blocks.
In real deployment, the algorithmic running time is overlapped with the actual repair operations
(§6.2), so solution generation is not the bottleneck in full-node recovery.

7.3 Testbed Experiments for Single-Block Repair
We now study the single-block repair performance via testbed experiments on Alibaba Cloud. By
default, we focus on the (14, 10) Clay code, with the block size 256MiB and the sub-packet size
64 KiB. In this case, the packet size is 256×64KiB = 16MiB, meaning that a stripe can be divided
into 16 sub-stripes. We compare the five single-block repair approaches as described in Exp#2
(§7.1). We report the average single-block repair time for the 𝑘 original uncoded blocks, with error
bars showing the 95% confidence interval based on the Student’s t-distribution.
(Exp#7) Impact of MSR codes on single-block repair in the cloud. We evaluate the single-
block repair performance of HyperParaRC for different MSR code configurations, including the
(12, 8) Clay code, the (14, 10) Clay code, the (16, 12) Clay code, and the (12, 10) Butterfly code.
Figure 17 shows the evaluation results. The results are consistent with our findings in Exp#2

(see our explanations in Exp#2 in §7.1): in all cases, HyperParaRC outperforms RS, RP, and the
centralized repair for both Clay and Butterfly codes. It outperforms ParaRC for Clay codes, and
underperforms for Butterfly codes. For example, for the (16, 12) Clay code, HyperParaRC reduces
the single-block repair time by 81.6%, 62.5%, 68.2%, and 21.3% compared with RS, RP, Clay, and
ParaRC, respectively. Note that even though RPminimizes the maximum repair load, its single-block
repair time is not necessarily minimized as it still has high repair bandwidth and needs to read the
whole block from each available node. For the (12, 10) Butterfly code, HyperParaRC reduces the
single-block repair time by 37.7% and 16.8% compared with RS and Clay, respectively, while it is
10.7% slower than that of ParaRC.
(Exp#8) Impact of sub-packet size on single-block repair in the cloud. We evaluate the
single-block repair time of HyperParaRC under different sub-packet sizes. We vary the sub-packet
size from 16KiB to 256KiB, and fix the block size at 256MiB. Note that the packet size is the
sub-packet size multiplied by𝑤 , where𝑤 depends on the erasure code.

Figure 18 shows the results. HyperParaRC has the least single-block repair time compared with
other repair approaches for all sub-packet sizes. For example, when the sub-packet size is 128 KiB,
HyperParaRC reduces the single-block repair time by 72.7%, 53.5%, 56.9%, and 7.8% compared

ACM Trans. Storage, Vol. 1, No. 1, Article 1. Publication date: January 2024.

Harnessing Parallelism for Fast Data Repair in MSR-Coded Storage 1:29

0
.3

6

0
.6

1

0
.7

31
.2

71
.7

1

0
.5

9

0
.6

9

1
.3

3

1
.2

6

2
.1

5

0
.4

8

0
.6

1

1
.5

1

1
.2

8

2
.6

1

1
.3

4

1
.2

11
.6

1

1
.2

6

2
.1

5

0

1

2

3

4

(12,8) Clay (14,10) Clay (16,12) Clay (12,10) Butterfly

T
im

e
 (

s
)

RS
RP

Clay or Butterfly
ParaRC

HyperParaRC

Fig. 17. (Exp#7) Impact of MSR codes on single-block repair in the cloud.

0
.8

2
0

.8
61
.3

4
4

.4
9

2
.3

3

0
.6

8
0

.8
21
.3

4
1

.6
32
.1

6

0
.5

9
0

.6
91

.3
3

1
.2

6
2

.1
5

0
.5

9
0

.6
41

.3
7

1
.2

7
2

.1
6

0
.6

9
0

.7
01

.4
2

1
.2

7
2

.1
7

0

1

2

3

4

5

16 32 64 128 256

Sub-packet size (KiB)

T
im

e
 (

s
)

RS
RP

Clay or Butterfly
ParaRC

HyperParaRC

Fig. 18. (Exp#8) Impact of sub-packet size on single-block repair in the cloud.

with RS, RP, Clay, and ParaRC, respectively. We observe that the performance HyperParaRC
drops when the sub-packet size is reduced to 16KiB due to the overhead of processing a large
number of sub-packets. For example, when the sub-packet size reduces from 64KiB to 16 KiB, the
single-block repair time of HyperParaRC increases from 0.59 s to 0.82 s. Also, we observe that when
the sub-packet size increases to 256KiB, the single-block repair time increases to 0.69 KiB, as a
larger sub-packet size implies that a block is divided into fewer packets and the repair parallelism
diminishes.

(Exp#9) Impact of block size on single-block repair in the cloud.We evaluate HyperParaRC
under different block sizes. We vary the block size from 64MiB to 512MiB, and fix the sub-packet
size at 64 KiB. The block size determines the number of sub-stripes. For example, for the default
block size of 256MiB, the number of sub-stripes for the (14,10) Clay code is 16.

Figure 19 shows the results. HyperParaRC outperforms other repair approaches when the block
size is sufficiently large (e.g., at least 128MiB). For example, when the block size is 512MiB,
HyperParaRC reduces the single-block repair time by 75.6%, 70.8%, 49.3%, and 21.1% compared
with RS, RP, Clay, and ParaRC respectively. When the block size is small, RP outperforms parallel
repair of MSR codes. For example, when the block size is 64MiB, HyperParaRC has 23.8% higher
single-block repair time than RP. The reason is that when the block size is small, the parallel repair
of Clay codes suffers from the overhead of high sub-packetization. For example, when the block
size is 64MiB, a stripe can only be divided into four sub-stripes, so the degree of parallelism is
low. In contrast, RP can pipeline the repair of 1,024 sub-stripes (§6.2) and outperform ParaRC and
HyperParaRC for small block sizes. Thus, HyperParaRC is suitable for the deployment scenarios
with large block sizes, which are commonly found in modern distributed storage systems (§2.1).

ACM Trans. Storage, Vol. 1, No. 1, Article 1. Publication date: January 2024.

1:30 Li et al.

0
.2

6
0

.2
20
.6

6
0

.2
1

0
.5

5

0
.3

6
0

.3
80
.9

6
0

.4
11

.0
8

0
.5

9
0

.6
91

.3
3

1
.2

6
2

.1
5

1
.0

5
1

.3
32

.0
7

3
.6

04
.3

1

0

1

2

3

4

5

64 128 256 512

Block size (MiB)

T
im

e
 (

s
)

RS
RP

Clay or Butterfly
ParaRC

HyperParaRC

Fig. 19. (Exp#9) Impact of block size on single-block repair in the cloud

7.4 Testbed Experiments for Full-Node Recovery
We evaluate the performance of full-node recovery in a real network environment on Alibaba
Cloud. We measure the total time of repairing 20 lost blocks of a failed storage node from 20 stripes,
whose available blocks are randomly distributed across the non-failed storage nodes. By default,
we configure four hot-standby nodes and the stripe group size as four stripes. We follow the same
system settings as described in §7.3. We compare the six full-node recovery approaches as described
in §7.2. We report the average full-node recovery time over five runs, with error bars showing the
95% confidence intervals based on the Student’s t-distribution.

(Exp#10) Impact of network bandwidth on full-node recovery in the cloud.We first evalu-
ate the performance of HyperParaRC under 1Gbps and 10Gbps. We consider the 1Gbps setting
[37] to address a bandwidth-throttled scenario [17, 44] and configure the network bandwidth using
the Wondershaper tool [16].
Figure 20 shows the results. We first compare the RS-based approaches (i.e., RS and RP) with

the MSR-based approaches (i.e., Clay, ParaRC, HyperParaRC-base, and HyperParaRC). In both
bandwidth settings, the MSR-based approaches achieve higher full-node recovery performance
than the RS-based approaches, as the RS-based approaches incur much higher aggregate repair
bandwidth (even though RP has less aggregate maximum repair load). The poor performance of
the RS-based approaches is more pronounced in the 1Gbps setting.
We next compare Clay and ParaRC. Different from our observations in single-block repair,

ParaRC performs worse than Clay in full-node recovery. For example, ParaRC is 8.4% and 31.2%
slower than Clay in the 1Gbps and 10Gbps settings, respectively. There are two reasons. First,
in full-node recovery, Clay also benefits from repairing multiple blocks in parallel in different
hot-standby nodes. Second, even though ParaRC has less aggregate maximum repair load than
Clay, its aggregate repair bandwidth is much higher than that of Clay (see Exp#3).

We further compare HyperParaRC-base with Clay and ParaRC. HyperParaRC-base outperforms
ParaRC as it benefits from both lower aggregate maximum repair load and lower aggregate repair
bandwidth through the affinity-based heuristic (see Exp#3). For example, HyperParaRC-base is
47.5% and 18.0% faster than ParaRC in the 1Gbps and 10Gbps settings, respectively. However,
HyperParaRC-base still cannot guarantee improved performance over Clay for full-node recovery.
For example, HyperParaRC-base is 43.1% faster than Clay in the 1Gbps setting, but is 7.5% slower
than Clay in the 10Gbps setting.
Finally, HyperParaRC achieves the best full-node recovery performance through intra-stripe

and inter-stripe parallel repair scheduling in both network settings by further reducing both the
maximum repair load and repair bandwidth of HyperParaRC-base (see Exp#3). For example, in the

ACM Trans. Storage, Vol. 1, No. 1, Article 1. Publication date: January 2024.

Harnessing Parallelism for Fast Data Repair in MSR-Coded Storage 1:31

2
1

.7

2
2

.4

4
2

.7

3
9

.4

6
0

.0

1
1

2
.0

7
.61
0

.0

1
2

.2

9
.3

3
4

.8

3
4

.8

0

50

100

150

1 10
Network bandwidth (Gbps)

R
e

p
a

ir
 t
im

e
 (

s
)

RS
RP

Clay
ParaRC

HyperParaRC-base
HyperParaRC

Fig. 20. (Exp#10) Impact of network bandwidth on full-node recovery in the cloud.
1

3
.7

1
4

.1

1
2

.91
7

.1

3
5

.44
2

.8

7
.91
0

.0

1
2

.2

1
0

.5

3
4

.8

3
4

.8

7
.61
0

.0

1
2

.2

9
.3

3
4

.8

3
4

.8

0

20

40

60

1 2 4
The number of hot-standby nodes

R
e

p
a

ir
 t
im

e
 (

s
)

RS
RP

Clay
ParaRC

HyperParaRC-base
HyperParaRC

Fig. 21. (Exp#11) Impact of the number of hot-standby nodes on full-node recovery in the cloud.

1Gbps setting, HyperParaRC is 44.9%, 49.2%, and 3.1% faster than Clay, ParaRC, and HyperParaRC-
base, respectively, and in the 10Gbps setting, it is 18.3%, 37.7%, and 24.0% faster, respectively.
(Exp#11) Impact of the number of hot-standby nodes on full-node recovery in the cloud.
We evaluate the full-node recovery time of HyperParaRC by varying the number of hot-standby
nodes as one, two, and four. Figure 21 shows the results. When there is only one hot-standby
node, both HyperParaRC and ParaRC significantly outperform RS, RP, and Clay. For example,
HyperParaRC is 67.9%, 61.3%, and 19.9% faster than RS, RP, and Clay, respectively. Note that
both HyperParaRC and ParaRC show similar performance, the only hot-standby node is the
bottleneck. When the number of hot-standby nodes increases, we observe limited performance
improvements of RS and RP, as they incur high repair bandwidth and their bottleneck lies in
the agents, which read and send data for full-node recovery, instead of in hot-standby nodes.
For Clay, ParaRC, HyperParaRC-base, and HyperParaRC, increasing the number of hot-standby
nodes reduces the recovery time. Among all approaches, HyperParaRC achieves the best full-node
recovery performance. For example, when there are two hot-standby nodes, HyperParaRC is 77.3%,
77.3%, 24.8%, 35.3%, and 21.0% faster than RS, RP, Clay, ParaRC, and HyperParaRC-base, respectively.
(Exp#12) Impact ofMSR codes on full-node recovery in the cloud.We evaluate HyperParaRC
by considering different MSR code configurations, including the (12, 8) Clay code, the (14, 10)
Clay code, the (16, 12) Clay code, and the (12, 10) Butterfly code. Figure 22 shows the results. We
observe significant performance improvements of HyperParaRC for Clay codes. For example, for
the (16, 12) Clay code, HyperParaRC-base is 71.2%, 71.2%, 5.2%, and 12.1% faster than RS, RP, Clay,
and ParaRC, respectively, and when applying intra-stripe and inter-stripe parallel repair scheduling,
HyperParaRC is 24.8% faster than HyperParaRC-base.

ACM Trans. Storage, Vol. 1, No. 1, Article 1. Publication date: January 2024.

1:32 Li et al.

9
.1

9
.31
0

.1
9

.5
2

8
.6

2
8

.6

7
.61

0
.0

1
2

.2
9

.3
3

4
.8

3
4

.8

8
.21

0
.9

1
2

.4
1

1
.5

3
7

.9
3

7
.9

2
7

.0
2

6
.2

2
7

.1
2

5
.63

2
.7

3
2

.7

0

20

40

60

(12,8)Clay (14,10)Clay (16,12)Clay (12,10)Butterfly

R
e

p
a

ir
 t
im

e
 (

s
)

RS
RP

Clay or Butterfly
ParaRC

HyperParaRC-base
HyperParaRC

Fig. 22. (Exp#12) Impact of MSR codes on full-node recovery in the cloud.

4
.3

4
.76
.5

4
.51

6
.4

1
6

.4

7
.61
0

.0
1

2
.2

9
.3

3
4

.8
3

4
.8

1
1

.2
1

4
.5

1
7

.9
1

4
.2

5
2

.2
5

2
.1

1
3

.3
1

9
.4

2
4

.4
2

0
.1

6
8

.4
6

7
.5

2
5

.2
2

6
.2

2
9

.9
2

6
.5

8
7

.8
8

6
.9

0

50

100

150

10 20 30 40 50

The number of blocks

R
e

p
a

ir
 t
im

e
 (

s
)

RS
RP

Clay or Butterfly
ParaRC

HyperParaRC-base
HyperParaRC

Fig. 23. (Exp#13) Impact of the number of repaired blocks on full-node recovery in the cloud.

However, for the (12, 10) Butterfly code, we find that the parallel repair for Butterfly codes is
not necessarily faster than the centralized repair of Butterfly codes in full-node recovery. There are
two reasons. First, even though the parallel repair reduces the maximum repair load, the repair
bandwidth of ParaRC, HyperParaRC-base, and HyperParaRC remains much higher than that of
Butterfly (see Exp#3). Second, the (12, 10) Butterfly code has a high sub-packetization level, in
which each packet is divided into 512 sub-packets and hence the packet size is 512×64 KiB = 32MiB.
Thus, the parallel repair has marginal benefits.
(Exp#13) Impact of the number of repaired blocks on full-node recovery in the cloud.
We evaluate HyperParaRC when it repairs different numbers of blocks, varying from 10 to 50.
Figure 23 shows the results. When the number of repaired blocks increases, the overall recovery
time increases for all approaches and HyperParaRC still achieves the best performance. For example,
when repairing 40 blocks, HyperParaRC is 80.3%, 80.6%, 33.8%, 45.5%, and 31.4% faster than RS, RP,
Clay, ParaRC, and HyperParaRC-base, respectively.
(Exp#14) Impact of the stripe group size.We study the impact of stripe group size. We repair
128 blocks and vary the group size to 4, 8, and 16. Figure 24 shows the results. When the stripe group
size is 4, HyperParaRC reduces the repair time by 44.8%, 45.7%, 19.4%, 23.7%, and 14.9% compared
to RS, RP, Clay, ParaRC, and HyperParaRC-base, respectively. However, when the stripe group
size increases, we observe that HyperParaRC’s improvements diminish. The reason is that when
the group size is 4, HyperParaRC’s intra-stripe and inter-stripe repair scheduling balances repair
traffic across four hot-standby nodes, and adding more stripes per group causes significant resource
contention across all nodes. In contrast, other repair methods benefit from larger group sizes,
as they can leverage underutilized node resources to (slightly) reduce repair time. Nevertheless,
HyperParaRC consistently achieves the shortest repair time among all approaches.

ACM Trans. Storage, Vol. 1, No. 1, Article 1. Publication date: January 2024.

Harnessing Parallelism for Fast Data Repair in MSR-Coded Storage 1:33

6
8
.8

6
6
.5

6
0
.26
9
.9

6
7
.3

6
5
.1

4
7
.1

4
6
.7

4
4
.5

4
9
.7

4
7
.2

4
5
.6

4
4
.6

4
4
.7

4
3
.5

3
8
.0

4
1
.3

4
2
.2

0

25

50

75

100

125

4 8 16

Stripe group size

R
e

p
a

ir
 t

im
e

 (
s
)

RS
RP

Clay or Butterfly
ParaRC

HyperParaRC-base
HyperParaRC

Fig. 24. (Exp#14) Impact of the stripe group size on full-node recovery in the cloud.

1
3

0
.7

1
3

0
.7

1
3

0
.9

1
3

0
.0

1
3

.73
5

.4

4
2

.8

4
5

.2

0

30

60

90

120

150

180
200

Encode Full-node recovery

T
im

e
 (

s
)

HDFS-RS
HyperParaRC-RS
HyperParaRC-RP
HyperParaRC-Clay

Fig. 25. (Exp#15) HDFS-3 integration.

7.5 Performance of HDFS-3 Integration
(Exp#15) HDFS-3 integration. We evaluate the integration of HyperParaRC into HDFS-3. Recall
that we have shown the benefits of HyperParaRC over other repair approaches in §7.3 and §7.4. In
this experiment, we only focus on the performance overhead and performance gain of HyperParaRC
in HDFS-3 deployment. We focus on the (14, 10) Clay code with the default block size of 256MiB.
Currently, HDFS-3 does not support Clay codes in its codebase, so we mainly compare Hyper-

ParaRC with the RS code implementation in HDFS-3. For encoding, we evaluate the overhead of
encoding 20 stripes. For full-node recovery, we evaluate the overhead of repairing 20 lost blocks
of a failed node with only one hot-standby node. We omit the results for single-block repair, as
HDFS-3 does not trigger the repair of a single block. Even if HDFS-3 issues a degraded read of a
file under node failures, it always returns all blocks of the original file to the client. Thus, in this
case, the centralized repair of the lost block is sufficient.
We consider four approaches: (i) encoding by the default RS codes and performing the default

recovery approach in HDFS (denoted by HDFS-RS); (ii) encoding by RS codes and performing the
centralized repair for RS codes in HyperParaRC (denoted by HyperParaRC-RS); (iii) encoding by
RS codes and performing repair pipelining [24] in HyperParaRC (denoted by HyperParaRC-RP);
and (iv) encoding by Clay codes and performing the parallel repair via intra-stripe and inter-stripe
parallel repair in HyperParaRC (denoted by HyperParaRC-Clay).

Figure 25 shows the results. For encoding, the encoding of Clay codes in HyperParaRC and the
encoding of RS codes in HDFS-3 have similar overhead. For example, HDFS-RS takes 130.0 s, while
HyperParaRC-Clay takes 130.7 s for encoding 20 stripes. For full-node recovery, HyperParaRC-Clay
reduces the full-node recovery time by 70.9% compared with HDFS-RS.

ACM Trans. Storage, Vol. 1, No. 1, Article 1. Publication date: January 2024.

1:34 Li et al.

8 RELATEDWORK
RS codes [36] are popularly deployed in distributed storage systems [4--6, 11, 27, 30], but incur
high repair bandwidth (§2.1). Thus, research efforts are made to improve the repair performance of
RS codes. One direction is to design fast repair algorithms over RS codes, while another direction is
to design regenerating codes to minimize the repair bandwidth.
Repair algorithms for RS codes. PPR [26] divides the repair of a block into partial operations
and parallelizes them for improved repair performance. Repair pipelining [21, 24] divides the repair
of a block into the repair of small slices, organizes the available nodes that participate in the repair
operation into a repair path, and pipelines the repair of slices along the repair path to reduce the
degraded read time to be almost the same as the time of reading a block. PPT [9], SMFRepair [48],
and PivotRepair [47] propose different parallel repair strategies for RS codes in heterogeneous
bandwidth environments. However, the above repair algorithms do not reduce the repair bandwidth
of RS codes. Our work focuses on designing parallel repair algorithms for regenerating codes, which
have much lower repair bandwidth than RS codes.
Regenerating codes.Regenerating codes [10] are a family of erasure codes thatminimize the repair
bandwidth. Minimum-storage regenerating (MSR) codes not only minimize the repair bandwidth,
but also achieve the MDS property. Many research studies propose new designs of MSR codes,
including F-MSR codes [13], PM-RBT codes [32], Butterfly codes [28], and Clay codes [43]. Such
MSR codes operate in different parameter regimes, such as 𝑛 − 𝑘 = 2 for F-MSR codes [13] and
Butterfly codes [28], and 𝑛 ≥ 2𝑘 − 1 for PM-RBT codes [32]. In particular, Clay codes [43] are
state-of-the-art MSR codes that support general parameters of 𝑛 and 𝑘 and are proven to minimize
both repair bandwidth and I/Os (§1). Geometric partitioning [40] builds on Clay codes and divides an
object into variable-sized blocks to trade between the performance of degraded reads and full-node
recovery. However, the repair strategy for existing MSR codes is still based on the centralized
repair approach, in which a node downloads the required data from all available nodes to repair a
failed block. Even though the repair bandwidth is still the minimum, the maximum repair load is
high. ParaRC addresses this trade-off by proposing a parallel repair strategy for MSR codes.
DAG-based erasure coding.OpenEC [23] proposes an ECDAG abstraction tomodel and configure
erasure coding operations as a directed acyclic graph (DAG) without modifying the I/O workflows
of the underlying distributed storage system. RepairBoost [25] proposes a DAG abstraction to
load-balance the full-node recovery workflow. Our work extends ECDAG [23] to support the
parallel repair for MSR codes.
Full-node recovery. FastPR [41] improves the performance of repairing a soon-to-fail node
in RS-coded storage. It repairs blocks in parallel by either migration or erasure-coding-based
reconstruction. Some studies, such as SelectiveEC [46] and RepairBoost [25], explore parallelization
for full-node recovery based on RS codes. Shan et al. [39] explore block placement for load-balanced
full-node recovery. To our knowledge, HyperParaRC is the first work that studies the scheduling
of full-node recovery for MSR codes. It proposes a co-design of intra-stripe and inter-stripe parallel
repair scheduling for full-node recovery.

9 DISCUSSION
Small block sizes. Although this work focuses on systems with large block sizes, HyperParaRC’s
parallel repair technique is applicable to systems with small block sizes. A pre-requisite is the use
of MSR codes with low sub-packetization, as high sub-packetization MSR codes incur significant
I/O overhead in systems with small block sizes. For example, some MSR codes (e.g., HashTag [20],
NCBlob [12]) are designed with low sub-packetization and hence can be considered to leverage
HyperParaRC for repair parallelization.

ACM Trans. Storage, Vol. 1, No. 1, Article 1. Publication date: January 2024.

Harnessing Parallelism for Fast Data Repair in MSR-Coded Storage 1:35

Scattered full-node recovery. We currently focus on hot-standby full-node recovery, where
the hot-standby repair nodes are the bottleneck in the recovery process. HyperParaRC improves
performance over existing repair approaches through intra-stripe and inter-stripe parallel repair
scheduling. For scattered full-node recovery, where each node can serve as a repair node that
stores the repaired block, HyperParaRC still relies on intra-stripe and inter-stripe parallel repair
scheduling for load balancing. However, in scattered full-node recovery, the centralized repair for
MSR codes may benefit from inter-stripe parallel repair scheduling by storing the repaired block of
each stripe across all available nodes. The comparisons for hot-standby and scattered full-node
recovery are posed as future work.

10 CONCLUSIONS AND FUTUREWORK
We present HyperParaRC, a parallel repair framework that aims to improve the repair performance
of MSR-coded distributed storage systems. We show that there is a trade-off between repair
bandwidth and maximum repair load in MSR codes. HyperParaRC exploits the sub-packetization
nature of MSR codes by parallelizing the repair at the sub-block granularity. It builds on an
affinity-based heuristic to minimize the maximum repair load, while maintaining the low repair
bandwidth in polynomial time. It further adopts a co-design of intra-stripe and inter-stripe parallel
repair scheduling for full-node recovery. We implement HyperParaRC that runs atop HDFS and
evaluate it on Alibaba Cloud. Our evaluation results demonstrate the performance improvements
of HyperParaRC in both single-block repair and full-node recovery compared with several state-of-
the-line baselines, including our previously proposed ParaRC in the conference version.
We discuss possible future research directions. HyperParaRC currently focuses on the parallel

repair of MSR codes in homogeneous network settings. One possible extension is to address the
heterogeneous network settings with varying available bandwidth across different nodes and links.
Another possible extension is to address scattered full-node recovery in addition to hot-standby
full-node recovery (§9). Also, HyperParaRC focuses on optimizing the repair of a single failed block
in a stripe, while optimizing the repair of multiple failed blocks in a stripe is not considered. The
latter case is of particular interest for wide stripes [14, 17], where concurrently failed blocks in a
stripe become more prevalent.

REFERENCES
[1] Accessed in Sept. 2025. Alibaba Cloud - Elastic Compute Service. https://www.alibabacloud.com/product/ecs-pricing-

list/en.
[2] Accessed in Sept. 2025. Alibaba Cloud - ESSDs. https://www.alibabacloud.com/help/en/elastic-compute-service/latest/

essds.
[3] Accessed in Sept. 2025. Apache Hadoop 3.3.4 - HDFS Architecture. https://hadoop.apache.org/docs/r3.3.4/hadoop-

project-dist/hadoop-hdfs/HdfsDesign.html.
[4] Accessed in Sept. 2025. Apache Hadoop 3.3.4 - HDFS Erasure Coding. https://hadoop.apache.org/docs/r3.3.4/hadoop-

project-dist/hadoop-hdfs/HDFSErasureCoding.html.
[5] Accessed in Sept. 2025. Backblaze Vaults: Zettabyte-Scale Cloud Storage Architecture. https://www.backblaze.com/

blog/vault-cloud-storage-architecture/.
[6] Accessed in Sept. 2025. Ceph - Erasure code. http://docs.ceph.com/docs/master/rados/operations/erasure-code/.
[7] Accessed in Sept. 2025. Intel Intelligent Storage Acceleration Library. https://github.com/intel/isa-l.
[8] Accessed in Sept. 2025. redis.io. https://redis.io/.
[9] Yunren Bai, Zihan Xu, Haixia Wang, and Dongsheng Wang. 2019. Fast Recovery Techniques for Erasure-Coded

Clusters in Non-uniform Traffic Network. In Proceedings of the 48th International Conference on Parallel Processing.
[10] Alexandros G Dimakis, P Brighten Godfrey, Yunnan Wu, Martin J Wainwright, and Kannan Ramchandran. 2010.

Network Coding for Distributed Storage Systems. IEEE Transactions on Information Theory 56, 9 (2010), 4539--4551.
[11] Daniel Ford, François Labelle, Florentina I Popovici, Murray Stokely, Van-Anh Truong, Luiz Barroso, Carrie Grimes,

and Sean Quinlan. 2010. Availability in Globally Distributed Storage Systems. In Proceedings of the 8th USENIX
conference on Operating systems design and implementation.

ACM Trans. Storage, Vol. 1, No. 1, Article 1. Publication date: January 2024.

https://www.alibabacloud.com/product/ecs-pricing-list/en
https://www.alibabacloud.com/product/ecs-pricing-list/en
https://www.alibabacloud.com/help/en/elastic-compute-service/latest/essds
https://www.alibabacloud.com/help/en/elastic-compute-service/latest/essds
https://hadoop.apache.org/docs/r3.3.4/hadoop-project-dist/hadoop-hdfs/HdfsDesign.html
https://hadoop.apache.org/docs/r3.3.4/hadoop-project-dist/hadoop-hdfs/HdfsDesign.html
https://hadoop.apache.org/docs/r3.3.4/hadoop-project-dist/hadoop-hdfs/HDFSErasureCoding.html
https://hadoop.apache.org/docs/r3.3.4/hadoop-project-dist/hadoop-hdfs/HDFSErasureCoding.html
https://www.backblaze.com/blog/vault-cloud-storage-architecture/
https://www.backblaze.com/blog/vault-cloud-storage-architecture/
http://docs.ceph.com/docs/master/rados/operations/erasure-code/
https://github.com/intel/isa-l
https://redis.io/

1:36 Li et al.

[12] Chuang Gan, Yuchong Hu, Leyan Zhao, Xin Zhao, Pengyu Gong, and Dan Feng. 2025. Revisiting network coding for
warm blob storage. In Proceedings of the 23rd USENIX Conference on File and Storage Technologies.

[13] Yuchong Hu, Henry C. H. Chen, Patrick P. C. Lee, and Yang Tang. 2012. NCCloud: Applying Network Coding for the
Storage Repair in a Cloud-of-clouds. In Proceedings of the 10th USENIX conference on File and Storage Technologies.

[14] Yuchong Hu, Liangfeng Cheng, Qiaori Yao, Patrick P. C. Lee, Weichun Wang, and Wei Chen. 2021. Exploiting
Combined Locality for Wide-Stripe Erasure Coding in Distributed Storage. In Proceedings of the 19th USENIX Conference
on File and Storage Technologies.

[15] Cheng Huang, Huseyin Simitci, Yikang Xu, Aaron Ogus, Brad Calder, Parikshit Gopalan, Jin Li, Sergey Yekhanin, et al.
2012. Erasure Coding in Windows Azure Storage. In Proceedings of the 2012 USENIX conference on Annual Technical
Conference.

[16] Bert Hubert, Jacco Geul, and Simon Séhier. Accessed in Sept. 2025. The Wonder Shaper 1.4.1. https://github.com/
magnific0/wondershaper.

[17] Saurabh Kadekodi, Shashwat Silas, David Clausen, and Arif Merchant. 2023. Practical Design Considerations for Wide
Locally Recoverable Codes (LRCs). In Proceedings of the 21st USENIX Conference on File and Storage Technologies.

[18] Osama Khan, Randal C Burns, James S Plank, William Pierce, and Cheng Huang. 2012. Rethinking erasure codes for
cloud file systems: minimizing I/O for recovery and degraded reads. In Proceedings of the 10th USENIX conference on
File and Storage Technologies.

[19] Oleg Kolosov, Gala Yadgar, Matan Liram, Itzhak Tamo, and Alexander Barg. 2018. On Fault Tolerance, Locality, and
Optimality in Locally Repairable Codes. In Proceedings of the 2018 USENIX Conference on Usenix Annual Technical
Conference.

[20] Katina Kralevska, Danilo Gligoroski, Rune E Jensen, and Harald Øverby. 2018. Hashtag erasure codes: From theory to
practice. IEEE Transactions on Big Data 4, 4 (2018), 516--529.

[21] Runhui Li, Xiaolu Li, Patrick P. C. Lee, and Qun Huang. 2017. Repair Pipelining for Erasure-Coded Storage. In
Proceedings of the 2017 USENIX Conference on Usenix Annual Technical Conference.

[22] Xiaolu Li, Keyun Cheng, Kaicheng Tang, Patrick PC Lee, Yuchong Hu, Dan Feng, Jie Li, and Ting-Yi Wu. 2023. ParaRC:
Embracing Sub-Packetization for Repair Parallelization in MSR-Coded Storage. In Proceedings of the 21st USENIX
Conference on File and Storage Technologies.

[23] Xiaolu Li, Runhui Li, Patrick P. C. Lee, and Yuchong Hu. 2019. OpenEC: Toward Unified and Configurable Erasure
Coding Management in Distributed Storage Systems. In Proceedings of the 17th USENIX Conference on File and Storage
Technologies.

[24] Xiaolu Li, Zuoru Yang, Jinhong Li, Runhui Li, Patrick P. C. Lee, Qun Huang, and Yuchong Hu. 2021. Repair pipelining
for erasure-coded storage: Algorithms and evaluation. ACM Transactions on Storage 17, 2 (2021), 13:1--13:29.

[25] Shiyao Lin, Guowen Gong, Zhirong Shen, Patrick P. C. Lee, and Jiwu Shu. 2021. Boosting Full-Node Repair in
Erasure-Coded Storage. In Proceedings of the 2021 USENIX Annual Technical Conference.

[26] Subrata Mitra, Rajesh Panta, Moo-Ryong Ra, and Saurabh Bagchi. 2016. Partial-Parallel-Repair (PPR): A Distributed
Technique for Repairing Erasure Coded Storage. In Proceedings of the Eleventh European Conference on Computer
Systems.

[27] Subramanian Muralidhar, Wyatt Lloyd, Sabyasachi Roy, Cory Hill, Ernest Lin, Weiwen Liu, Satadru Pan, Shiva Shankar,
Viswanath Sivakumar, Linpeng Tang, et al. 2014. f4: Facebook’s Warm BLOB Storage System. In Proceedings of the
11th USENIX conference on Operating Systems Design and Implementation.

[28] Lluis Pamies-Juarez, Filip Blagojevic, Robert Mateescu, Cyril Guyot, Eyal En Gad, and Zvonimir Bandic. 2016. Opening
the Chrysalis: On the Real Repair Performance of MSR Codes. In Proceedings of the 14th Usenix Conference on File and
Storage Technologies.

[29] Karl Pearson. 1895. VII. Note on regression and inheritance in the case of two parents. Proceedings of the Royal Society
of London 58, 347-352 (1895), 240--242.

[30] Andreas-Joachim Peters, Michal Kamil Simon, and Elvin Alin Sindrilaru. 2019. Erasure Coding for production in the
EOS Open Storage system. In Proceedings of 24th International Conference on Computing in High Energy and Nuclear
Physics.

[31] James S. Plank, Jianqiang Luo, Catherine D. Schuman, Lihao Xu, and Zooko Wilcox-O’Hearn. 2009. A Performance
Evaluation and Examination of Open-Source Erasure Coding Libraries for Storage. In Proceedings of the 7th USENIX
Conference on File and Storage Technologies.

[32] K. V. Rashmi, Preetum Nakkiran, Jingyan Wang, Nihar B. Shah, and Kannan Ramchandran. 2015. Having Your Cake
and Eating It Too: Jointly Optimal Erasure Codes for I/O, Storage, and Network-bandwidth. In Proceedings of the 13th
USENIX Conference on File and Storage Technologies.

[33] K. V. Rashmi, Nihar B. Shah, Dikang Gu, Hairong Kuang, Dhruba Borthakur, and Kannan Ramchandran. 2013. A
Solution to the Network Challenges of Data Recovery in Erasure-coded Distributed Storage Systems: A Study on the
Facebook Warehouse Cluster. In Proceedings of the 5th USENIX conference on Hot Topics in Storage and File Systems.

ACM Trans. Storage, Vol. 1, No. 1, Article 1. Publication date: January 2024.

https://github.com/magnific0/wondershaper
https://github.com/magnific0/wondershaper

Harnessing Parallelism for Fast Data Repair in MSR-Coded Storage 1:37

[34] K. V. Rashmi, Nihar B. Shah, Dikang Gu, Hairong Kuang, Dhruba Borthakur, and Kannan Ramchandran. 2014. A
‘‘Hitchhiker’s’’ Guide to Fast and Efficient Data Reconstruction in Erasure-Coded Data Centers. In Proceedings of the
2014 ACM conference on SIGCOMM.

[35] K. V. Rashmi, Nihar B. Shah, and Kannan Ramchandran. 2017. A Piggybacking Design Framework for Read-and
download-efficient Distributed Storage Codes. IEEE Transactions on Information Theory 63, 9 (2017), 5802--5820.

[36] Irving S Reed and Gustave Solomon. 1960. Polynomial Codes over Certain Finite Fields. J. Soc. Indust. Appl. Math. 8, 2
(1960), 300--304.

[37] Maheswaran Sathiamoorthy, Megasthenis Asteris, Dimitris Papailiopoulos, Alexandros G Dimakis, Ramkumar Vadali,
Scott Chen, and Dhruba Borthakur. 2013. XORing Elephants: Novel Erasure Codes for Big Data. Proceedings of the
39th International Conference on Very Large Data Bases 6, 5 (2013), 325--336.

[38] Nihar B. Shah, K. V. Rashmi, P Vijay Kumar, and Kannan Ramchandran. 2012. Interference Alignment in Regenerating
Codes for Distributed Storage: Necessity and Code Constructions. IEEE Transactions on Information Theory 58, 4 (2012),
2134--2158.

[39] Yingdi Shan, Kang Chen, and Yongwei Wu. 2023. Explore Data Placement Algorithm forBalanced Recovery Load
Distribution.. In Proceedings of the 2023 USENIX Annual Technical Conference.

[40] Shan, Yingdi and Chen, Kang and Gong, Tuoyu and Zhou, Lidong and Zhou, Tai and Wu, Yongwei. 2021. Geometric
Partitioning: Explore the Boundary of Optimal Erasure Code Repair. In Proceedings of the ACM SIGOPS 28th Symposium
on Operating Systems Principles.

[41] Zhirong Shen, Xiaolu Li, and Patrick PC Lee. 2019. Fast predictive repair in erasure-coded storage. In Proceedings of
the 49th Annual IEEE/IFIP International Conference on Dependable Systems and Networks. 556--567.

[42] Itzhak Tamo, Zhiying Wang, and Jehoshua Bruck. 2012. Zigzag codes: MDS Array Codes with Optimal Rebuilding.
IEEE Transactions on Information Theory 59, 3 (2012), 1597--1616.

[43] Myna Vajha, Vinayak Ramkumar, Bhagyashree Puranik, Ganesh Kini, Elita Lobo, Birenjith Sasidharan, P Vijay Kumar,
Alexandar Barg, Min Ye, Srinivasan Narayanamurthy, et al. 2018. Clay Codes: Moulding MDS Codes to Yield an MSR
Code. In Proceedings of the 16th USENIX Conference on File and Storage Technologies.

[44] Zhufan Wang, Guangyan Zhang, Yang Wang, Qinglin Yang, and Jiaji Zhu. 2019. Dayu: Fast and Low-interference Data
Recovery in Very-large Storage Systems. In Proceedings of the 2019 USENIX Conference on Usenix Annual Technical
Conference.

[45] Hakim Weatherspoon and John D. Kubiatowicz. 2002. Erasure Coding vs. Replication: A Quantitative Comparison. In
Proceedings of International Workshop on Peer-to-Peer Systems.

[46] Liangliang Xu, Min Lyu, Qiliang Li, Lingjiang Xie, Cheng Li, and Yinlong Xu. 2021. SelectiveEC: Towards balanced
recovery load on erasure-coded storage systems. IEEE Transactions on Parallel and Distributed Systems 33, 10 (2021),
2386--2400.

[47] Qiaori Yao, Yuchong Hu, Xinyuan Tu, Patrick P. C. Lee Lee, Dan Feng, Xia Zhu, Xiaoyang Zhang, Zhen Yao, and
Wenjia Wei. 2022. PivotRepair: Fast Pipelined Repair for Erasure-Coded Hot Storage. In Proceedings of the42nd IEEE
International Conference on Distributed Computing Systems.

[48] Hai Zhou, Dan Feng, and YuchongHu. 2021. Multi-level Forwarding and Scheduling Repair Technique inHeterogeneous
Network for Erasure-coded Clusters. In Proceedings of the 50th International Conference on Parallel Processing.

Received Dec. 30, 2024; revised May 20, 2025; accepted Sept. 13, 2025

ACM Trans. Storage, Vol. 1, No. 1, Article 1. Publication date: January 2024.

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Basics of Erasure Coding
	2.2 Reducing Repair Bandwidth
	2.3 Reducing Maximum Repair Load
	2.4 Motivation and Challenges

	3 Model and Analysis
	3.1 Characterizing Repair Solutions
	3.2 Evaluating Repair Solutions
	3.3 Trade-off Analysis

	4 Heuristic Design
	4.1 Pruning-based Heuristic
	4.2 Analysis for pECDAGs
	4.3 Affinity-based Heuristic
	4.4 Application for Butterfly Codes
	4.5 Summary

	5 Full-node Recovery
	5.1 Limitations of Intra-Stripe-Only Parallel Repair
	5.2 Intra-Stripe and Inter-Stripe Parallel Repair

	6 HyperParaRC Design
	6.1 Architecture
	6.2 Implementation

	7 Evaluation
	7.1 Performance of Finding the Approximate MLP
	7.2 Simulations for Full-node Recovery
	7.3 Testbed Experiments for Single-Block Repair
	7.4 Testbed Experiments for Full-Node Recovery
	7.5 Performance of HDFS-3 Integration

	8 Related Work
	9 Discussion
	10 Conclusions and Future Work
	References

