
IEEE/ACM TRANSACTIONS ON NETWORKING 1

Toward Distributed Write-back Caching in
Programmable Switches

Siyuan Sheng, Jiazhen Cai, Qun Huang, Lu Tang, and Patrick P. C. Lee

Abstract—Skewed write-intensive key-value storage workloads
are increasingly observed in modern data centers, yet they also
incur server overloads due to load imbalance. Programmable
switches provide viable solutions for realizing load-balanced
caching on the I/O path, and hence implementing write-back
caching in programmable switches is a natural approach to absorb
frequent writes and improve write performance. However, enabling
in-switch write-back caching is challenged by not only the strict
programming rules and limited stateful memory of programmable
switches, but also the need for reliable protection against data loss
due to switch failures. We first propose FarReach, a new caching
framework that supports fast, available, and reliable in-switch
write-back caching. FarReach carefully co-designs both the control
and data planes for cache management in programmable switches,
so as to achieve high data-plane performance with lightweight
control-plane management. We further extend FarReach into
DistReach, which reduces the reliability maintenance overhead
via distributed switch deployment. Our experimental results on a
Tofino-switch testbed show that FarReach achieves a throughput
gain of up to 6.6× over a state-of-the-art in-switch caching
approach under skewed write-intensive workloads. Also, DistReach
reduces the crash recovery time of FarReach by 77.4%.

Index Terms—Programmable switches, distributed write-back
caching, reliability

I. INTRODUCTION

Key-value stores are widely deployed in modern data centers
to manage structured data (in units of records) for data-intensive
applications, such as social networking [2]–[4], web indexing
[5], and e-commerce [6]. Practical key-value storage workloads
are traditionally read-intensive (e.g., with a read-to-write ratio
of up to 30:1 at Facebook’s Memcached [4]). However, recent
field studies of production key-value stores indicate a shift
toward write-intensive workloads. For example, more than 20%
of Twitter’s Twemcache clusters experience more writes than

This work was supported by National Key Research and Development
Program of China (2023YFB2904600), National Natural Science Foundation
of China (62172007 and 62302410), Research Grants Council of Hong Kong
(GRF 14201523), and Fundamental Research Funds for the Central Universities
under Grant ZK1142.

An earlier version of this paper appeared at the 2023 USENIX Annual
Technical Conference (ATC’23) [1]. In this extended version, we propose
DistReach, which supports distributed in-switch write-back caching with
significantly lower reliability maintenance overhead than FarReach. We also add
new evaluation results with both software simulation and hardware deployment.

Siyuan Sheng, Jiazhen Cai, and Patrick P. C. Lee are with the Department
of Computer Science and Engineering, The Chinese University of Hong Kong,
Hong Kong (e-mail: sysheng21@cse.cuhk.edu.hk; jzcai@cse.cuhk.edu.hk;
pclee@cse.cuhk.edu.hk).

Qun Huang is with the Department of Computer Science and Technology,
Peking University, Beijing 100871, China (e-mail: huangqun@pku.edu.cn).

Lu Tang is with the Department of Computer Science and Technology,
Xiamen University, Xiamen 361005, China (e-mail: tanglu@xmu.edu.cn).

Corresponding author: Lu Tang.

reads [2], and the AI/machine-learning services at Facebook’s
RocksDB production have 92.5% of read-modify-writes [7].
Also, write-intensive workloads are often skewed; for example,
25% of frequently accessed (i.e., hot) records dominate the
write workloads at Twitter’s Twemcache clusters [2].

Enabling high write performance for key-value stores in
data centers is challenging. Write requests from a client
to a key-value storage server often suffer from long round-
trip times (RTTs) due to switch-to-server transmissions and
server-side processing. If the server is overloaded, I/O requests
may experience long queuing delays or even be dropped. In
distributed key-value stores that span multiple servers, a small
portion of servers may become bottlenecked by substantial
requests for hot records under skewed workloads, thereby
leading to load imbalance [8], [9].

Programmable switches [10] offer an opportunity to improve
the write performance of key-value stores. By deploying a
programmable switch on the I/O path (e.g., as a top-of-rack
switch in a rack-based data center), it can intercept I/O requests
for all servers within the rack and provide stateful memory that
can be programmed to cache frequently accessed records. For
each client request, the switch can read or write any of its cached
records and directly respond to the client, thereby reducing the
overhead of commodity servers (e.g., CPU processing, memory
access, and slow PCIe transmission of disk I/O) and eliminating
the long RTT to access server-side records. Load balancing
is achievable by keeping only O(m logm) records, where m
is the number of servers [11]. Recent studies have shown
the effectiveness of load-balanced in-switch caching [12]–[15]
for high throughput and sub-RTT latencies. However, existing
in-switch caching approaches [12]–[15] target read-intensive
workloads and use write-through caching (i.e., write requests
update records both in the in-switch cache and the server side).
Thus, they do not improve write performance compared with
no caching under skewed write-intensive workloads.

To address skewed write-intensive workloads, it is desir-
able to implement in-switch write-back caching (i.e., write
requests update records in the in-switch cache only without
immediately updating the server side) to absorb frequent
writes to hot records. However, enabling write-back caching
in programmable switches faces several challenges. First, in-
switch write-back caching raises the issue of synchronizing
records in both the in-switch cache and server-side storage.
Without proper synchronization, the latest records may become
unavailable to clients during cache eviction. Second, since
the in-switch cache keeps the latest records under the write-
back policy, protecting against data loss in the in-switch cache
during switch failures is critical. However, providing fault

IEEE/ACM TRANSACTIONS ON NETWORKING 2

tolerance guarantees for the in-switch cache is challenged by
the limited switch resources (e.g., limited stages with only
tens of megabytes for stateful memory) [10], [16]. Finally,
the strict pipeline programming model and limited resources
in programmable switches necessitate a design of simple but
efficient caching mechanisms. While programmable switches
can be managed with a software controller to relax switch
resource constraints [14], [15], the control-plane interaction
between the controller and programmable switches can incur
long delays and slow down data-plane I/O processing. Even
worse, the synchronization and fault tolerance issues complicate
cache management with extra control-plane overhead, thereby
further degrading I/O performance.

In this paper, we present the design, implementation, and
evaluation of in-switch write-back caching frameworks. We first
propose FarReach, a fast, available, and reliable in-switch write-
back caching framework to improve the I/O performance of key-
value stores under skewed write-intensive workloads. FarReach
exploits a careful co-design of the control and data planes by
offloading cache management to a centralized controller in the
control plane, while achieving high data-plane performance
with lightweight control-plane management. It comprises the
following design features: (i) fast cache admission that admits
hot records into the in-switch cache without blocking data-
plane I/O traffic; (ii) available cache eviction that ensures the
latest records evicted from the in-switch cache remain available
to read requests; and (iii) reliable snapshot generation and zero-
loss crash recovery for the protection against data loss during
switch failures.

FarReach targets single-switch deployment. While FarReach
provides reliability guarantees, it incurs extra control-plane
overhead in snapshot generation and requires client-side col-
laboration for zero-loss crash recovery (see §III for details).
Thus, we further propose DistReach, which extends FarReach
to support the deployment of distributed in-switch write-back
caching with multiple programmable switches. DistReach
improves the reliability maintenance of FarReach by replicating
hot records across multiple switches for reliability, so as to
eliminate the control-plane overhead of snapshot generation
and the need for client-side collaboration.

We implement the in-switch cache prototypes of FarReach
and DistReach in P4 [17], and compile them into the Tofino
switch chipset [18] and software switches [19]. We evalu-
ate FarReach and DistReach with YCSB [20] and synthetic
workloads. Compared with NetCache [14], a state-of-the-
art in-switch caching framework that targets read-intensive
workloads and uses write-through caching, FarReach achieves
a throughput gain of up to 6.6× across 128 simulated servers
under skewed write-intensive workloads. FarReach also has low
access latencies, fast crash recovery, and limited switch resource
usage. Furthermore, DistReach reduces the crash recovery time
of FarReach by 77.4% after a switch failure. We also conduct
software simulation using Mininet [21] and show that DistReach
achieves a throughput gain of up to 6.8× over DistCache [15],
a state-of-the-art distributed in-switch caching framework.

We open-source both FarReach and DistReach (including the
prototypes for Tofino-switch hardware evaluation and software
simulation) at https://github.com/adslabcuhk/distreach.

Ingress
Pipelines

Ingress
Ports Traffic

Manager Egress
Pipelines

Egress
Ports

Pa
ck

et

Ingress/Egress Pipeline

Pa
rs

er

St
ag

e
1

…

St
ag

e
S

De
pa

rs
er

Pa
ck

et

Switch OS

Data Plane
Control Plane

Programmable Switch

St
ag

e
2

St
ag

e
3PH
V

PH
V

PH
V

PH
V

Figure 1: Programmable switch architecture.

II. BACKGROUND AND MOTIVATION

A. Programmable Switches

Figure 1 shows the programmable switch architecture, which
consists of both a data plane and a control plane. The data
plane processes packets with stringent timing requirements for
line-rate forwarding. It contains multiple ingress and egress
pipelines. When a packet arrives at the switch through an
ingress port, it first enters the corresponding ingress pipeline,
which specifies an egress port. The traffic manager, which
interconnects the ingress and egress pipelines, then transfers
the packet to the egress pipeline corresponding to the specified
egress port. Finally, the packet leaves the switch through the
egress port. On the other hand, the control plane contains an
operating system within the switch, called the switch OS, to
manage the forwarding rules of the data plane. The switch OS
of each switch interacts with a centralized controller, which
manages the packet processing of all switches in a network-
wide manner.

Each ingress/egress pipeline follows a reconfigurable
match tables (RMT) model [10]. When a packet enters an
ingress/egress pipeline, it is first processed by a parser, which
extracts packet header fields into the packet header vector
(PHV). The pipeline transfers the PHV across a number of
stages, each with multiple match-action tables. Each stage also
contains a limited amount of SRAM, composed of tens of
memory blocks, for tracking stateful information accessible by
the match-action tables. A match-action table can use an ALU
to perform arithmetic or logical operations and store the results
in the PHV. It matches the fields in the PHV from the previous
stage and performs the corresponding action to update the
PHV for the next stage, with match-action rules configurable
by the switch OS. A match-action table can also use a special
kind of ALU, called a stateful ALU, to store results in on-chip
memory. To meet stringent timing requirements, the memory
blocks associated with a stage cannot be accessed from other
stages, and the processing of a packet within a stage can only
access a limited number of memory blocks associated with
the stage, with each memory block accessed at most once.
After being updated by all stages, the PHV is processed by a
deparser, which reconstructs the new packet header fields. The
header fields are combined with the original payload to form
the packet to be forwarded.

IEEE/ACM TRANSACTIONS ON NETWORKING 3

B. Challenges

Write caching policies can be classified into write-through
and write-back. Write-through synchronously updates records
both in the cache and on the server side; in contrast, write-back
(a.k.a. delayed-write) updates records in the cache only, and
later reflects the updates on the server side. Existing in-switch
caches [12]–[15] mainly implement write-through caching. In
this work, we focus on write-back caching, as it improves write
performance over write-through caching by delaying server-side
updates. However, managing write-back caching is non-trivial
and faces three unique challenges in programmable switches.
Performance challenge. A programmable switch has a re-
stricted pipeline programming model (i.e., it can only access
a limited number of memory blocks) and scarce hardware
resources (i.e., it has a limited number of stages and stateful
ALUs) [10]. It is necessary to offload switch-level cache
management (including cache admission and eviction) to a
centralized controller [14], [15], while the switch only updates
the cached records in the data plane under the write-back policy.
However, due to the high controller-to-switch latency, control-
plane processing is much slower than data-plane processing in a
programmable switch, thereby bottlenecking I/O performance.
Availability challenge. Under write-back caching, both cache
admission and eviction algorithms need careful coordination
between the control and data planes, so as to correctly maintain
the latest records in either the in-switch cache or server-side
storage; otherwise, outdated records may be returned to the
client. Such an issue does not exist in write-through caching
[14], [15], as it always keeps the latest records on the server side.
The availability issue is even more challenging in programmable
switches, since the controller needs to manage both the cache
and server updates. Also, the controller is not on the packet
forwarding path and has no view of the traversed packets in
the data plane.
Reliability challenge. Under write-back caching, the latest
records may only be kept in the in-switch cache, with updates
to the server-side storage delayed. If the switch crashes, all the
latest records are lost. Such an issue again does not exist in
write-through caching, as the latest records can be persistently
kept in server-side storage [14], [15].

III. FARREACH DESIGN

A. Design Overview

We present the design of FarReach. Note that FarReach
targets single-switch deployment. We extend FarReach to
DistReach with multiple-switch deployment in §IV.
Architecture. FarReach is a fast, available, and reliable in-
switch write-back cache architecture designed to improve the
I/O performance and load balancing of server-side key-value
stores. Figure 2 shows the architecture of FarReach, in which
clients are connected via the in-switch cache to multiple servers
for key-value storage, while the controller is responsible for
cache admission and eviction. Specifically, the switch maintains
a lookup table for the cached records. For each client request,
the switch first checks the lookup table to determine whether the
requested record is cached (i.e., a cache hit) or not (i.e., a cache
miss). For each cache hit, the switch loads the cached record

Programmable Switch

Client

Server

Switch OS

Server
Cache
Misses

Cache
Hits

Controller

Cache Management

Key-value
Stores

Control
Plane

Data
Plane

Server

…

Client

…

Client

Lookup
Table

Cached
Records

Packet
Forwarding

In-switch Cache

Figure 2: FarReach’s architecture.

Table I: Summary of design features of FarReach.

Design features Design details

Non-blocking
cache admission
(§III-B)

FarReach tracks the “outdated” or “latest” state
of each cached record to limit conservative
reads. It also associates a validity register with
each cached record for atomicity.

Available cache
eviction (§III-C)

FarReach uses a “to-be-evicted” flag to make
each evicted record available. It identifies latest
records by sequence numbers and handles
packet loss by record embedding.

Crash-consistent
snapshot
generation
(§III-D)

FarReach reports original cached records to the
controller. It recirculates writes for atomicity,
and exploits client-side record preservation for
zero-loss recovery.

and forwards a response to the client. For each cache miss,
the switch forwards the request to the corresponding server to
access server-side key-value stores. As the controller has no
view of the data plane (§II-B), cache management decisions
are triggered by the switches (in the data plane) based on the
workload patterns.
Goals. FarReach’s core idea is a careful co-design of the
control and data planes. Table I summarizes our design features.
FarReach aims for three design goals:

• Fast access (§III-B). FarReach supports non-blocking cache
admission for admitting hot records into the in-switch cache
to achieve high write performance. It also ensures atomicity
in cache admission under the multi-pipeline setting of
programmable switches.

• Availability (§III-C). FarReach ensures that any latest record
evicted from the in-switch cache remains available to clients.

• Reliability (§III-D). FarReach protects against data loss
during switch failures. It uses a crash-consistent snapshot
generation algorithm to create snapshots of the in-switch
cache state. It also ensures atomicity of snapshot generation
in the multi-pipeline setting and achieves zero-loss crash
recovery by coupling snapshot generation with upstream
backup [22].

Design assumptions. FarReach currently supports a fixed key
length of 16 bytes and a variable value length of up to 128 bytes
due to limited switch resources; the same constraint is also
assumed in NetCache [14] and DistCache [15]. Thus, FarReach
is suitable for workloads dominated by small records (e.g.,
ZippyDB and UP2X in Facebook’s RocksDB production [7]).
For large records, FarReach simply relays them between clients
and servers without caching.

IEEE/ACM TRANSACTIONS ON NETWORKING 4

Client

Programmable Switch

Controller

Server①

②

③

Count-Min
Sketch

CacheWrite R

Send R

Switch OS
Subsequent

writes

Programmable Switch

Controller
①

②
Cache

Admit R
“outdated”

Switch OS

Write R
“latest”

Read R
“latest”

③

Conservative
reads

③
Client Server

Programmable Switch

Controller
Send

R (K, V)

Cache

Ingress
Pipelines

② K

② K
Validity ② V

Egress Pipeline

①② Set
“invalid”

Admit
R (K, V)

③Set
“valid”

Switch OS

Server

(a) Before cache admission (b) After cache admission

Figure 3: Non-blocking cache admission in FarReach. Before admitting a record R,
the switch forwards subsequent writes to the server in a non-blocking manner. After
admitting R, the switch conservatively forwards reads for R to the server until it receives
a new write from the client or a read from the server; it also marks R as “latest”.

Figure 4: Atomic validity control in FarReach.
For a record R with a key K and a value V , the
controller maintains an egress validity register
for atomicity of cache admission.

FarReach does not support range queries, since programmable
switches cannot feasibly maintain sorted structures with the
memory access limitations (§II-A) and servers are unaware of
the latest in-switch records under the write-back policy. In this
work, we focus on skewed write-intensive workloads without
range queries.

FarReach guarantees reliability for switch failures. We
assume that the durability of server-side records is addressed
by the persistence feature of key-value stores [23]–[25].

B. Non-blocking Cache Admission
Problem of cache admission. A naı̈ve design of cache
admission in programmable switches can introduce blocking to
write requests. Due to limited switch resources, the controller
is responsible for cache management (§II-B). Suppose that the
controller is about to admit a new hot record into the in-switch
cache. As control-plane processing is slower than data-plane
packet forwarding (§II-B), the switch may receive subsequent
writes for the same key before the record from the first write
is admitted. Such subsequent writes need to be blocked until
the record is admitted; otherwise, the admitted record may
overwrite the newer records from the subsequent writes that
arrive earlier at the switch due to the write-back policy.
Cache admission policy. Before proposing our cache admis-
sion design, we first describe the cache admission policy in
FarReach. FarReach currently triggers cache admission for the
hot records with high access frequencies. It follows the design
of NetCache [14] and deploys space-efficient in-switch data
structures for frequency tracking, due to the limited in-switch
SRAM. Specifically, FarReach maintains a Count-Min Sketch
[26] to track the access frequencies of uncached records for
cache admission, as well as a counter array to track the access
frequencies of cached records for cache eviction (§III-C), within
the switch. A Count-Min Sketch is a fixed-size, error-bounded
summary data structure composed of multiple rows with a fixed
number of counters each. FarReach samples incoming requests
for frequency monitoring to reduce processing overhead. For
each sampled request to an uncached key, FarReach updates the
Count-Min Sketch and estimates the access frequency. If the
frequency exceeds a pre-defined threshold, FarReach identifies
the key as hot and triggers the controller to admit the hot record
into the in-switch cache, while also tracking the frequency of the
cached record in the counter array. To avoid counter overflow,
FarReach periodically resets all counters of the Count-Min

Sketch and the counter array to zero. Note that we do not
claim the novelty of this design.
Our cache admission design. We propose a non-blocking
cache admission algorithm for FarReach, as shown in Figure 3.
Suppose that a client issues a write request for a record (say, R)
to a server. If R is not yet cached and is identified as hot based
on the Count-Min Sketch, the switch forwards R to the server
(1 in Figure 3(a)). The server forwards R to the controller for
cache admission (2 in Figure 3(a)). Note that a read request
issued by a client can also trigger cache admission, except
that the server will send the server-side latest record R to the
controller (2 in Figure 3(a)). Before the controller admits
R into the in-switch cache, the switch forwards subsequent
writes for the same R’s key (i.e., cache misses) to the server
without updating the cache (3 in Figure 3(a)). The server
directly processes the writes without blocking, thereby keeping
the latest record.

After R is admitted, FarReach temporarily marks the admitted
R as “outdated” (1 in Figure 3(b)). For any read request to R’s
key (which is “outdated”), FarReach conservatively forwards
the read request to the server to obtain the latest record (2 in
Figure 3(b)).

Conservative reads increase read latencies due to server-
side processing. To limit conservative reads, our insight is
that all requests and responses must traverse the switch, so
FarReach can monitor all traversed requests and responses
to mark the “outdated” cached record as “latest” as early as
possible. Specifically, FarReach marks the “outdated” record as
“latest” (3 in Figure 3(b)) if it sees: (i) a write request from a
client for the same key (which carries the latest record), or (ii)
a read response from the server for the same key (which carries
the latest record while the cached record remains outdated).
When a cached record is marked as “latest”, it can be directly
updated by subsequent writes based on the write-back policy.
Under skewed write-intensive workloads, an “outdated” cached
record can soon be marked as “latest” by a subsequent write
for the same key, so conservative reads are limited.

Recall that a server in FarReach is responsible for sending
a record to the controller for cache admission (i.e., 2 in
Figure 3(a)). Thus, it can determine whether any record of the
same key has been sent to the controller and avoid sending
duplicate records of the same key, thereby limiting control-
plane bandwidth usage (e.g., up to 1.41 MiB/s; see §VI-D).
This contrasts with NetCache [14], in which a switch sends

IEEE/ACM TRANSACTIONS ON NETWORKING 5

Programmable Switch

Controller

①
②

③
Send R

Load R

Switch OS

Evict R

Read R
Write R

Cache

R à (“to-be-
evicted”, seq) Client Server

Programmable Switch

①

Switch OS
Read

Cache

“to-be-evicted” and
“outdated” R, seq

①Read
embedded
w/ (R, seq)

②Read
latest version

Client Server
Stale

Version

Programmable Switch

Controller

②

③Send
original R

Trigger
snapshot

generation

Write R

①
② Load

records

Switch OS

CacheClient

(a) Cache eviction workflow (b) Record embedding

Figure 5: Available cache eviction in FarReach. For a record R to be evicted, it is
marked as “to-be-evicted” and is made available to the client’s read if it is also the latest
record. To handle switch-server packet loss, if R is “outdated”, the switch embeds the
“outdated” evicted record into any read and forwards the read to the server. The server
compares the received read with the server-side version and keeps the latest version.

Figure 6: Crash-consistent snapshot gen-
eration in FarReach. If the switch receives
the first write to a cached record R during
snapshot generation, it forwards the original
R to the controller before R is updated.

records to the controller for cache admission and needs an
in-switch Bloom Filter [27] to avoid duplicate submissions.
FarReach removes the need for maintaining an in-switch Bloom
Filter, thereby saving switch resource usage for implementing
in-switch write-back caching.
Atomic validity control. FarReach stores the keys and values
of records in the ingress and egress pipelines, respectively, to
accommodate the limited number of stages of a single pipeline.
However, it is critical but non-trivial to provide atomicity for
cache admission under the multi-pipeline setting. Specifically,
a switch can only provide atomicity within a single pipeline
rather than multiple pipelines, yet requests for the same key
can arrive from different ingress pipelines. Without atomicity
of cache admission, write requests to the same key arriving
from different ingress pipelines may have inconsistent views
on the key: cached or uncached. For the former, the cached
record is updated directly by the write-back policy; for the
latter, the requests are forwarded to the server based on our
non-blocking cache admission design. Thus, the key may be
updated with an inconsistent value.

Our observation is that key-value records are often partitioned
by keys (e.g., using consistent hashing [28]) among servers con-
nected to different egress pipelines. Even though the requests for
the same key can enter a switch from different ingress pipelines,
FarReach still forwards them to the same egress pipeline
corresponding to the same server. By maintaining a cache
instance in each egress pipeline, FarReach can accommodate
requests for the same server. Note that such forwarding does not
incur cross-pipeline imbalance, as the bottleneck lies in server-
side storage (including both CPU processing and disk I/O)
instead of line-rate switches. For example, in our evaluation,
the system throughput is bottlenecked by server-side storage and
is only up to 12.1 MB/s under 128 simulated servers (§VI-B),
significantly lower than the maximum throughput of 3.2 Tbps of
a two-pipeline Tofino switch [18]. Thus, FarReach can provide
atomicity for each record being admitted, with the aid of the
single egress pipeline that is connected to the corresponding
server, while incurring limited performance degradation.

We propose atomic validity control for cache admission
in FarReach (Figure 4). Specifically, programmable switches
provide atomic primitives for each register within a single
pipeline. FarReach introduces a validity register for each cached
key in an egress pipeline. Before admitting a record R with

key K and value V sent by a server, FarReach first sets the
validity register for R as “invalid” (1 in Figure 4). It then
admits, via the switch OS, V into the egress pipeline and K
into all ingress pipelines (the latter is to ensure consistency
across all ingress pipelines) (2 in Figure 4). Finally, it changes
the validity register to “valid” (3 in Figure 4). Based on the
validity register, FarReach treats a record as a cache hit only
if the key is cached in an ingress pipeline and the validity
register is “valid” in the single egress pipeline; or as a cache
miss otherwise. Thus, if a key has not been admitted into all
ingress pipelines, its record is treated as a cache miss as its
validity register remains “invalid”.

C. Available Cache Eviction

Problem of cache eviction. When the in-switch cache is full,
FarReach selects a cached record to evict by sampling multiple
cached records and selecting the one with the least access
frequency from the counter array (§III-B). The controller then
performs cache eviction on the selected record. Under the write-
back policy, the evicted record may be the latest version that
has not yet been updated in the server. It is critical to ensure
the availability of any latest record during cache eviction. To
achieve this, the controller needs to synchronize the views of
both the switch and the server on the evicted record, especially
when there are concurrent read/write requests for the evicted
record. However, the controller is limited by slow control-plane
processing, which leads to high synchronization overhead.
Our cache eviction design. We propose a cache eviction
algorithm for FarReach that ensures availability, as shown in
Figure 5(a). Our idea is to associate additional metadata with
each cached record in the in-switch cache to maintain the
availability of any evicted record, while mitigating synchro-
nization overhead to the controller. Specifically, when a cached
record (say, R) is to be evicted, the controller first marks R
as “to-be-evicted” and loads R from the in-switch cache (1
in Figure 5(a)). It then sends R to a server for storage (2
in Figure 5(a)). If there is any write request to the “to-be-
evicted” R, FarReach simply forwards the write request to the
server (instead of updating the record in the cache under the
write-back policy) and marks the evicted record as “outdated”.
If there is any read request to the “to-be-evicted” R and R
is “latest” (marked in cache admission (§III-B)), the cache
returns R to the client; otherwise, if R is “outdated” (i.e., it

IEEE/ACM TRANSACTIONS ON NETWORKING 6

has been updated), FarReach forwards the read request to the
server, which holds the latest record. This ensures that any
evicted cached record that is also the latest version remains
available. After the server has stored the latest “to-be-evicted”
cached record, the controller acknowledges the cache to actually
evict the “to-be-evicted” R (3 in Figure 5(a)). Note that all
writes to the “to-be-evicted” R must be forwarded to the server,
regardless of whether the record is cached or uncached, so
FarReach does not have any atomicity issue when evicting R
in the multi-pipeline setting.
Identifying latest records. One subtlety is that a server may
receive a request of storing a record from two possible paths:
(i) the eviction of a record from the cache and (ii) a write
request issued by a client. It is critical to differentiate the latest
version of a record that is finally stored in the server. To resolve
this issue, recall that FarReach forwards the write requests of
the same record to the same egress pipeline corresponding to
the server (§III-B). As programmable switches can provide
atomicity and serialize packets in a single pipeline (§III-B),
FarReach associates a sequence number with each cached record
atomically. It increments the sequence number for each write
request of the key in the egress pipeline based on the serialized
order of accessing the cache, and embeds the sequence number
into the write request. When the server receives a request of
storing a record, it overwrites the existing record only if the
received record has a higher sequence number than the existing
record; otherwise, the received record is discarded.
Handling packet loss. Packet loss in switch-to-server transmis-
sions can compromise the availability of cache eviction. During
cache eviction, FarReach forwards the write request for a “to-
be-evicted” record to the server and marks the evicted record
as “outdated”. If the write request is lost during transmission
(e.g., due to server-side congestion or packet corruption), the
server is not updated with the latest version and retains the
stale version. As the in-switch cache marks the evicted record
as “outdated”, it forwards all subsequent reads to the server,
which returns the stale version. Such an issue does not exist in
cache admission, as a write request updates either the server
(before the record is admitted to the in-switch cache) or the
in-switch cache (after the record is admitted to the in-switch
cache), instead of both of them.

To maintain availability under packet loss, FarReach em-
ploys record embedding during cache eviction, as shown in
Figure 5(b). Our insight is that even though an evicted record
is marked as “outdated” during cache eviction, it can still be
the latest version for serving read requests. Specifically, before
forwarding a read to the server, the in-switch cache embeds
the “outdated” evicted record (if such a record exists) into the
read; the embedded record includes the value and sequence
number assigned by the switch (1 in Figure 5(b)). FarReach
ensures that the latest version is available to any client-issued
read by comparing the embedded record with the server-side
version (2 in Figure 5(b)). If the sequence number embedded
into a read request is larger than that stored in the server (i.e.,
the embedded record is the latest version), FarReach directly
returns the embedded record to the client; otherwise, FarReach
returns the record stored in the server (which is the latest
version) to the client.

D. Crash-consistent Snapshot Generation

To protect against data loss during switch failures (§II-B),
FarReach periodically generates snapshots of in-switch cached
records. It also lets each client preserve the cached records
generated after the latest snapshot for zero-loss recovery. Note
that uncached records are protected by server-side persistent
key-value stores (§III-A).
Problem of snapshot generation. We propose to generate
a snapshot for all cached records in the in-switch cache at
regular time points (called snapshot points), so that the switch
can restore from the latest snapshot when recovering from a
failure. However, the design of such snapshot generation is non-
trivial. Since programmable switches have limited stages for
cache backup and limited on-chip memory for snapshot storage,
they need to offload all cached records to the controller. The
snapshot overhead is limited for the controller, as it only needs
to store the latest snapshot for crash recovery (e.g., 1.5 MB for
10K records with 16-byte keys and 128-byte values). When
the cached records are loaded to the controller during snapshot
generation, some cached records may be updated under the
write-back policy, leading to inconsistencies between the final
snapshot and the in-switch cache state at the snapshot point.
Blocking cache updates during snapshot generation can avoid
such inconsistencies, but degrades I/O performance.
Our snapshot generation algorithm. We propose a two-phase
snapshot generation algorithm for FarReach to maintain crash
consistency in snapshot generation without blocking cache
updates. Our insight is that whenever FarReach receives the
first write request to a cached record during snapshot generation,
it can send the original cached record (i.e., after the snapshot
point but before the first write) to the controller. This allows
the controller to keep backups of all original cached records
that are to be overwritten. At the end of snapshot generation,
the controller replaces the overwritten cached records with their
backups of the original cached records, so that the snapshot is
crash-consistent with the in-switch cache state at the snapshot
point. Under the skewed write-intensive workloads where most
writes are issued to a small fraction of hot records, FarReach
only needs to send a limited number of original cached records
to the controller (for the first writes only), thereby limiting the
bandwidth overhead.

Based on the insight, FarReach generates a crash-consistent
snapshot in a two-phase manner (i.e., triggering snapshot
generation and making a consistent snapshot) at each snapshot
point, as shown in Figure 6. In the first phase, the controller
notifies the in-switch cache to trigger snapshot generation (1
in Figure 6). The cache monitors each write request to identify
whether it is the first write to a cached record during snapshot
generation. If so, the cache sends the original cached record
to the controller (2 in Figure 6). In the second phase, the
controller loads all cached records from the cache for snapshot
generation (3 in Figure 6). If a cached record has been loaded
to the controller and later receives the first write, the cache
no longer needs to send the original cached record. Once the
controller loads all cached records, it notifies the cache about
the completion of snapshot generation, reverts any overwritten
cached record with the original one, and finally obtains a crash-

IEEE/ACM TRANSACTIONS ON NETWORKING 7

consistent snapshot.
FarReach carefully updates the snapshot to address two

corner cases. If a new record is first admitted to the cache
after the snapshot point, the controller will not include the
record into the snapshot. If a cached record is evicted after the
snapshot point, the controller saves the evicted record during
cache eviction (§III-C), and replaces the updated record with
the evicted record in the snapshot after the second phase of
snapshot generation.
Atomic triggering of snapshot generation. As write requests
for a record can arrive from multiple ingress pipelines, FarReach
needs to trigger snapshot generation in multiple pipelines si-
multaneously; otherwise, the ingress pipelines may set snapshot
points at different times and generate inconsistent snapshots.
We propose a coordination mechanism to support simultaneous
snapshot generation in multiple ingress pipelines. Specifically,
at the beginning of a snapshot period, FarReach selects one
of the ingress pipelines and recirculates all write requests
from other ingress pipelines to the selected ingress pipeline; in
other words, all write requests are processed as if they arrive
at a single ingress pipeline. The controller first notifies the
selected ingress pipeline to trigger snapshot generation, such
that the selected ingress pipeline notifies the egress pipelines to
send any original cached record that receives the first write to
the controller. It then notifies the remaining ingress pipelines
to trigger snapshot generation. After all ingress pipelines
trigger snapshot generation, FarReach disables the recirculation,
allowing the controller to perform snapshot generation with
all ingress pipelines in parallel. Thus, we ensure that snapshot
generation is applied to all ingress pipelines at the same
snapshot point. Note that the recirculation overhead is limited,
due to the short duration for notifying all ingress pipelines to
trigger snapshot generation (e.g., ≈6 ms from our evaluation).
Zero-loss crash recovery. Our snapshot generation only
guarantees crash consistency for switch failures, but cached
records that are newly added or updated after the latest snapshot
point remain unprotected and can be lost during a switch failure.
Since switches do not have external storage for reliably keeping
cached records, we propose client-side record preservation
based on the idea of upstream backup [22] in stream processing,
by keeping the copies of cached records after the latest snapshot
point on the client side. Specifically, after a client sends a write
request for a cached key and receives the response from the
in-switch cache, it locally keeps the value and sequence number
assigned by the in-switch cache (§III-C) for the cached key.
After the completion of snapshot generation at each snapshot
point, the controller notifies each client with the cached keys
and corresponding sequence numbers at the snapshot point.
Each client then releases its preserved records whose sequence
numbers are no larger than those notified by the controller.
Since the in-switch cache only keeps a limited number of hot
records, FarReach incurs low client-side overhead for record
preservation.

FarReach uses a replay-based approach for zero-loss crash
recovery after a switch failure. It first replays the write requests
of the latest cached records to update the servers for persistence.
Specifically, FarReach collects both the latest in-switch snapshot
(from the controller) and the client-side preserved records (from

all clients), and selects the record with the largest sequence
number for each cached key. If the sequence number of each
selected record is larger than that stored in a server, FarReach
replays the write request to store the selected record in the
server for persistence. After all the latest records are persisted,
clients can release their preserved records.

FarReach then recovers the in-switch cache by replaying the
cache admission for each record of the latest in-switch snapshot
and marking each cached record as “outdated”. The “outdated”
records of the in-switch cache are expected to be quickly
marked as “latest” under skewed write-intensive workloads
(§III-B). Note that we do not start with an empty in-switch
cache from scratch, as it incurs large overhead to admit all
records through the controller.
Client crashes. One limitation of FarReach is that data loss
can occur if both a client and the switch crash simultaneously.
If any client crashes before replay-based recovery, the cached
records preserved by the client, which are not yet protected by
the latest in-switch snapshot, will be lost after a switch failure.
One solution is to reduce the snapshot period to a smaller
window for less vulnerability, at the expense of larger snapshot
generation overhead. Our evaluation shows that the snapshot
generation overhead remains limited (e.g., up to 1.41 MiB/s
of control-plane bandwidth when the snapshot period is 2.5 s;
see §VI-D). Another solution is to exploit multiple switches,
which we consider in §IV, and our evaluation shows that the
control-plane overhead can be further mitigated (§VI-E).

E. Discussion
Novelty. While FarReach borrows ideas from NetCache [14]
(e.g., cache admission based on a Count-Min Sketch), it
introduces several novel design elements: (i) non-blocking
cache admission for fast access, with atomic validity control to
address atomicity issues (§III-B); (ii) available cache eviction
for ensuring record availability, with record embedding to
handle packet loss (§III-C); and (iii) crash-consistent snapshot
generation with zero-loss recovery (§III-D). Note that the last
two elements are tailored for write-back caching and are not
found in NetCache, which uses write-through caching.
Trade-offs. FarReach makes two trade-offs in its design. First,
FarReach trades extra switch resources for in-switch caching
for higher key-value storage performance under skewed write-
intensive workloads. Nevertheless, the extra switch resource
usage is limited (§VI-F). Second, FarReach trades extra client-
side storage and computation capacity for zero-loss recovery.
Nevertheless, since clients only keep the copies of cached
records after the latest in-switch snapshot, the client-side storage
overhead is limited (e.g., 1.5 MB for 10K cached records with
16-byte keys and 128-byte values). The client-side computation
overhead for record preservation is also limited. It takes only
≈0.7 µs on average to preserve a record, which is significantly
smaller than FarReach’s average request latency of ≈100 µs
in our evaluation.

IV. DISTREACH DESIGN

A. Design Overview
Motivation. FarReach proposes snapshot generation and client-
side record preservation to ensure reliability against a switch

IEEE/ACM TRANSACTIONS ON NETWORKING 8

Programmable Switch

Controller
••• Cache

Management

Client ••• Client

•••

Spine Layer

Leaf Layer

Cache Hit

Key-value
Stores

Rack of Servers•••

Cache Miss

Figure 7: DistReach’s architecture.

failure (§III-D). However, this approach has two main issues.
First, FarReach incurs extra control-plane overhead, as the con-
troller periodically loads snapshots from the switch for reliable
storage. Second, FarReach requires client-side collaboration
to preserve records for zero-loss recovery, thereby introducing
management complexities for individual clients. As mentioned
in §III-D, even with client-side record preservation, data loss
remains possible (albeit unlikely) during client crashes.

Since modern data centers typically use multiple switches to
distribute traffic loads [29], [30], we can exploit this distributed
switch deployment to replicate multiple copies of each cached
record across different switches. As long as any one switch
remains reliable, we can ensure the reliability of all cached
records. This eliminates the need for maintaining snapshots in
the controller and preserving records on the client side.

To this end, we design DistReach, a distributed in-switch
write-back caching framework. In the following, we show how
DistReach extends FarReach to manage multiple copies of
each cached record during read/write processing and cache
admission/eviction.
Architecture. Figure 7 shows the architecture of DistReach.
We use the multi-layer networking infrastructure in modern
data centers (e.g., spine-leaf and fat-tree topologies) to organize
multiple switches for distributed in-switch caching. For sim-
plicity, we focus on the two-layer topology (i.e., the spine and
leaf layers) to describe DistReach’s design. We also discuss
how DistReach is deployed with more switch layers.

DistReach follows FarReach’s admission and eviction designs
(§III-B and §III-C, respectively) to determine which records are
hot and will be cached in all layers. In each layer, DistReach
partitions hot records across switches using consistent hashing
[28] (as in DistCache [15]). For each record request, DistReach
deterministically identifies a switch in each layer via consistent
hashing and forwards the request through the identified switches
in all layers. If the record is cached by switches along the I/O
path, the request is served by in-switch caching (cache hit);
otherwise, the request is forwarded to the server (cache miss).
DistReach adds new features to manage multiple cache copies
of each record for reliability.

We assume that each request issued by a client is forwarded
through all layers (i.e., from the spine to the leaf layer).
This assumption holds if clients are outside of the data
center that hosts key-value storage. For clients inside the data
center, the client-side leaf switch forwards each request to the
spine layer, which processes the request as described above.
Since DistReach forwards each request through specifically

Write {1: 𝑣}

Spine Layer

Leaf Layer

ℎ 𝑥 = 𝑥 𝑚𝑜𝑑 3

𝑆1 {1: 𝑣}𝑆0

𝐿0

𝑆2

Read 1

𝐿1 {1: 𝑣} 𝐿2

Figure 8: Example of switch-based replication.

identified switches in all layers for cache access, we do
not use conventional load balancing protocols (e.g., ECMP).
Nevertheless, the switch layers are not the system bottleneck
in practice for two reasons. First, we partition network traffic
across multiple switches in each layer by consistent hashing
to balance the load. Second, the major overhead lies in server-
side I/O operations, making the performance impact of packet
forwarding less significant.

B. Switch-based Replication

Each record request traverses switches in different layers
based on consistent hashing, and DistReach organizes the
switches based on chain replication [31]. Specifically, when
a record request traverses the two-layer topology, DistReach
forms a chain on the two switches (i.e., one in the spine layer
and one in the leaf layer) identified by consistent hashing.
DistReach replicates the record over the two switches and
chains them from the spine to the leaf layer. To ensure that the
switches along the chain cache the same records, DistReach
deploys the same number of switches in each layer and uses
the same hash function for consistent hashing.

DistReach forwards each write request along the chain of
switches from the spine to the leaf layer. The write request
first updates the spine switch with the latest record under the
write-back policy. It then replicates the latest record to the leaf
switch. After successfully updating all switches in the chain
and marking the cached record as “latest” (§III-B), DistReach
acknowledges the latest record to the client.

DistReach also forwards each read request across all switches
in the chain and serves the request by the leaf switch. If
the record cached in the leaf switch is outdated, DistReach
follows FarReach’s design for availability (§III-B). Specifically,
DistReach conservatively forwards the read request to the server
to retrieve the latest record. The server then issues a read
response to the client along the chain in reverse (i.e., from
the leaf to the spine layer). The read response updates all
switches in the chain if the cached copies remain outdated. As
the write requests quickly update the leaf switch with the latest
record under skewed write-intensive workloads, the number
of conservative reads is limited. On the other hand, if the
record in the leaf switch is the latest (e.g., updated by the
last successful write), the leaf switch answers the read request
without accessing the server.

Upon a switch failure, DistReach contacts the available
switch in the chain to recover the lost records of the failed
switch without data loss. Specifically, suppose that DistReach
now adds a newly recovered switch for recovering the lost
data of a failed switch. The controller first identifies the chain

IEEE/ACM TRANSACTIONS ON NETWORKING 9

that spans the failed switch and selects the available switch
in the chain (e.g., the spine switch if the leaf switch fails) to
load its cached records. The controller also notifies the servers
to load the cached records from the available switch. After
the servers write the loaded records into persistent storage,
the controller admits them to the recovered switch in the
chain. Each admitted record is marked with the same state
(e.g., “outdated” or “latest”) as in the available switch. As the
available switch caches the same records as the failed switch,
the recovered switch caches all lost records of the failed switch
after DistReach’s recovery and achieves zero data loss.

Figure 8 gives an example of switch-based replication.
Suppose that there are three spine switches, S0, S1, and S2,
and three leaf switches, L0, L1, and L2. We use the hash
function h(x) = x mod 3 to map each cached record x into
the corresponding spine switch Sh(x) and leaf switch Lh(x).
Consider a write request for a cached record with the key 1 to
update its value as v. DistReach calculates h(1) = 1 mod 3 = 1
to identify the spine switch S1 and the leaf switch L1 as the
switches caching the record. Then, it forwards the write request
from S1 to L1 and replicates the latest value v in both S1 and
L1. For a read request for the key 1, DistReach also forwards
the request from S1 to L1, with L1 serving the request.

C. Consistent Cache Management Across Switches

In our switch-based chain replication, if a cached record
updated by a write request becomes available to clients (i.e.,
updated in the leaf switch), the record must also be updated in
the spine switch for reliability. This implies that the controller
needs to apply admission or eviction consistently to both
the spine and leaf switches to ensure that they cache the
same record. However, the RMT model (§II-A) only ensures
atomicity for single-switch cache management (§III-B and
§III-C), but not for multiple-switch management. Managing
each switch independently for read/write requests would in-
troduce inconsistent cache copies across switches, rendering
switch failure recovery infeasible.

To ensure consistent caching in multiple-switch management,
DistReach carefully arranges the order of admission and
eviction of a record. For cache admission, DistReach first
atomically admits the record into the spine switch in the
chain following FarReach’s admission design, which marks
the record as “valid” (§III-B). Then, DistReach atomically
admits the record into the leaf switch in the chain. For cache
eviction, DistReach first atomically evicts the record from the
leaf switch in the chain as in FarReach, which marks the
record as “to-be-evicted” (§III-C). It then atomically evicts
the record from the spine switch. As the leaf switch is the
last (first) to admit (evict) the record, DistReach determines
whether the record is cached by all switches in the chain via
the cache status of the leaf switch. If the record is cached
in the leaf switch, it implies that all switches in the chain
cache the record, and DistReach serves read/write requests
by the switches as described before (i.e., any acknowledged
record must be updated to all switches in the chain); otherwise,
DistReach forwards the record requests to the server. As the
latest record is either consistently replicated to all switches

in the chain or persistently stored by the server, DistReach
maintains reliability in multiple-switch cache management.

D. Design Considerations

Deployment in more layers. DistReach can be extended to
support more than two layers and tolerate more switch crashes.
Suppose that the network has n ≥ 2 layers. For each hot record,
DistReach identifies n switches in all layers using consistent
hashing to replicate n copies of the record across the chain
of n switches. DistReach forwards the record requests along
the chain from the first to the last layer. Each write updates
n copies with the latest record from the first-layer switch to
the last-layer switch for reliability, and each read retrieves the
latest record from the last-layer switch for availability. To keep
consistent cache copies during multiple-switch management for
reliability, DistReach applies the admission (eviction) decision
to the last-layer switch after (before) the other n−1 switches
in the chain, in which each switch is managed atomically.

DistReach achieves zero-loss recovery after the failures of up
to n−1 switches in a chain. Specifically, it selects any available
switch in the chain to load the cached records, which are
updated to the servers and admitted to the recovered switches.
Since some write requests may not update all available switches
at the time of switch failures, DistReach also updates other
available switches with the records loaded from the available
switch to keep consistent cache copies after recovery. For the
write requests that have not successfully updated the available
switch when switch failures occur, their records will not be
cached by any switch after recovery. However, it does not
violate availability and reliability requirements, as DistReach
does not acknowledge the records to any client, and the records
need not be recovered.
Performance consideration. Forwarding each request across
multiple switches does not degrade I/O performance. First, the
system bottleneck is the I/O overhead of server-side key-value
stores instead of packet processing in switches. Traversing
multiple switches incurs negligible extra latency for each
request. Second, as long as a few hottest records are cached
(i.e., O(m logm) records, where m is the number of servers
[11]), server-side load balancing is achieved.
Routing consideration. Note that routing changes after switch
failures do not affect the correctness of DistReach. When a
switch fails and DistReach cannot forward requests across
all switches in the chain for in-switch caching, we find an
alternative path to forward the requests to the corresponding
server. We delay processing these requests in the server until
the lost records in the failed switch are consistently restored in
all switches and the server, ensuring that the latest records are
available to clients. This delay has limited performance impact.
First, only requests for cached records mapped to the failed
switch are delayed, while all other requests are processed by
the switches and servers as usual. Second, the crash recovery
time of DistReach is limited (§VI-E), so the delay is short.

V. IMPLEMENTATION

We implement FarReach and DistReach with both control
and data planes. The control plane includes the switch OSes of

IEEE/ACM TRANSACTIONS ON NETWORKING 10

all switches and the controller, while the data plane includes
multiple clients, servers, and in-switch caches. All communi-
cations among different components are based on UDP with
a timeout-and-retry mechanism for low-latency yet reliable
transmissions.

A. FarReach Implementation
We first describe the implementation of FarReach for single-

switch deployment.
Control plane. We implement both the switch OS and the
controller in C++, with 2.2K and 1K LoC, respectively, and
compile the programs using g++ (v5.4.0) with the -O3
optimization. The switch OS provides interfaces for: (i) cache
admission/eviction by configuring match-action tables and reg-
isters, and (ii) snapshot generation by loading in-switch records
and sending original cached records. The controller manages
the in-switch cache through the interfaces from the switch OS
and coordinates snapshot generation by communicating with
the switch OS and all key-value storage servers.
Clients. Our prototype is evaluated with the YCSB benchmark
[20] (§VI), written in Java. We implement a client application
in Java that supports YCSB, with common key-value storage
interfaces including get, put, and delete to access records
stored in both the in-switch cache and key-value storage servers.
The client application also provides a shim layer to manage
client-side record preservation for zero-loss recovery under
switch failures (§III-D).
Servers. We deploy RocksDB (v6.22.1) [24] in each server;
RocksDB is a log-structured merge-tree (LSM-tree) persistent
key-value store [32] suitable for write-intensive workloads. To
support multiple servers, we distribute records across servers
using consistent hashing [28].
In-switch cache. We implement the in-switch cache in P4 [17]
and compile it into the Tofino switch chipset [18]. The cache
implementation includes both ingress and egress pipelines. Each
ingress/egress pipeline in the Tofino switch provides 12 stages
for pipeline programming. Each stage has 4 stateful ALUs to
support at most 4 register arrays, and each register can store
4 bytes of data.

In each ingress pipeline, we deploy multiple match-action
tables to prepare for egress processing. We implement a match-
action table for cache lookups, which match the key (currently
of size 16 bytes) in the packet header to obtain the record
location in the egress pipeline. We also deploy a match-
action table to trigger snapshot generation, such that each
egress pipeline can send the original cached records to the
controller (§III-D). Our current Tofino switch model does not
support cross-pipeline recirculation, although the cross-pipeline
recirculation feature is documented in the Tofino programming
manual. For the evaluation purpose, we connect the selected
ingress pipeline with each of the other ingress pipelines with a
physical wire, so as to recirculate write requests from the other
ingress pipelines to the selected ingress pipeline during snapshot
generation in the multi-pipeline setting (§III-D). This physical
wiring incurs extra device management overhead. Furthermore,
we pre-compute the hash results for the Count-Min Sketch in
the ingress pipeline and send them to the egress pipeline via
each packet header to save stages in the egress pipelines.

In each egress pipeline, we store statistics, metadata, and
cached values. In the first stage, we deploy a Count-Min Sketch
configured with 4 rows (as in [14]). Each row corresponds to
a register array with 64K registers. We use part of the second
stage to maintain a counter array (as a register array) to track
the access frequencies of cached records. To support write-back
caching and snapshot generation, we use the remaining part of
the second stage and the third and fourth stages to maintain the
required metadata. We use the remaining 8 (out of 12) stages
to provide 32 register arrays of 4-byte registers in total for
supporting a value size of up to 128 bytes.

We address two subtle issues in the egress pipeline imple-
mentation. First, to support write-back caching, the in-switch
cache needs to directly respond to a write request with a cache
hit. However, the Tofino switch cannot directly change the
egress port in the egress pipeline. Thus, we drop the original
write request and send a response to the client by cloning.
This degrades the packet processing capability of the Tofino
switch, but does not undermine system performance, as the
bottleneck lies on the server side. Second, to assign a sequence
number for each write request, we may maintain a global
counter to track the latest sequence number, but this easily
leads to overflow. Instead, we use multiple global counters to
reduce the likelihood of overflow. Specifically, we maintain a
register array with 32K registers. We map write requests of
different keys into different registers by hashing, and increment
the hashed register to assign a sequence number for each write.

B. DistReach Implementation

DistReach follows the implementation of FarReach for the
cache admission and eviction in each switch, with the following
differences. In the control plane, DistReach no longer needs
snapshot generation. Instead, it follows a specific order to
admit/evict records for consistency across multiple switches
during cache management (§IV). Also, the controller loads
cached records from an available switch for zero-loss recovery
after switch failures in a chain. In the data plane, each client
does not need record preservation, but issues requests to access
the switches by consistent hashing [28]. Since the switches in
the last layer across the chains process all reads and writes,
DistReach only deploys the Count-Min Sketch in each of the
switches in the last layer to track the access frequencies of
read/write requests, so as to identify hot records for triggering
cache admission in the controller.

VI. EVALUATION

A. Methodology

Evaluation environments. We conduct hardware evaluation
and software simulation. We configure a hardware testbed that
consists of a 3.2 Tbps two-pipeline Tofino switch [18] and
four physical machines. Each machine has two 12-core CPUs
(Intel Xeon E5-2650 v4), 64 GiB DRAM, and 2 TiB hard disk
(HGST Ultrastar), and is connected to the switch via a 40 Gbps
NIC (Intel XL710). We use two physical machines as clients
and the other two as key-value storage servers. We connect
one client and one server to one pipeline of the switch, and
connect the other machines to the other pipeline. We use the

IEEE/ACM TRANSACTIONS ON NETWORKING 11

hardware testbed to evaluate the throughput and crash recovery
performance of FarReach, the crash recovery performance of
DistReach, and the switch resource usage of both FarReach
and DistReach. We measure throughput in terms of million
operations per second (MOPS) processed by FarReach.

Due to hardware limitations, we lack sufficient switches for
comprehensive large-scale hardware evaluation of DistReach.
Instead, we leverage software simulation based on Mininet [21]
to evaluate the throughput of DistReach in distributed switch
deployment. We run Mininet on a physical machine with a
12-core CPU (Intel Xeon Silver 4214), 64 GiB DRAM, and
a 2.4 TiB hard disk (Seagate ST1200MM0099). We simulate
four programmable switches using bmv2 [19] and organize
them in spine and leaf layers, each with two switches. We
connect each leaf switch to all spine switches in a spine-
leaf topology. We also simulate a client that issues sufficient
requests and 16 servers that are connected to the two leaf
switches (each connected to eight servers). We forward requests
across switches in different layers using consistent hashing,
and the requests are served by either leaf switches or servers
(§IV-C). We run DistReach under various workloads, especially
as the number of switches per layer increases (§VI-E). Due to
the limited processing capability in software simulation, we
measure throughput in terms of operations per second (OPS)
processed by DistReach.
Setup. We evaluate FarReach using both YCSB [20] and
synthetic workloads (§VI-B and §VI-C, respectively) using
hardware evaluation. Since our hardware testbed comprises
only two servers, we use server rotation [14] to simulate a
larger number of servers. Specifically, let N be the number of
simulated servers. Given a workload, we issue requests to N
logical partitions via consistent hashing [28]. We identify the
partition (called the bottleneck partition) that receives the most
requests among all N partitions. We run each experiment over
N iterations. In the first iteration, we deploy the bottleneck
partition in a physical server and send sufficient requests to
saturate it and measure its performance. In the subsequent N−1
iterations, we deploy the bottleneck partition in a physical
server and each of the N − 1 non-bottleneck partitions in
another physical server, and measure the performance of the
non-bottleneck partition. After N iterations, we aggregate the
performance of all partitions. By default, we simulate 16 servers
and increase the number of simulated servers for scalability
evaluation (§VI-B). Note that server rotation is only applied
to static workloads without dynamic key popularity, and we
also study the impact of dynamic workloads (§VI-C).

We compare FarReach against two baselines: NoCache (i.e.,
no in-switch caching) and NetCache [14] (i.e., the in-switch
cache with write-through caching). Before each experiment, we
pre-load 100M records, each with a 16-byte key and a 128-byte
value, into servers that are initially empty. For FarReach and
NetCache, we fix the in-switch cache size as 10,000 records
and pre-load the hottest records into the cache. We also set
the sampling rate as 0.5 and the pre-defined threshold as 20
requests for the Count-Min Sketch. For FarReach, we set the
snapshot period as 10 s by default.

We evaluate the throughput and crash recovery performance
of DistReach using software simulation and hardware evalua-

tion, respectively (§VI-E). In software simulation, we directly
run all simulated servers without server rotation. We compare
DistReach with two distributed baselines: DistNoCache (i.e.,
no caching in all switches) and DistCache [15] (i.e., distributed
write-through caching). For DistReach and DistCache, we set
the cache size of each switch as 10,000 records (i.e., caching
20,000 records in two switches per layer). Since DistReach
does not require snapshot generation, we do not set a snapshot
period as in FarReach. In hardware evaluation, we measure
the crash recovery time of DistReach from a switch failure.

One important issue is to mitigate the influence of simulation
overhead in software simulation. In our hardware testbed,
processing a request in the Tofino switch only takes hundreds
of nanoseconds and the switch is not the bottleneck (instead,
server-side storage is the bottleneck). However, in our software
simulation, the simulated switches become the bottleneck, in
which processing a request ranges from ≈1 ms for DistNoCache
to ≈6 ms for DistCache and DistReach due to in-switch value
processing. Thus, our software simulation disables in-switch
value processing for cache hits in DistCache and DistReach to
ensure similar in-switch processing overhead across all schemes.
In addition, we inject a delay of 100 ms for each request that
accesses server-side key-value stores in our software simulation,
so that the system bottleneck lies in server-side storage. We
run each experiment for 30 minutes to ensure sufficient client
requests for stable results.

We run all experiments five times and plot the average results
with 95% confidence levels based on the Student’s t-distribution
(some error bars may be invisible due to limited deviations).

B. Performance of FarReach under YCSB Workloads

(Exp#1) Throughput analysis. We first evaluate the end-to-end
throughput using YCSB workloads: Insert (inserting records),
A (50% reads, 50% writes), B (95% reads, 5% writes), C
(100% reads), D (95% reads, 5% writes), and F (50% reads,
50% read-modify-writes); we do not consider range queries
(i.e., Workload E) due to switch limitations (§III-A). For each
workload, we generate requests with 16-byte keys and 128-
byte values. The Insert workload follows a uniform distribution,
workload D follows a read-latest distribution, and workloads A,
B, C, and F are skewed and follow the Zipf distribution with a
Zipfian constant 0.99 (default in YCSB). We verify that under
NoCache, the Insert throughput to a RocksDB instance reaches
0.06 MOPS, which is consistent with prior findings [33], [34].

Figure 9 shows that FarReach increases the throughput of
NoCache by 90.8%, 55.0%, 84.3%, and 71.7% in the four
skewed workloads A, B, C, and F, respectively, by reducing
and balancing the server-side load with in-switch write-back
caching. FarReach also increases the throughput of NetCache
by 83.9%, 20.0%, and 61.4% in workloads A, B, and F,
respectively, and achieves similar throughput to NetCache in
workload C (which is read-intensive). In NetCache, the writes
of the cached keys keep invalidating the in-switch write-through
cache, especially in write-intensive workloads A and F, thereby
limiting the throughput of NetCache. NetCache only achieves
high throughput in read-intensive workloads B and C. In the
non-skewed Insert workload, both FarReach and NetCache

IEEE/ACM TRANSACTIONS ON NETWORKING 12

Insert A B C D F0

0.5

1

1.5

2

Th
pt

 (M
O

PS
)

NoCache NetCache FarReach

Figure 9: (Exp#1) Throughput
analysis.

0.2 0.4 0.6 0.8
Target Thpt (MOPS)

0
0.25

0.5
0.75

1

A
ve

ra
ge

 L
at

en
cy

 (m
s) NoCache NetCache FarReach

Figure 10: (Exp#2) Latency anal-
ysis.

16 32 64 128
of Simulated Servers

0
5

10
15
20

Th
pt

 (M
O

PS
)

NoCache NetCache FarReach

Figure 11: (Exp#3) Scalability
analysis.

0 25 50 75 100
Write Ratio (%)

0
0.5

1
1.5

2
2.5

Th
pt

 (M
O

PS
)

NoCache NetCache FarReach

Figure 12: (Exp#4) Impact of
write ratio.

have similar throughput to NoCache due to limited cache hits.
Although the read-latest workload D prefers to request the most
recently accessed records, all three schemes still have similar
throughput. The reason is that the recently accessed records
are frequently changed and only a small portion of requests
belong to the 10,000 hottest records, leading to limited cache
hits in FarReach and NetCache.
(Exp#2) Latency analysis. We next evaluate the request
latencies. We focus on YCSB workload A, which is skewed
and most write-intensive. We examine the trade-off between
the latency and target throughput (i.e., configured by a given
sending rate) as in prior studies [14], [35], [36]. We only show
the average latency results, while the results of other latency
statistics (e.g., medium and 95th-percentile) are similar and
hence omitted for brevity.

Figure 10 shows that all schemes have small average
latencies under low target throughput, as the servers do not
have heavy loads and can quickly process requests. FarReach
reduces the average latencies of NoCache and NetCache by
64.9% and 72.0% when the target throughput is 0.8 MOPS,
respectively. For high target throughput, both NoCache and
NetCache are bottlenecked by an overloaded server and hence
incur large queuing delays. NetCache has a larger latency than
NoCache, as NetCache needs extra server-side overhead to
update the in-switch write-through cache for the write requests.
FarReach effectively reduces and balances the server-side load
and hence achieves a small latency. Note that NoCache and
NetCache show larger confidence intervals than FarReach,
especially for high target throughput. The reason is that
the server-side queuing latency can vary significantly for a
highly overloaded bottleneck server across different runs, while
FarReach maintains a low latency due to load balancing.
(Exp#3) Scalability analysis. We evaluate the scalability
of different schemes by varying the number of simulated
servers. We focus on YCSB workload A. Figure 11 shows that
the throughput gains of FarReach are 1.9×, 2.5×, 3.9×, and
6.6× those of NoCache and NetCache (both of which have
very similar throughput) under 16, 32, 64, and 128 servers,
respectively. As the number of simulated servers increases, the
throughput of FarReach also increases due to load balancing
across all servers, while the throughput of both NoCache and
NetCache is limited by the overloaded servers due to load
imbalance. Our results show that FarReach scales to a large
number of servers under skewed write-intensive workloads.

C. Performance of FarReach under Synthetic Workloads
We generate different synthetic workloads with YCSB for

varying write ratios (over all reads and writes), key distributions,

Uniform 0.9 0.95 0.99
Key Distribution

0
0.5

1
1.5

2
2.5

Th
pt

 (M
O

PS
)

NoCache NetCache FarReach

Figure 13: (Exp#5) Impact of
key distribution.

16 32 64 128
Value Size (Bytes)

0
0.5

1
1.5

2
2.5

Th
pt

 (M
O

PS
)

NoCache NetCache FarReach

Figure 14: (Exp#6) Impact of
value size.

value sizes, and key popularities. By default, we generate
requests with 16-byte keys and 128-byte values, where the
keys follow the Zipf distribution with a Zipfian constant 0.99,
and set the write ratio as 100% (i.e., write-only requests).
(Exp#4) Impact of write ratio. We first vary the write ratio
of the synthetic workload. Figure 12 shows that FarReach
increases the throughput of NoCache by 67.1-135.3% for
different write ratios, due to load balancing in FarReach.
FarReach achieves similar throughput to NetCache when the
write ratio is zero (i.e., read-only requests), while increasing
the throughput of NetCache by 48.3-185.7% as the write
ratio ranges from 25% to 100%. The throughput gain of
FarReach over NoCache and NetCache is the highest when the
write ratio is 100% due to in-switch write-back caching. Note
that NetCache has slightly lower throughput than NoCache,
especially under a write ratio of 100%, due to the extra server-
side overhead to maintain cache coherence for write requests.
(Exp#5) Impact of key distribution. We next consider
synthetic workloads under the uniform key distribution as well
as the Zipfian key distributions with different Zipf constants.
Figure 13 shows that all schemes achieve similar throughput of
≈1 MOPS under the uniform key distribution, as most requests
are from uncached keys and are processed by the servers, so
FarReach cannot benefit from in-switch write-back caching.
For the skewed workloads, FarReach increases the throughput
of NoCache by 34.2-135.3% and that of NetCache by 50.4-
185.7%. The throughput gain of FarReach is higher when the
workload is more skewed (i.e., a larger Zipfian constant), as
NoCache and NetCache become more imbalanced.
(Exp#6) Impact of value size. We further vary the value
size of the synthetic workload from 16 bytes to 128 bytes
(while the key size remains 16 bytes); note that the number
of records that can be cached in both NetCache and FarReach
(i.e., 10,000 records) remains unchanged. Figure 14 shows that
the throughput gains of FarReach over NoCache and NetCache
remain almost the same at 2.3× across different value sizes,
as the caching behavior of FarReach mainly depends on the
key distribution.

IEEE/ACM TRANSACTIONS ON NETWORKING 13

Static Hot-in Hot-out Random0

0.1

0.2

0.3

Th
pt

 (M
O

PS
)

NoCache NetCache FarReach

0 2.5 5 7.5 10
Snapshot Period (s)

0

0.1

0.2

0.3

Th
pt

 (M
O

PS
)

Hot-in Hot-out Random

0 2.5 5 7.5 10
Snapshot Period (s)

0
0.5

1
1.5

2

B
an

dw
id

th
 (M

iB
/s

) Hot-in Hot-out Random

100 1000 10000
Cache Size (Records)

0

0.5

1

1.5

2

Ti
m

e
(s

)

Server In-switch Cache

Figure 15: (Exp#7) Impact of
key popularity changes.

Figure 16: (Exp#8) Performance of snapshot generation, in terms
of throughput (left) and control-plane bandwidth (right).

Figure 17: (Exp#9) Crash recov-
ery time.

We also evaluate all schemes when the value size increases to
256 bytes (i.e., exceeding the maximum value size of 128 bytes).
All schemes achieve similar throughput of ≈0.7 MOPS (not
shown in figures), as both NetCache and FarReach directly
forward all records to the servers as in NoCache.
(Exp#7) Impact of key popularity changes. Finally, we
consider dynamic key popularity patterns, in which the access
frequency of a specific key may change over time, while the
previous experiments thus far focus on a static key popularity
pattern. We consider three dynamic patterns as used in prior
work [12], [14]: (i) hot-in, which periodically moves the
200 coldest keys to the highest key popularity ranks and
decreases the ranks of other keys accordingly; (ii) hot-out,
which periodically moves the 200 hottest keys to the lowest
key popularity ranks and increases the ranks of other keys
accordingly; and (iii) random, which randomly replaces 200
keys of the top 10,000 hottest keys with coldest keys. As the
dynamic patterns will trigger cache management decisions and
hence change the system state, we cannot simulate multiple
servers by server rotations as in prior experiments. Instead, we
evaluate the performance on the two physical servers, each
running a RocksDB instance. For each dynamic pattern, we
run each scheme for 70 s, and change the key popularity ranks
based on each dynamic pattern every 10 s. We measure the
instantaneous throughput every 1 s, and evaluate the average
throughput over the entire 70 s.

Figure 15 shows that FarReach increases the average through-
put of NoCache and NetCache by at least 59.4% under different
dynamic patterns. We also run each scheme for 70 s without any
key popularity change (i.e., static), and FarReach has similar
throughput gains as in the dynamic patterns. The reason is that
FarReach quickly reacts to key popularity changes (typically
within 1 s from our measurement), so it maintains the cache hit
rate and hence the average throughput. Note that the throughput
is smaller than in prior experiments as we use fewer servers, yet
our emphasis here is to examine the adaptiveness of FarReach
to key popularity changes rather than absolute performance.

D. Snapshot Generation and Crash Recovery
(Exp#8) Performance of snapshot generation. We vary the
period of snapshot generation to evaluate the throughput and
control-plane bandwidth of FarReach on synthetic workloads.
We focus on the results under dynamic patterns, in which
the bandwidth costs of both snapshot generation and cache
management are included. We observe similar results under
the static pattern and omit them for brevity.

Figure 16 shows both the throughput and control-plane band-
width of FarReach versus the snapshot period; if the snapshot

period is zero, it means that snapshot generation is disabled.
FarReach keeps its throughput at about 0.2 MOPS for various
snapshot periods under different dynamic patterns, implying that
snapshot generation has limited impact on throughput. When
snapshot generation is disabled (i.e., the snapshot period is
zero), FarReach only incurs about 0.03 MiB/s of control-plane
bandwidth, since it only triggers cache management decisions
for new hot records and avoids sending duplicate records to the
controller (§III-B). When snapshot generation is enabled and
as the snapshot period increases from 2.5 s to 10 s, the control-
plane bandwidth of FarReach decreases from 1.41 MiB/s to
0.33 MiB/s, which is far smaller than the maximum bandwidth
of the controller (i.e., 40 Gbps).
(Exp#9) Crash recovery time. We evaluate the crash recovery
time of FarReach under a switch failure for various in-switch
cache sizes. Specifically, for a given in-switch cache size, we
first run the synthetic workload under the static pattern with
16 simulated servers. We manually kill the in-switch cache
and the switch OS to mimic a switch failure. We then trigger
zero-loss crash recovery (§III-D), which applies a replay-based
approach to update the servers and recover the in-switch cache.
For multiple servers, we take the average time of updating a
server as the server-side recovery time.

Figure 17 shows that the time of updating a server in
FarReach stays at about 1 s as the cache size increases, as
FarReach only replays a limited number of writes partitioned
into each server, while the majority of time is spent on collecting
client-side preserved records and the control-plane in-switch
snapshot. The time to recover the in-switch cache in FarReach
increases from 1 s to 1.35 s as the cache size increases from
100 records to 10,000 records, as FarReach needs to admit
more records from the latest snapshot under a larger cache size.
Overall, the crash recovery time is within 2.35 s for various
in-switch cache sizes.

E. Performance of DistReach

We evaluate DistReach based on software simulation
(Exp#10-#12) and hardware evaluation (Exp#13).
(Exp#10) Throughput analysis of distributed in-switch
caching. We first evaluate the throughput of distributed in-
switch caching using YCSB workloads. Figure 18 shows that
in the Insert workload (which is non-skewed), all schemes
have similar throughput. In workloads A, B, and F, all of
which are skewed and mixed with reads and writes, DistReach
increases the throughput of DistNoCache by 133.1%, 126.7%,
and 126.7%, respectively, and that of DistCache by 90.0%,
41.8%, and 78.0%, respectively. In the read-only workload C,

IEEE/ACM TRANSACTIONS ON NETWORKING 14

Insert A B C D F
Workload Name

0

100

200

300
Th

pt
 (O

PS
)

DistNoCache DistCache DistReach

Figure 18: (Exp#10) Throughput
analysis of distributed in-switch
caching.

1 2 4 8
of Switches Per Layer

0
100
200
300
400

Th
pt

 (O
PS

)

DistNoCache DistCache DistReach

Figure 19: (Exp#11) Impact of
number of switches per layer.

8 16 32 64
of Servers

0
300
600
900

1200

Th
pt

 (O
PS

)

DistNoCache DistCache DistReach

Figure 20: (Exp#12) Impact of
number of servers on distributed
in-switch caching.

100 1000 10000
Cache Size (Records)

0
0.1
0.2
0.3
0.4

Ti
m

e
(s

)

Load Server In-switch Cache

Figure 21: (Exp#13) Crash re-
covery time of DistReach versus
cache size.

DistReach has a throughput gain of 2.3× over DistNoCache,
but has slightly lower throughput than DistCache. The reason
is that both DistReach and DistCache absorb reads by in-
switch caching, while DistReach accesses the servers with
conservative reads until the newly admitted records are updated
as “latest” by read responses. Note that conservative reads
have limited impact in our hardware testbed (§VI-B), as the
Tofino switch can quickly update the cached records without
the simulation overhead of software switches. In the read-
latest workload D with 95% reads and 5% writes, DistReach
has similar throughput as DistCache; while DistReach absorbs
writes, it also incurs slight overhead in conservative reads.
Both DistReach and DistCache increase the throughput of
DistNoCache by 23.8% due to cache hits.
(Exp#11) Impact of number of switches per layer. We vary
the number of switches in each layer from one to eight. We
fix the number of servers as 16 and uniformly connect them to
different leaf switches (e.g., each leaf switch is connected with
two servers if the leaf layer has eight switches). We consider
the default write-only workloads in §VI-C.

Figure 19 shows that the throughput of DistReach increases
by 16.9% when the number of switches per layer increases
from one to eight, since more switches provide larger cache
space. The increase is marginal (instead of being linear with the
number of switches), as in-switch caching is not the bottleneck
and a small cache can sufficiently balance the server-side
load [11]. Nevertheless, DistReach still greatly outperforms the
baselines. Under eight switches per layer, the throughput gain
of DistReach is 2.7× those of DistNoCache and DistCache. We
emphasize that the primary objective of DistReach is to reduce
the reliability maintenance overhead of FarReach instead of
further improving the performance of FarReach.
(Exp#12) Impact of number of servers on distributed in-
switch caching. We additionally consider different numbers
of servers under the default write-only workload. We vary the
number of servers from 8 to 64. The servers are uniformly
connected to leaf switches as in Exp#11.

Figure 20 shows that the throughput of all schemes increases
with the number of servers as more servers process requests.
The throughput gain of DistReach is 2.1-5.4× and 2.1-6.8×
that of DistNoCache and DistCache, respectively.
(Exp#13) Crash recovery time of DistReach versus cache
size. We evaluate the crash recovery time of DistReach on our
Tofino-switch testbed by varying the in-switch cache size. Due
to the lack of Tofino switches, we use our only Tofino switch
to simulate DistReach’s recovery of a switch failure under a
spine-leaf topology. Specifically, after pre-loading the 10,000
hottest records into the switch, the controller first treats the

switch as the available switch to load the cached records. It
also notifies the servers to load the cached records from the
available switch. We then clear the in-switch cache by evicting
all records from the switch to simulate a switch failure. Finally,
after the servers persist the loaded records, the controller treats
the switch as the recovered switch to admit the loaded records.
We measure the time of loading records, updating servers, and
admitting records as the crash recovery time.

Figure 21 shows that DistReach has very low crash recovery
time. Under a cache size of 10,000 records, DistReach takes
0.20 s to load cached records, 0.24 s to write loaded records
to servers, and 0.09 s to admit them to the switch. Thus, the
total crash recovery time is 0.53 s. Compared with FarReach’s
crash recovery time (§VI-D), DistReach reduces the total crash
recovery time of FarReach by 77.4% due to switch-based
replication, without collecting client-side preserved records and
the latest control-plane in-switch snapshot.

F. Switch Deployment

(Exp#14) Switch resource usage. We compile all schemes into
the same Tofino switch chipset [18] to evaluate switch resource
usage. For DistNoCache and DistCache, we evaluate per-switch
resource usage. For DistReach, we focus on the resource usage
of each leaf switch, which has higher resource demands than
each spine switch as it also maintains a Count-Min sketch. We
focus on the following metrics: SRAM consumption (with up
to 768 KiB for stateful information and 512 KiB for match-
action tables per stage), the number of stages (12 stages in
total), actions, and ALUs (at most 4 stateful ALUs per stage)
for in-switch computation, and the packet header vector (PHV)
size (768 bytes in total) for cross-stage communication.

Tables II and III show the results of the ingress and egress
pipelines, respectively. The PHV size of each scheme remains
the same for both ingress and egress pipelines, as the Tofino
switch chipset processes the same PHV parsed from packet
headers across stages and pipelines. NoCache and DistNoCache
have the smallest hardware resource usage, as they only support
basic network functions (e.g., L2/L3 forwarding). NetCache and
FarReach have similar switch resource usage, as both of them
deploy an in-switch cache that consumes SRAM to track stateful
information (e.g., key-value records and cache metadata). Both
schemes also maintain SRAM-based match-action tables, utilize
stages, actions, and ALUs to perform in-switch computations
(e.g., cache lookups and updates), and use the PHV size to
transmit each request across different stages. DistCache and
DistReach have similar switch resource usage for the same
reasons. Compared with NoCache and DistNoCache, which

IEEE/ACM TRANSACTIONS ON NETWORKING 15

Table II: (Exp#14) Ingress switch resource usage (percentages in
brackets are fractions of total resource usage).

SRAM (KiB) # stages # actions # ALUs PHV size (bytes)

NoCache 112 (0.73%) 3 (25%) 4 (nil) 0 (0%) 134 (17.45%)

NetCache 1248 (8.13%) 8 (66.67%) 20 (nil) 0 (0%) 528 (68.75%)

FarReach 1280 (8.3%) 6 (50%) 27 (nil) 0 (0%) 499 (64.97%)

DistNoCache 112 (0.73%) 3 (25%) 4 (nil) 0 (0%) 134 (17.45%)

DistCache 1280 (8.3%) 6 (50%) 22 (nil) 0 (0%) 523 (68.10%)

DistReach 1264 (8.2%) 10 (83.33%) 30 (nil) 0 (0%) 501 (65.23%)

Table III: (Exp#14) Egress switch resource usage (percentages in
brackets are fractions of total resource usage).

SRAM (KiB) # stages # actions # ALUs PHV size (bytes)

NoCache 256 (1.67%) 2 (16.67%) 3 (nil) 0 (0%) 134 (17.45%)

NetCache 7856 (51.15%) 12 (100%) 184 (nil) 45 (93.75%) 528 (68.75%)

FarReach 8080 (52.6%) 12 (100%) 201 (nil) 45 (93.75%) 499 (64.97%)

DistNoCache 256 (1.67%) 2 (16.67%) 3 (nil) 0 (0%) 134 (17.45%)

DistCache 7824 (50.97%) 12 (100%) 184 (nil) 45 (93.75%) 523 (68.10%)

DistReach 8032 (52.3%) 12 (100%) 182 (nil) 44 (91.67%) 501 (65.23%)

use resources for basic network functions, the in-switch caches
consume most resources for caching records. Although the in-
switch caches use up the available stages, they do not exhaust
all resources in each stage. Thus, other networking tasks (e.g.,
congestion control) can still leverage the remaining resources
to share the stages with in-switch caching.

G. Additional Experiments

We conduct additional experiments on distributed in-switch
caching. We summarize the results (see the supplementary file)
as follows:

• We vary the write ratio and key distribution of the synthetic
workload (§VI-C). The throughput gain of DistReach (up to
2.4×) increases with the write ratio and Zipf constant.

• We introduce key popularity changes as in Exp#7. The
throughput gain of DistReach holds 2.4× under both static
and dynamic patterns.

• We vary the number of switch layers to introduce multiple
switch failures, while the crash recovery time of DistReach
keeps limited (e.g., 0.96 s under eight switch layers).

VII. RELATED WORK

In-switch caching and storage management. Several in-
switch caching designs have been proposed. SwitchKV [12]
caches hot keys in a software switch, which forwards reads
of cached keys to in-memory cache nodes for value access.
IncBricks [13] caches records in general-purpose network
accelerators and implements packet parsing in programmable
switches to serve reads of cached keys. NetCache [14] imple-
ments a packet processing pipeline for an in-switch read cache
based on switch ASICs. DistCache [15] implements distributed
in-network caching across multiple racks. The above studies
primarily target read-intensive workloads with write-through
caching, which incurs significant overhead under write-intensive

workloads (§VI). PKache [37] implements in-switch caching
with limited associativity and provides a general framework with
different cache management policies, yet it does not address
write-back caching.

Aside from caching, some studies use programmable
switches for efficient storage management. AppSwitch [38]
offloads hash-based routing to software switches, and its control
plane dynamically updates routing rules based on server
loads for load balancing. NetChain [39] stores records in
programmable switches for coordinating switch-based chain
replication, yet it does not address distributed in-switch caching.
TurboKV [40] and Pegasus [41] keep in-switch directory infor-
mation to speed up replication of in-memory key-value stores.
Concordia [42] tracks the locations of host-side cache copies in
switches for efficient cache coherence. Mind [43] maintains in-
switch memory management (e.g., address translation and cache
coherence) for efficient and transparent rack-scale memory
disaggregation. RedPlane [44] tracks networking flow states
in switches and makes periodic snapshots for write-intensive
workloads with relaxed consistency (allowing the loss of states).
Switcharoo [45] implements lookups and insertions of cuckoo
hash tables in switches to reduce control plane overhead, yet it
does not address in-switch cache management issues. P4LRU
[46] implements an LRU cache in switches to track recently-
accessed networking flow states and indexes of key-value
storage, yet it cannot track the values of key-value storage
to absorb requests due to limited switch stages. Such systems
do not consider in-switch caching for server-side key-value
storage.
Write-back caching. Prior studies propose various write-back
caching policies. DEFER [47] improves the reliability of write-
back caching by replication and logging. FlashTier [48] deploys
a write-back flash cache and ensures consistency by storing both
cached data and mapping details durably in flash. Some studies
propose write-back caching policies with different reliability
guarantees. Examples include: (i) ordered and journaled policies
[49] that provide point-in-time consistency, (ii) write-back flush
and persist policies [50] that use write barriers for durable and
consistent caching, and (iii) client-side buffered write policies
[51] that ensure durability by replication with read-after-write
consistency. However, programmable switches have restricted
programming requirements and limited hardware resources for
implementing such policies. Enabling new write-back caching
policies with stronger reliability guarantees is our future work.

VIII. CONCLUSION

We study the in-switch write-back caching problem. We
first propose FarReach, which targets single-switch deployment
and forms a fast, available, and reliable in-switch write-back
caching framework for load-balanced key-value stores in
modern data centers under skewed write-intensive workloads. It
incorporates new co-designs of control and data planes for cache
admission and eviction under a write-back policy. In particular,
FarReach pays special attention to crash-consistent snapshot
generation and zero-loss crash recovery, so as to protect
against data loss under switch failures. We further propose
DistReach, which extends FarReach to support distributed in-
switch caching deployment. The novelty of DistReach is to

IEEE/ACM TRANSACTIONS ON NETWORKING 16

leverage switch-based replication to significantly reduce the
reliability maintenance overhead of FarReach. Evaluation under
YCSB and synthetic workloads demonstrates the performance
benefits of both FarReach and DistReach under skewed write-
intensive workloads.

REFERENCES

[1] S. Sheng, H. Puyang, Q. Huang, L. Tang, and P. P. Lee, “FarReach:
Write-back caching in programmable switches,” in Proc. of USENIX
ATC, 2023.

[2] J. Yang, Y. Yue, and K. V. Rashmi, “A large scale analysis of hundreds of
in-memory cache clusters at Twitter,” in Proc. of USENIX OSDI, 2020.

[3] R. Nishtala, H. Fugal, S. Grimm, M. Kwiatkowski, H. Lee, H. C. Li,
R. McElroy, M. Paleczny, D. Peek, P. Saab, D. Stafford, T. Tung, and
V. Venkataramani, “Scaling memcache at Facebook,” in Proc. of USENIX
NSDI, 2013.

[4] B. Atikoglu, Y. Xu, E. Frachtenberg, S. Jiang, and M. Paleczny, “Workload
analysis of a large-scale key-value store,” in Proc. of ACM SIGMETRICS,
2012.

[5] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Burrows,
T. Chandra, A. Fikes, and R. E. Gruber, “Bigtable: a distributed storage
system for structured data,” ACM Trans. on Computer Systems, vol. 26,
no. 2, pp. 1–26, 2008.

[6] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,
A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels, “Dynamo:
Amazon’s highly available key-value store,” ACM SIGOPS operating
systems review, vol. 41, no. 6, pp. 205–220, 2007.

[7] Z. Cao, S. Dong, S. Vemuri, and D. H. Du, “Characterizing, modeling,
and benchmarking RocksDB key-value workloads at facebook,” in Proc.
of USENIX FAST, 2020.

[8] Q. Huang, H. Gudmundsdottir, Y. Vigfusson, D. A. Freedman, K. Birman,
and R. van Renesse, “Characterizing load imbalance in real-world
networked caches,” in Proc. of ACM SIGCOMM HotNets Workshop,
2014.

[9] J. Jung, B. Krishnamurthy, and M. Rabinovich, “Flash crowds and denial
of service attacks: Characterization and implications for cdns and web
sites,” in Proc. of WWW, 2002.

[10] P. Bosshart, G. Gibb, H.-S. Kim, G. Varghese, N. McKeown, M. Iz-
zard, F. Mujica, and M. Horowitz, “Forwarding metamorphosis: fast
programmable match-action processing in hardware for SDN,” in Proc.
of ACM SIGCOMM, 2013.

[11] B. Fan, H. Lim, D. G. Andersen, and M. Kaminsky, “Small cache, big
effect: Provable load balancing for randomly partitioned cluster services,”
in Proc. of ACM SOCC, 2011.

[12] X. Li, R. Sethi, M. Kaminsky, D. G. Andersen, and M. J. Freedman, “Be
fast, cheap and in control with SwitchKV,” in Proc. of USENIX NSDI,
2016.

[13] M. Liu, L. Luo, J. Nelson, L. Ceze, A. Krishnamurthy, and K. Atreya,
“IncBricks: Toward in-network computation with an in-network cache,”
in Proc. of ACM ASPLOS, 2017.

[14] X. Jin, X. Li, H. Zhang, R. Soulé, J. Lee, N. Foster, C. Kim, and I. Stoica,
“NetCache: balancing key-value stores with fast in-network caching,” in
Proc. of ACM SOSP, 2017.

[15] Z. Liu, Z. Bai, Z. Liu, X. Li, C. Kim, V. Braverman, X. Jin, and I. Stoica,
“DistCache: provable load balancing for large-scale storage systems with
distributed caching,” in Proc. of USENIX FAST, 2019.

[16] R. Miao, H. Zeng, C. Kim, J. Lee, and M. Yu, “SilkRoad: making stateful
layer-4 load balancing fast and cheap using switching ASICs,” in Proc.
of ACM SIGCOMM, 2017.

[17] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese et al., “P4: pro-
gramming protocol-independent packet processors,” ACM SIGCOMM
Computer Communication Review, vol. 44, no. 3, pp. 87–95, 2014.

[18] Tofino, https://www.intel.com/content/www/us/en/products/network-io/
programmable-ethernet-switch/tofino-series/tofino.html.

[19] P4 switch behavioral model, https://github.com/p4lang/behavioral-model.
[20] YCSB, https://github.com/brianfrankcooper/YCSB/.
[21] Mininet, https://mininet.org/.
[22] J.-H. Hwang, M. Balazinska, A. Rasin, U. Cetintemel, M. Stonebraker, and

S. Zdonik, “High-availability algorithms for distributed stream processing,”
in Proc. of IEEE ICDE, 2005.

[23] LevelDB, https://github.com/google/leveldb/.
[24] RocksDB, https://github.com/facebook/rocksdb/.

[25] L. Lu, T. S. Pillai, H. Gopalakrishnan, A. C. Arpaci-Dusseau, and
R. H. Arpaci-Dusseau, “WiscKey: separating keys from values in SSD-
conscious storage,” ACM Trans. on Storage, vol. 13, no. 1, pp. 1–28,
2017.

[26] G. Cormode and S. Muthukrishnan, “An improved data stream summary:
the count-min sketch and its applications,” Journal of Algorithms, vol. 55,
no. 1, pp. 58–75, 2005.

[27] B. H. Bloom, “Space/time trade-offs in hash coding with allowable errors,”
Communications of the ACM, vol. 13, no. 7, pp. 422–426, 1970.

[28] D. Karger, E. Lehman, T. Leighton, R. Panigrahy, M. Levine, and
D. Lewin, “Consistent hashing and random trees: Distributed caching
protocols for relieving hot spots on the world wide web,” in Proc. of
ACM STOC, 1997, pp. 654–663.

[29] J. Tate, P. Beck, P. Clemens, S. Freitas, J. Gatz, M. Girola, J. Gmitter,
H. Mueller, R. O’Hanlon, V. Para et al., IBM and Cisco: together for a
world class data center. IBM Redbooks, 2013.

[30] N. Kang, M. Ghobadi, J. Reumann, A. Shraer, and J. Rexford, “Efficient
traffic splitting on commodity switches,” in Proc. of ACM CoNEXT,
2015.

[31] R. Van Renesse and F. B. Schneider, “Chain replication for supporting
high throughput and availability.” in Proc. of USENIX OSDI, 2004.

[32] P. O’Neil, E. Cheng, D. Gawlick, and E. O’Neil, “The log-structured
merge-tree (LSM-tree),” Acta Informatica, vol. 33, no. 4, pp. 351–385,
1996.

[33] O. Balmau, D. Didona, R. Guerraoui, W. Zwaenepoel, H. Yuan, A. Arora,
K. Gupta, and P. Konka, “TRIAD: Creating synergies between memory,
disk and log in log structured key-value stores,” in Proc. of USENIX
ATC, 2017.

[34] A. Papagiannis, G. Saloustros, P. González-Férez, and A. Bilas, “Tucana:
Design and implementation of a fast and efficient scale-up key-value
store,” in Proc. of USENIX ATC, 2016.

[35] D. Didona and W. Zwaenepoel, “Size-aware sharding for improving tail
latencies in in-memory key-value stores,” in Proc. of USENIX NSDI,
2019, pp. 79–94.

[36] Y. Cheng, A. Gupta, and A. R. Butt, “An in-memory object caching
framework with adaptive load balancing,” in Proc. of ACM EuroSys,
2015.

[37] R. Friedman, O. Goaz, and D. Hovav, “Limited associativity caching in
the data plane,” CoRR, vol. abs/2203.04803, 2022.

[38] E. Cidon, S. Choi, S. Katti, and N. McKeown, “AppSwitch: Application-
layer load balancing within a software switch,” in Proc. of APNet, 2017.

[39] X. Jin, X. Li, H. Zhang, N. Foster, J. Lee, R. Soulé, C. Kim, and I. Stoica,
“NetChain: scale-free sub-RTT coordination,” in Proc. of USENIX NSDI,
2018.

[40] H. Eldakiky, D. H. Du, and E. Ramadan, “TurboKV: scaling up the
performance of distributed key-value stores with in-switch coordination,”
CoRR, vol. abs/2010.14931, 2020.

[41] J. Li, J. Nelson, E. Michael, X. Jin, and D. R. K. Ports, “Pegasus: tolerating
skewed workloads in distributed storage with in-network coherence
directories,” in Proc. of USENIX OSDI, 2020.

[42] Q. Wang, Y. Lu, E. Xu, J. Li, Y. Chen, and J. Shu, “Concordia: distributed
shared memory with in-network cache coherence,” in Proc. of USENIX
FAST, 2021.

[43] S.-s. Lee, Y. Yu, Y. Tang, A. Khandelwal, L. Zhong, and A. Bhattacharjee,
“Mind: In-network memory management for disaggregated data centers,”
in Proc. of ACM SOSP, 2021.

[44] D. Kim, J. Nelson, D. R. Ports, V. Sekar, and S. Seshan, “RedPlane:
Enabling fault-tolerant stateful in-switch applications,” in Proc. of ACM
SIGCOMM, 2021.

[45] T. Caiazzi, M. Scazzariello, and M. Chiesa, “Millions of low-latency state
insertions on ASIC switches,” Proceedings of the ACM on Networking,
vol. 1, no. CoNEXT3, pp. 1–23, 2023.

[46] Y. Zhao, W. Liu, F. Dong, T. Yang, Y. Li, K. Yang, Z. Liu, Z. Jia, and
Y. Yang, “P4LRU: towards an LRU cache entirely in programmable data
plane,” in Proc. of ACM SIGCOMM, 2023.

[47] S. Narasimhan, S. Sohoni, and Y. Hu, “A log-based write-back mechanism
for cooperative caching,” in Proc. of IEEE IPDPS, 2003.

[48] M. Saxena, M. M. Swift, and Y. Zhang, “Flashtier: a lightweight,
consistent and durable storage cache,” in Proc. of ACM EuroSys, 2012.

[49] R. Koller, L. Marmol, R. Rangaswami, S. Sundararaman, N. Talagala,
and M. Zhao, “Write policies for host-side flash caches,” in Proc. of
USENIX FAST, 2013.

[50] D. Qin, A. D. Brown, and A. Goel, “Reliable writeback for client-side
flash caches,” in Proc. of USENIX ATC, 2014.

[51] S. Ghandeharizadeh and H. Nguyen, “Design, implementation, and
evaluation of write-back policy with cache augmented data stores,” Proc.
of the VLDB Endowment, vol. 12, no. 8, pp. 836–849, 2019.

https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-series/tofino.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-series/tofino.html
https://github.com/p4lang/behavioral-model
https://github.com/brianfrankcooper/YCSB/
https://mininet.org/
https://github.com/google/leveldb/
https://github.com/facebook/rocksdb/

	Introduction
	Background and Motivation
	Programmable Switches
	Challenges

	FarReach Design
	Design Overview
	Non-blocking Cache Admission
	Available Cache Eviction
	Crash-consistent Snapshot Generation
	Discussion

	DistReach Design
	Design Overview
	Switch-based Replication
	Consistent Cache Management Across Switches
	Design Considerations

	Implementation
	FarReach Implementation
	DistReach Implementation

	Evaluation
	Methodology
	Performance of FarReach under YCSB Workloads
	Performance of FarReach under Synthetic Workloads
	Snapshot Generation and Crash Recovery
	Performance of DistReach
	Switch Deployment
	Additional Experiments

	Related Work
	Conclusion
	References

