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Abstract—Memory deduplication effectively relieves the mem-
ory space bottleneck by removing duplicate pages, especially in
virtualized systems in which virtual machines run the same OS
and similar applications. However, due to the non-uniform access
latencies in NUMA architectures, memory deduplication poses
a trade-off between memory savings and access performance:
global deduplication across NUMA nodes realizes high memory
savings, but leads to frequent cross-node remote access after
deduplication and results in performance degradations. In con-
trast, local deduplication avoids remote access, but limits dedu-
plication effectiveness. We design AdaptMD, an adaptive memory
deduplication system that addresses the space-performance trade-
off in NUMA architectures. AdaptMD leverages hotness aware-
ness to globally deduplicate only cold pages to reduce remote
access. It also migrates similar applications to the same NUMA
node to allow local deduplication without remote access. We
further make AdaptMD readily configurable to address various
deployment scenarios. Experiments show that AdaptMD achieves
high memory savings as in global deduplication, while achieving
similar access performance as in local deduplication.

Index Terms—Memory management, virtual memory, memory
deduplication, NUMA architecture, virtualization.

I. INTRODUCTION

NUMA (non-uniform memory access) architectures have
been widely adopted by modern server machines in data

centers and cloud deployments [2], [12], [23], [32], [41]. By
using multiple memory buses and limiting the number of pro-
cessors in each memory bus, NUMA architectures alleviate
memory bus contention and achieve high scalability with
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dozens of processors in a single server machine [1], [28]. To this
end, modern NUMA servers are composed of multiple NUMA
nodes (e.g., two or four NUMA nodes [32]), each of which is
attached with dedicated memory space. Thus, NUMA servers
can provide large memory space and are often used in data
centers to support various memory-intensive applications [3],
[14], such as graph computing and in-memory data analysis.

However, memory becomes a scarce resource when data cen-
ters run a large number of data-intensive applications, as such
applications often have large working set sizes [7], [25], [29]
and each of them consumes significant memory usage. In par-
ticular, when data-intensive applications in virtualized environ-
ments, memory consumption becomes even more demanding,
as virtual machines (VMs) are often over-provisioned to meet
the peak memory demands. As a result, memory is a critical
factor that determines the performance of memory-intensive
applications. Furthermore, insufficient available memory space
can incur frequent memory swaps, which not only significantly
degrade the performance of applications [3], [14], [35], but also
limit the increase of CPU utilization [16].

Memory deduplication effectively alleviates the memory
pressure by eliminating duplicate data and keeping only one
physical copy of duplicate pages in memory [4], [17], [40],
[42]. It is particularly effective when running applications in
virtualized environments, as VMs in the same physical host
often run the same OS and similar applications and there exists
substantial duplicate data in host memory [15], [32]. Mea-
surement studies show that memory deduplication can achieve
40-50% of memory savings [17], [40]. As memory deduplica-
tion is widely supported in modern kernels (e.g., KSM [4] in
Linux), it can also be enabled on NUMA servers to eliminate
duplicate data.

When memory deduplication is adopted in NUMA archi-
tectures, we observe that there exists an inherent trade-off be-
tween memory savings and access performance. Conventional
memory deduplication adopts global deduplication (the de-
fault configuration in KSM), which deduplicates the whole
memory space of all NUMA nodes. However, if duplicate
pages appear in different memory nodes, global deduplication
maps duplicate pages to a physical copy in a remote NUMA
node. Accessing the memory space of other NUMA nodes
has significantly longer latencies than accessing local memory
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(e.g., 1.5-4×[1], [32]). Thus, global deduplication triggers fre-
quent cross-node memory access, leading to degraded perfor-
mance. Alternatively, we can adopt local deduplication (also
supported in KSM), which applies deduplication independently
to the local memory region of each NUMA node. This avoids re-
mote memory access, but cannot remove duplicate pages across
NUMA nodes. Our experiments on NUMA servers show that
global deduplication may suffer from up to 43% performance
penalty on a two-node server, and the penalty even reaches
up to 60% on a four-node server, while local deduplication
only achieves less than 76% of the memory savings of global
deduplication (see Section II-C for details).

Although extensive efforts have been made to optimize mem-
ory deduplication, they mainly focus on optimizing the execu-
tion process of memory deduplication to realize faster and more
lightweight deduplication [8], [27], [39], [42]. The problem
of incurring frequent remote access and hence longer access
frequencies after memory deduplication is not well studied. A
recent work, nuKSM [32], optimizes the deduplication perfor-
mance in NUMA architectures, yet its design is based on global
deduplication only. Other studies on NUMA architectures [1],
[12], [23] focus on mitigating the impact of asymmetric mem-
ory access on application performance, yet they do not con-
sider memory deduplication. Thus, how to realize high memory
savings via memory deduplication, while preserving the post-
deduplication performance, for NUMA architectures remains
an open issue.

To realize efficient memory deduplication in NUMA archi-
tectures, particularly on addressing the trade-off between mem-
ory savings and access performance, we observe that there are
two choices to limit remote accesses. One choice is to lever-
age hotness awareness, i.e., deduplicating only infrequently
accessed “cold” pages across NUMA nodes to avoid frequent
remote access; the other choice is to leverage application migra-
tion, i.e., migrating “similar” applications that share substantial
duplicate pages to the same NUMA node and using only local
deduplication to avoid remote access. However, efficiently re-
alizing the above two design choices faces multiple key chal-
lenges. First, identifying duplicate pages in all NUMA nodes
for cold pages may require many page comparisons and hence
incur high performance overhead. Second, intuitive methods
of characterizing application similarities (e.g., page-by-page
comparison) are time-consuming. Third, migration scheduling
must take into account the resource demands of applications and
the resource usage of each NUMA node, yet the migration op-
eration should be lightweight to avoid suspending any running
applications for a long time. Finally, it is common to deploy var-
ious types of applications simultaneously on multiple NUMA
nodes [32], [38], [41], and the deployment setting is transparent
to the NUMA architectures due to hypervisor abstraction. It is
thus difficult to generalize a memory deduplication approach for
various application deployment scenarios; instead, the memory
deduplication policy should be configurable to adapt to different
deployment scenarios.

In this paper, we present AdaptMD, an adaptive mem-
ory deduplication system that carefully balances the space-
performance trade-off in memory deduplication, such that

Fig. 1. Overview of a NUMA architecture.

it achieves high memory savings, while limiting remote
memory access. AdaptMD consists of two newly designed
memory deduplication techniques, namely AdaptMD-H and
AdaptMD-S, as well as an adaptive control module that
is readily configurable to choose the deduplication poli-
cies to make the best possible space-performance trade-off
for different application deployment scenarios. Specifically,
AdaptMD-H leverages the idea of hotness awareness for mem-
ory deduplication. It applies global deduplication to only cold
pages that are infrequently accessed, and applies local dedu-
plication to hot pages to mitigate remote memory access. To
make the design efficient, AdaptMD-H uses Bloom filters [6]
to quickly locate duplicate cold pages across NUMA nodes,
so as to limit the page comparison overhead. On the other
hand, AdaptMD-S leverages the idea of migrating similar ap-
plications to the same NUMA node for local deduplication. It
uses a bitmap-based lightweight scheme to estimate application
similarities, and further uses a scheduling scheme based on the
application similarities with efficient live migration support.

We implement a prototype of AdaptMD atop Linux’s
KSM [4]. We conduct extensive experiments on NUMA servers
through various benchmarks and application deployment sce-
narios. Experiments show that AdaptMD effectively bal-
ances the space-performance trade-off. For example, AdaptMD
achieves 93% of memory savings as in global deduplication,
while achieving similar access performance as in local dedu-
plication with at most 10% more execution time. We make
the artifact of AdaptMD available in the repository https://
anonymous.4open.science/r/AdaptMD.

II. BACKGROUND AND MOTIVATION

A. NUMA Architectures

As the number of cores in a single machine keeps increasing,
modern data centers deploy NUMA servers to surpass the scala-
bility limits of symmetric multi-processing (SMP) architectures
[1], [28]. In particular, NUMA architectures alleviate memory
bus contention by limiting the number of processors on one
memory bus. In the following, we introduce the memory layout
of a NUMA architecture and analyze its performance impact.

Architectural overview. Fig. 1 depicts a simplified architec-
ture of a NUMA server, which consists of multiple NUMA
nodes (e.g., two or four NUMA nodes [32]). Each node com-
prises multiple CPU cores attached with a dedicated memory
region. Note that the CPU cores within the same NUMA node
share the same memory region, which we refer to as local
memory. Different NUMA nodes are connected with high-speed
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TABLE I
LATENCY (IN NANOSECONDS) OF A CORE IN NODE 0 TO ACCESS

ITS LOCAL MEMORY AND REMOTE MEMORY IN NODES 1-3

Node 0 Node 1 Node 2 Node 3
2-Node Node 0 82 132 - -
4-Node Node 0 76 157 192 200

interconnect components (e.g., Intel UPI and Intel QPI). Thus,
each CPU core can also access the memory regions attached to
other NUMA nodes. We refer to such memory regions as remote
memory. We refer to the access to the local memory and remote
memory as local access and remote access, respectively.

Non-uniform access latency. One fundamental feature of
NUMA architectures is the non-uniform access latency. Specif-
ically, the remote access latency is much higher (e.g., by
1.5-4× [1], [32]) than the local access latency. The main reason
is that remote access needs to traverse cross-node intercon-
nected links and remote memory controllers. To further validate
such an effect, we measure the memory access latency on our
two-node and four-node NUMA servers using Intel’s memory
latency checker [19], which evaluates the memory latency when
performing pointer chases between different NUMA nodes (see
Section IV for our testbed details). Table I shows the results.
The remote access latency is 1.61× the local access latency on
the two-node server, while the difference further increases to
2.07-2.63× on the four-node server.

B. Memory Deduplication

Memory deduplication is a redundancy elimination technique
that saves memory by keeping only one copy of duplicate pages
among processes. Many OSes and hypervisors now support
memory deduplication (e.g., Kernel Samepage Merging (KSM)
in Linux [4] and Transparent Page Sharing (TPS) in VMWare
[40]). We focus on KSM in Linux due to its widespread recog-
nition and usage.

Identifying duplicate pages. The core process in KSM is
to periodically scan the memory area marked as deduplicable
and identify duplicate pages by comparing page content. To
determine if a scanned page is duplicate, KSM uses a red-black
tree to index pages. For each scanned page, KSM compares the
scanned page with each page in the red-black tree in a byte-by-
byte manner. The scanned page is a duplicate page once the
comparison matches; otherwise, it is a unique page. Note that
KSM skips frequently updated pages to accelerate deduplica-
tion. Specifically, for each unique page, its whole page content
is hashed to a checksum. If the checksum differs from the
calculated hash in the last scan period, the page content must
be changed recently, so it is simply skipped for deduplication.

Page sharing. To realize page sharing after identifying dupli-
cate pages, KSM merges the duplicate pages by modifying the
page table. Specifically, KSM keeps only one physical read-
only page, and modifies the page table so that the virtual ad-
dresses of duplicate pages point to the shared physical page.
To write to a shared page, a copy-on-write (COW) operation is
triggered, so that the newly copied page can be updated.

Fig. 2. Memory deduplication in NUMA architectures.

Fig. 3. Trade-off in NUMA architectures. Global/local denotes the
global/local deduplication polices, and the number 2 or 4 denotes the number
of nodes of the NUMA server.

Deduplication policies in NUMA architectures. Memory
deduplication in NUMA servers can run either local deduplica-
tion or global deduplication. For example, KSM provides a con-
figurable parameter merge_across_nodes to enable global
memory deduplication or otherwise (i.e., local deduplication).
Fig. 2 depicts the difference of the two deduplication policies.
By default, KSM uses global deduplication to maximize mem-
ory savings.

C. Trade-Off in NUMA Architectures

Space savings in memory deduplication. We conduct ex-
periments to demonstrate the effectiveness of memory dedu-
plication in space savings. We consider a simple deployment
scenario by fixing the number of VMs as four, and deploy
the VMs on our four-node and two-node NUMA servers (i.e.,
the number of VMs running in each NUMA node is one and
two, respectively). We assign each VM to one vCPU core and
make it run the same application benchmark. We consider four
different application benchmarks (see Section IV-B for details).
Here, we show only the results of the CG application, which
is a benchmark that performs conjugate gradient with irregular
memory access and takes around 3 GiB memory, while other
application benchmarks show similar conclusions. Fig. 3(a)
shows the deduplication rate, defined as the ratio of the re-
duced memory space to the total memory space occupied by
all applications. We see that the deduplication rate of global
deduplication always exceeds 2× that of local deduplication,
while the gain can reach up to 3.4× on the four-node server.
We observe a significant difference (24%) in the deduplication
rate of Local-4 and Local-2. In Local-4, each node has only
one VM, which can only deduplicate the duplicate pages of the
VM itself, while in Local-2, each node has two VMs, which
can also deduplicate the same pages of different VMs, thereby
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Fig. 4. Memory access traffic per second with local and global deduplica-
tion: REMOTE and LOCAL refer to the memory traffic of remote and local
accesses, respectively, and the number (0 or 1) refers to the NUMA node
from which the accesses are issued.

having a higher deduplication rate. In short, local deduplication
has limited memory savings as duplicate data may appear across
NUMA nodes, while global deduplication achieves higher
memory savings.

Space-performance trade-off. We show via experiments that
global and local deduplication policies present an inherent
trade-off between memory savings and memory access perfor-
mance. We use the same experiment setting as in Fig. 3(a), and
further show the access performance in Fig. 3(b). We choose
the execution time of using local deduplication as the baseline
and normalize it to one, and study the increase of the execution
time when using global deduplication. We see that global dedu-
plication always incurs longer execution time. It increases the
execution time by 42% on the two-node server, and the increase
reaches up to 60% on the four-node server. In short, memory
access performance with global deduplication can be severely
degraded compared to local deduplication.

We have also considered more general settings by deploying
more VMs, such as running up to 16 VMs on a four-node
server containing 24 CPU cores and deploying a randomly
selected application in each VM using the benchmarks we
considered; see Section IV-B for details. The results present
similar conclusions. Specifically, global deduplication increases
the execution time by 11-35%, while local deduplication can
only achieve up to 69% of the memory savings compared to
global deduplication.

Root cause analysis. The root cause of the performance degra-
dation for global deduplication is the frequent remote access
after deduplication. To quantify it, we measure the local and
remote memory access traffic using the Intel Resource Director
Technology [20]. We still take the CG benchmark as an ex-
ample. Fig. 4 shows the amount of memory access traffic per
second in each NUMA node when running the CG benchmark
on the two-node server. We see that local deduplication incurs
almost zero remote access. However, for global deduplication,
the remote access traffic increases dramatically, for example,
up to 2,060 MB/s in node 0. Meanwhile, the local access traffic
of node 1 significantly drops (e.g., from 3,000 MB/s to 100
MB/s). The results imply that many duplicate pages originally
in node 0 are now mapped to the physical pages in node 1

due to global deduplication, thereby leading to frequent remote
memory access.

D. Motivation and Challenges

To address the space-performance trade-off of memory dedu-
plication in NUMA architectures, we have two observations that
guide the design of AdaptMD.

First, among the duplicate pages across NUMA nodes, many
pages may be infrequently accessed (referred to as cold pages).
Thus, if we apply global deduplication to cold pages only, it
is expected to only degrade performance slightly as remote
access is limited. To examine the impact of cold pages, we
take the case in Fig. 3 as an example to show the amount of
cold duplicate pages. In the four-node case, we see that 6.7
GiB of memory is saved by global deduplication (where the
deduplication rate is 54.5% as shown in Fig. 3(a)). Among
these memory pages, 25% pages are accessed only once during
the whole application runtime. Thus, even if these pages are
globally deduplicated, it will not introduce a large amount of
remote access. This motivates us to leverage hotness awareness
for memory deduplication in NUMA architectures.

Second, it is common to have multiple applications being de-
ployed simultaneously [32], [38], [41], and the application-level
deployment is often unaware of the underlying NUMA architec-
ture. Thus, similar applications with substantial duplicate pages
may be deployed in different NUMA nodes. This motivates us
to leverage VM migration to migrate similar applications to
the same NUMA node for local deduplication. In this case, as
physical pages are shared by applications running within the
same node after deduplication, remote access is limited and
hence the performance is maintained.

To efficiently realize the ideas of hotness awareness and VM
migration, we address the following design challenges.

• Lightweight cold page identification and cross-node
page lookup. To differentiate between hot and cold pages,
the memory and updating overhead of the metadata used
for maintaining the access frequency of pages should
be small. Also, as cold pages need to be deduplicated
across all NUMA nodes, we need to compare the pages
in all nodes to look up duplicate pages. This lookup
process should be lightweight with limited computat-
ional overhead.

• Lightweight similarity estimation and VM migra-
tion. The similarities between applications depend on the
amount of duplicate pages. Using page content comparison
directly to estimate similarities can be expensive as there
exist too many pages for comparisons. Also, determining
an effective migration needs to accurately estimate the
resource usage of each NUMA node, and the migration
operation should be lightweight without suspending the
applications for a long time.

• Heterogeneous application deployment. Different appli-
cations may be deployed across NUMA nodes and hence
lead to heterogeneous deployment scenarios. The bene-
fits and effectiveness of different deduplication polices
often vary depending on the application workloads and the
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Fig. 5. Overall design of AdaptMD.

deployment of applications in different NUMA nodes.
Thus, realizing the best space-performance trade-off ne-
cessitates an adaptive scheme to dynamically adjust the
deduplication policies.

III. DESIGN OF ADAPTMD

A. Design Overview

Main idea. AdaptMD is an adaptive memory deduplication
system that builds on two deduplication techniques, referred
to as AdaptMD-H and AdaptMD-S. AdaptMD-H leverages
hotness awareness and applies global deduplication to cold
pages only to reduce remote access. AdaptMD-S leverages
VM migration and migrates similar applications with high
content redundancy to the same NUMA node for local dedu-
plication. Finally, AdaptMD adaptively determines the dedupli-
cation policies (AdaptMD-H, AdaptMD-S, or the local/global
deduplication) depending on the deployment of applications in
different NUMA nodes to realize the best space-performance
trade-off.

System architecture. Fig. 5 shows the AdaptMD architecture,
which adopts a modular design. AdaptMD consists of seven key
modules: (i) the scan module, which is responsible for scan-
ning the memory pages and recoding the necessary metadata
information required by the hotness and similarity modules;
(ii) the hotness module, which identifies the redundancy for
cold pages across NUMA nodes; (iii) the similarity module,
which measures the similarity between applications; (iv) the
migration module, which makes the decision of application
migration and executes the migration operation; (v) the monitor
module, which obtains the similarity of applications and the
resource occupancy of the system and applications from the
hotness module and similarity module. (vi) the adaptor mod-
ule, which decides the appropriate deduplication choice based
on the monitored results; and (vii) the deduplication module,
which executes the page merging operation and updates the
page table for page sharing.

Since the scan and deduplication modules are already pro-
vided by KSM, AdaptMD can reuse these modules to limit ex-
tra implementation overhead. AdaptMD-H builds on the scan,
hotness, and deduplication modules, AdaptMD-S builds on the
scan, similarity, migration, and deduplication modules, and the
adaptive design builds on the monitor and adaptor modules. In
the following, we present the design details of AdaptMD-H

(Section III-B) and AdaptMD-S (Section III-C), as well as the
adaptive scheme (Section III-D).

B. AdaptMD-H

AdaptMD-H leverages hotness awareness to apply global
deduplication to cold pages only. Since cold pages are less
frequently accessed, the performance degradation due to re-
mote access to cold pages is limited. AdaptMD-H addresses
two key issues: (i) How to differentiate hot and cold pages
without incurring significant overhead? (ii) How to quickly
identify duplicate cold pages in other NUMA nodes in a light-
weight manner?

Hotness identification. To estimate the hotness of each mem-
ory page, we define an inactive counter for each page, which
records the number of successive scan periods in which the
page has not been accessed. Specifically, if a scanned page is
accessed within two consecutive scan intervals, we reset its
inactive counter to zero; otherwise, we increase the inactive
counter by one. If the inactive counter reaches a predefined
threshold (which we refer to as the coldness threshold), we tag
the scanned page as cold.

AdaptMD-H determines whether a page is accessed by
checking its access bit. The access bit indicates whether a
scanned page has been accessed since it is checked in the last
scan period. The bit is one if it has been accessed; or zero
otherwise. In particular, the scan module periodically scans
all memory pages in the memory area marked as duplicatable
and checks the access bit of each scanned page by calling the
page_referenced function in Linux kernel.

We argue that AdaptMD-H is lightweight. Since the original
deduplication workflow in KSM has already used a background
thread to periodically scan memory pages, we can reuse the
background thread for our scanning to limit extra overhead. By
doing so, the only additional work required by AdaptMD-H
is to update the inactive counter when each page is scanned
and tag the page as cold if needed, so the computational over-
head is small. In terms of extra memory overhead, the inactive
counter needs one byte per page in our implementation, and it
is stored together with other existing deduplication metadata
in KSM (including the virtual address, checksum, positions
in the comparison trees, etc.). Thus, the extra memory over-
head is small compared with the original metadata in KSM,
which has more than 100 bytes in total for each page. In short,
AdaptMD-H incurs limited extra overhead.

Cross-node lookup of duplicate cold pages. Recall
that AdaptMD-H needs a lightweight way to identify
duplicate pages in other NUMA nodes for each cold page.
AdaptMD-H deploys Bloom filters [6] to reduce unnecessary
page comparisons and accelerate the page lookup process.
Fig. 6 depicts the Bloom filter structure. Specifically,
AdaptMD-H creates a Bloom filter for each NUMA node.
Each bloom filter is a one-dimensional vector whose size is
proportional to the number of pages per NUMA node, and
each bit corresponds to a 4 KiB page.

AdaptMD-H constructs a Bloom filter coupled with
two-level hashing in each NUMA node in a lightweight
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Fig. 6. Bloom filter construction with two-level hashing in each
NUMA node.

manner. Specifically, for each page in a NUMA node, the first-
level hashing uses only one single hash function to compute
a 32-bit checksum from the page content. The second-level
hashing uses multiple independent hash functions, but computes
the hash values from the first-level hashed checksum instead
of the original page to reduce the computation overhead. We
further use the 32-bit checksum as the input to the second-level
hash functions to compute the bit positions of the Bloom filter
to be set to one.

Considering that the range of values represented by the
32-bit checksum is much larger than the number of bits
in a Bloom filter, we can use simple bit-wise operations
to implement the second-level hash functions. In particular,
AdaptMD-H performs bit-wise AND operations on the check-
sum and Bloom filter length, and performs bit-wise AND oper-
ations on the Bloom filter length after shifting right by 3 and 6
bits to generate three different secondary hash values. Finally,
we set the corresponding bits in the Bloom filter as one based
on the second-level hashes. To limit the false positive rate of
the Bloom filters, AdaptMD-H uses three hash functions in the
second-level hashing and sets the size of each Bloom filter (in
bits) as eight times the total number of pages in each NUMA
node. In this case, the false positive rate of the Bloom filter is
3.06% [11], while the size of the Bloom filter is 32 MiB for
128 GiB memory with 4 KiB pages.

The cross-node lookup procedure based on Bloom filters is
as follows. For a cold page, AdaptMD-H checks if a dupli-
cate page has been stored in other NUMA nodes by issuing a
lookup to the Bloom filter in each of the other NUMA nodes.
If the lookup to a NUMA node returns false, the page must
not exist in that node and AdaptMD-H checks another NUMA
node; otherwise, if the lookup returns true, AdaptMD-H further
checks the comparison trees (i.e., red-black trees) to confirm if
the duplicate page really exists, as the Bloom filter may have
false positives.

The Bloom filter construction with two-level hashing incurs
only low computational overhead. In particular, as a checksum
is also needed by the original deduplication module in KSM
(Section II-B), we reuse the checksum as the first-level hash
result to reduce the extra hashing overhead. For the second-
level hashing, we only compute three hashes from a 4-byte
checksum, so it is very efficient. For example, it reduces

Fig. 7. Deduplication process of AdaptMD-H.

Fig. 8. Similarity estimation in AdaptMD-S.

16% computational overhead compared with computing three
hashes from the 4 KiB page as studied in our experiments
(Section IV-B).

Hotness-aware deduplication. Fig. 7 depicts the deduplication
process of AdaptMD-H. Specifically, for each cold page, if an
identical page is found by checking the Bloom filters, we exe-
cute the page compare-and-merge process in the deduplication
module to realize global deduplication. Otherwise, it is skipped
for global deduplication just as hot pages, and we run local
deduplication using the original deduplication in KSM.

C. AdaptMD-S

AdaptMD-S migrates similar applications that contain a
large fraction of duplicate pages to the same NUMA node, and
then performs local deduplication so as to avoid frequent remote
access after deduplication. It addresses three key challenges: (i)
How to accurately estimate the similarity of any pair of applica-
tions? (ii) How to decide the appropriate migration scheduling
scheme to reduce the migration overhead? (iii) How to sup-
port efficient migration of the application process, including all
memory pages and the page table?

Similarity estimation. AdaptMD-S uses bitmaps to estimate
the similarity between applications. Fig. 8 shows the main idea.
Specifically, AdaptMD-S creates a bitmap for each application.
Based on the bitmaps of two applications, AdaptMD-S defines
the similarity as the ratio of the number of common ones in
both bitmaps (i.e., the bits at the same position are both one)
to the minimum number of memory pages in both applica-
tions. A larger similarity implies more duplicate pages between
applications.

To make the generation of the bitmaps lightweight, we reuse
the checksum again needed by the original deduplication in
KSM (Section II-B). Specifically, for each scanned page in an
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application, as the checksum is already computed for checking
the change of page content, we simply update the bitmap by
setting the corresponding bit as one according to the checksum.
In particular, we set the corresponding bit by using the bit-wise
AND operation between the 32-bit checksum and the length of
the bitmap, which is also used in the second-level hashing of
AdaptMD-H. After scanning all pages in an application, the
bitmap is also generated.

Note that the bitmap-based similarity estimation is
lightweight and efficient. First, as the construction of the
bitmap reuses the checksum generated by KSM, the CPU
overhead is negligible. The memory overhead of the bitmap is
also small, as each 4 KiB page is just represented by one bit
(e.g., a 1 MiB bitmap can represent 32 GiB memory pages).
Second, it is efficient to estimate the number of duplicate
pages between any two applications. For example, if two
applications have a high similarity, then they have a lot of
duplicate pages with a high probability as the duplicate pages
will set the same bitmap position in both bitmaps as one.
However, we emphasize that our similarity estimation is only
an approximation, as hash collisions may wrongly increase the
similarity. Also, the bitmaps fail to record the frequency of
multiple duplicate pages.

Migration scheduling. After determining the similarity be-
tween any pair of applications, AdaptMD-S needs to address
two issues: (i) which application to migrate, (ii) which NUMA
nodes as the target nodes for each migration.

For the first issue, AdaptMD-S chooses applications whose
similarity exceeds a predefined threshold (which we re-
fer to as the similarity threshold) to migrate. Specifically,
AdaptMD-S groups applications whose pair-wise similarities
exceed the similarity threshold to form a candidate group. Then
it migrates applications in the same candidate group to the
same NUMA node. Note that the similarity threshold indicates
the lower bound on the number of duplicate pages between the
applications in the candidate group. Furthermore, we set the
default similarity threshold as 40% based on the experimental
analysis of the applications mentioned in Section IV-A.

For the second issue, AdaptMD-S selects the appropriate
NUMA nodes based on their priority and resource usage.
First, we set the priority according to the number of appli-
cations that are in the candidate group and already running
in the NUMA node. A higher number of applications implies
a higher priority for the NUMA node. Note that the priority
of a NUMA node may vary across candidate groups. Second,
AdaptMD-S judges whether the NUMA nodes have sufficient
memory and CPU resources one by one in a descending order
of their priorities. To check whether a NUMA node has enough
resources, AdaptMD-S compares the available memory and
cores in the NUMA node with the required memory and cores of
the applications to be migrated. If a NUMA node has sufficient
memory and CPU to run all applications in the candidate group,
it is selected as the target node for migration.

We emphasize that the migration scheduling of
AdaptMD-S is performance friendly. Note that migrating
an application from one NUMA node to other nodes
causes cache misses, TLB miss, etc., which in turn degrade

application performance. On the one hand, AdaptMD-S filters
out applications with low similarity through a predefined
similarity threshold to reduce unnecessary migrations. On
the other hand, determining candidate target nodes based on
priority minimizes the number of migrated applications.

Application migration across node. After determining the
applications to be migrated and the target NUMA node,
AdaptMD-S needs to perform a specific migration operation
and perform local deduplication within the node after migration.
For the migration operation, AdaptMD-S needs to migrate
three types of data: (i) the application process, (ii) all memory
pages, (iii) the page table.

AdaptMD-S supports cross-node live migration of
applications without suspending them, so as to minimize the
migration overhead. Specifically, for an application process,
AdaptMD-S simple calls the function sched_
setaffinity() in the Linux kernel to set the CPU affinity
of the application. One subtle issue is that we need to set the
affinity for each thread if an application consists of multiple
threads. Otherwise, there are still some threads issuing remote
accesses. For example, in a virtualized environment, migrating
the VM process does not really migrate the applications
running in the VM, so we have to scan the application threads
and set affinity for each thread.

For memory pages, AdaptMD-S differentiates shared pages
and unshared pages. For unshared pages, it directly migrates the
page to the target node by calling migrate_pages(). For
shared pages, AdaptMD-S breaks them with a copy-on-write
(COW) operation, and allocates the copied pages directly in the
target node without migration. The reason why AdaptMD-S
uses COW is that for applications not being migrated, they may
have remote memory accesses to the migrated shared pages, if
the migration of shared pages is simply executed by calling page
migration function.

For the page table, AdaptMD-S also migrates it to avoid
cross-node page table access. Note that the kernel does not
support page table migration, and cross-node page table access
also hurts application performance [1], [33]. To migrate the
page table of an application, AdaptMD-S traverses the multi-
level page table and then performs the migration.

We emphasize that AdaptMD-S does not execute con-
tinuously like AdaptMD-H and other memory deduplication
schemes will be executed after AdaptMD-S executes suc-
cessfully. Specifically, after executing AdaptMD-S, highly
similar applications will be migrated to the same NUMA
node, and global deduplication will be performed to elimi-
nate same pages in the system. In our current implementation,
AdaptMD will trigger AdaptMD-S again after a user-specified
scan period.

D. Adaptive Design

Different deduplication policies pose different trade-offs be-
tween memory savings and access performance in different
application deployment scenarios. Specifically, global dedu-
plication can also have good performance (or has limited re-
mote accesses) when applications in different nodes have a
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Fig. 9. Adaptive design of AdaptMD.

small similarity, e.g., in the scenario where the applications
running in different NUMA nodes are completely different.
However, if there are highly similar applications in different
nodes, then AdaptMD-S realizes a better trade-off if the similar
applications can be migrated to the same node. In other cases,
AdaptMD-H should be a better choice, as it achieves higher
memory savings than local deduplication and introduces no
performance degradation compared with global deduplication.
To this end, we propose an adaptive scheme to select the most
appropriate deduplication policy according to the deployment
scenario, so as to realize the best possible space-performance
trade-off in different scenarios.

Adaptive scheme. The workflow of the adaptive scheme is as
follows. The monitor module periodically fetches the similarity
results from the similarity module and monitors the resource
usage of each NUMA nodes. The adaptor module then de-
termines the deduplication polices based on the information
from the monitor module. It informs the hotness or migration
modules the decision result so as to execute the specific dedupli-
cation policy.

Fig. 9 shows the process of selecting a specific deduplication
policy. Specifically, if there exist no similar applications in
different NUMA nodes, i.e., the estimated similarity is smaller
than the predefined similarity threshold, then global deduplica-
tion is adopted. Otherwise, we check the resource usage of all
NUMA nodes and examine whether the resource requirements
of similar applications can be satisfied. If there exists a NUMA
node to satisfy the requirements, we execute AdaptMD-
S to achieve high memory savings; otherwise, we deploy
AdaptMD-H to avoid performance degradation. Note that there
should not exist similar applications across nodes after mi-
gration by using AdaptMD-S, so we execute global dedupli-
cation after the migration. As AdaptMD-H outperforms local
deduplication in both aspects of memory savings and access
performance with negligible overhead, so we do not use local
deduplication as an option in the adaptive design.

Remarks. AdaptMD can automatically determine the best
deduplication policy based on the system state and application
deployment scenarios. The adaptive decision is lightweight and
incurs limited extra overhead, as the required information for
the decision making in the adaptive design is obtained from the
outputs of other modules. AdaptMD can also be manually con-
figured if the information about the application deployment is

known in advance. For example, if we know that same applica-
tions are deployed in different NUMA nodes, then AdaptMD-S
should be enabled to migrate similar applications to the same
node; if the migration fails, (e.g., there is no enough resource
to run the applications in the same node), then AdaptMD-H
should be used to avoid frequent remote access.

E. Discussion

Heterogeneous NUMA nodes. The increase in memory
types (e.g., Non-volatile memory, high bandwidth memory) has
made NUMA architectures more heterogeneous. Nonetheless,
AdaptMD can still be of value, mainly due to the design idea
of AdaptMD to minimize memory accesses across NUMA
nodes and save more memory. For heterogeneous NUMA
nodes based on hybrid memory, AdaptMD-H distinguishes
between hot and cold data in memory for deduplication, and
AdaptMD-S saves more memory by migrating highly similar
applications to the same node. Note that there are some draw-
backs in applying AdaptMD to heterogeneous NUMA nodes.
First, AdaptMD ignores the characteristics of these memory
media, such as persistence, bandwidth, etc., which can be con-
sidered by integrating AdaptMD and data placement policies.
Second, AdaptMD periodically scans memory for deduplica-
tion based on application similarity. However, in heterogeneous
NUMA nodes, whether data movement is between NUMA
nodes or memory media needs to be considered more carefully.

Page size and type. By default, AdaptMD splits huge pages
for deduplication and handles only anonymous pages as it is
implemented atop KSM. It first aggressively splits anonymous
large pages (e.g., 2 MiB pages) into base pages (e.g., 4 KiB
pages), and then performs deduplication in the units of base
pages. Note that AdaptMD can also seamlessly work with dif-
ferent page types and page sizes to support large-page-friendly
deduplication (e.g., Ingens [22] and SmartMD [15]) as well as
deduplicating other types of pages (e.g., file pages), by replac-
ing the underlying deduplication module in KSM accordingly.

OS-level process migration. The deduplication effectiveness
in AdaptMD may be affected by user-triggered process migra-
tion. In particular, modern OSes allow users to issue process
migration; for example, Linux uses sched_setaffinity()
to specify the CPU core and migrate_pages() to migrate
memory. However, the migration policy specified by users may
be different from the migration decision in AdaptMD, thereby
affecting the deduplication effectiveness of AdaptMD.

Complex concurrent applications. Concurrent queries [31]
may have negative impact on performance, as they can cause
more severe memory access contention for memory pages being
deduplicated and shared, thus increasing the chance of CoW and
degrading memory access performance. We point out that this
performance impact is usually unavoidable as long as dedupli-
cation is enabled. Furthermore, the impact of AdaptMD should
be the same as that of the conventional deduplication policy
such as KSM as long as they have the same deduplication
rate. In fact, there is a tradeoff between memory saving and
performance when deploying deduplication. We emphasize that
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TABLE II
APPLICATION BENCHMARKS

Benchmarks Description Parameter Configurations Memory Usage

Graph500 [13]
(abbrv. Graph)

It is a data-intensive HPC benchmark that performs
breadth-first search over a graph to complement the Top
500 supercomputers.

breadth-first search with a scale of 21
and edgefactor of 10.

2.90 GiB

StreamCluster
[37] (abbrv.
SC)

It is a data mining benchmark from PARSEC/Rodinia
that solves the online clustering problem.

The number of data points processed
is 565536, other parameters use the
default value.

2.76 GiB

CG [30] It is a benchmark that performs conjugate gradient, ir-
regular memory access, and communication to evaluate
the performance of supercomputers.

The C class of openmpi and the prob-
lem size is 150000.

3.06 GiB

Liblinear [24]
(abbrv. Lib)

It is a benchmark of large-scale linear classification for
data with millions of instances and features; we train
the file YearPredictionMSD

L2-regularized L2-loss support vector
regression (dual) (i.e., -s 12)

3.46 GiB

AdaptMD focuses on the space-performance tradeoff that ex-
ists for memory deduplication in NUMA architectures, aiming
at choosing the appropriate deduplication policies in different
application scenarios.

IV. EVALUATION

We implement a prototype of AdaptMD atop KSM in Linux
kernel v4.4. The prototype itself contains around 2,500 LOC.
As AdaptMD builds on the original deduplication module in
KSM, it deduplicates only the anonymous pages like KSM.

A. Setup

Testbed. Our experiments run on a NUMA server with 125
GiB of memory. The server has two physical NUMA nodes
that are each split into two NUMA nodes via Cluster-On-Die
[18], so it is configured with four NUMA nodes for evaluation.
Each NUMA node has a Xeon E5-2650 v4 2.2GHZ CPU with
six CPU cores. The local and remote memory access latencies
are listed in Table I (Section II-A). To better demonstrate the
effectiveness of memory deduplication, we deploy applications
in VMs by running experiments with QEMU and KVM. By
default, we boot up four VMs in each NUMA node (i.e., a total
of 16 VMs in the server). Each VM is assigned one vCPU and
4 GiB of RAM, and both the host and guest OSes are Ubuntu
16.04. We bind each vCPU to a physical CPU core.

For the OS of each VM, we keep its factory configuration.
Also, we disable the transparent hugepages feature in Linux
kernel of the host OS, so as to eliminate the impact of huge
pages (Section III-E). Note that the benchmarks run in the VM
and the VMs run on the host. AdaptMD is implemented based
on the KSM module of the host OS kernel. In other words, we
do not modify the VM OS and the hypervisor of the host, only
the OS of the host.
Application benchmarks and deployment. We consider four
application benchmarks that are also used in the evaluation by
prior memory deduplication work [15], [32], [34], [44]. Table II
presents the benchmarks. We run one application benchmark in
each VM and start all VMs to run their benchmarks at the same
time. Note that the same benchmark always uses the same input
and dataset. We also simulate different scenarios by considering

different VM deployments, so as to show the robustness of
AdaptMD. In particular, we consider three different deploy-
ment scenarios:

• Mirror. Each NUMA node runs four different applica-
tions in the four VMs. We replicate and run the same set
of applications across all NUMA nodes.

• Random1. For each of the 16 VMs, we randomly select
an application to run on each VM. The sets of applica-
tion benchmarks running in Nodes 0-3 in the resulting
layout are {Graph, Graph, Lib, CG}, {Lib, Lib, CG, CG},
{Graph, Graph, SC, SC}, {SC, SC, Lib, CG}, respec-
tively.

• Random2. It is also a random deployment as Random1.
The sets of application benchmarks running in Nodes 0-3
are {SC, SC, Lib, Lib}, {SC, SC, Lib, CG}, {Graph, Lib,
CG, CG}, {Graph, Graph, SC, Lib}, respectively.

Comparison baselines. Local deduplication and global dedu-
plication represent the two extreme points in the design space
of memory deduplication in NUMA architectures, and we treat
them as baselines in our evaluation. Note that both policies
and AdaptMD run atop KSM for fair comparison. We also
take global deduplication with UKSM [42], which is the state-
of-the-art deduplication scheme, as a baseline to show that
existing optimizations for memory deduplication still face the
space-performance trade-off in NUMA architectures. In addi-
tion, we compare AdaptMD with nuKSM [32], which aims
to optimize the existing NUMA-unaware memory deduplica-
tion strategies. In particular, nuKSM includes two optimiza-
tions: one for NUMA-awareness to avoid priority subversion
and guarantee fairness by deciding the placement of dedu-
plicate pages, named nuKSM-SingleTree, and the other for
scalability in large memory spaces by replacing the origi-
nal two centralized comparison trees with two forests, named
nuKSM-MultiTree. We emphasize that both nuKSM-SingleTree
and nuKSM-MultiTree are optimization strategies based on
global deduplication.

Parameters. By default, we set pages_to_scan (i.e., the
number of pages being scanned in each scan period) as 100,000.
Since we focus on the performance after deduplication, we set
sleep_millisecs as zero to run deduplication as fast as
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Fig. 10. Exp#1: performance in different scenarios.

Fig. 11. Exp#1: deduplication rate in different scenarios.

possible. Note that the two parameters affect the deduplication
rate as well (e.g., the same content pages may not be found in a
short time duration if the deduplication is too slow). In addition,
AdaptMD has two configurable thresholds: (i) the coldness
threshold (Section III-B), which we set as one by default; and
(ii) the similarity threshold (Section III-C), which we set as
40% by default. We also study the sensitivity by varying the
two configurable parameters.

Performance metrics. We use the execution time of each appli-
cation benchmark after deduplication is completed to quantify
the VM performance and use deduplication rate to evaluate
memory savings. For each experiment, we run six times and
show the average results. In addition, we normalize the ex-
ecution time of local deduplication as one for ease of pre-
sentation. We compute the deduplication rate as the ratio of
the number of saved pages to the number of scanned pages.
In particular, we obtain the number of pages saved by dedu-
plication (i.e., the value of pages_sharing in KSM) and
the total number of pages being scanned (i.e., the sum of
pages_sharing, pages_shared, pages_unshared,
and pages_volatile in KSM) from the deduplication mod-
ule every one second in the host.

B. Performance Results

Experiment 1: Space-performance trade-off. We compare
AdaptMD-H and AdaptMD-S with existing global and local
deduplication policies to study the trade-off. Figs. 10 and 11
show the performance and memory savings, respectively. We
run each experiment six times, and also show the error bars for

the performance results in Fig. 10. As the variance between the
results of multiple runs is very small, we show only the average
results in later experiments.

First, the trade-off indeed exists in NUMA architectures for
different VM deployments. Specifically, the execution time un-
der global deduplication with mirror deployment increases by
up to 48%, and can still increase by 11-35% even in random de-
ployments. Also, global deduplication always achieves a much
higher deduplication rate than local in all deployments; for
example, the deduplication rate increases from 30% to 60%
in the mirror deployment. In particular, the deduplication rate
of local deduplication reaches only 50%, 69% and 67% of
global deduplication under the mirror, random1 and random2
deployments, respectively.

Second, AdaptMD-H and AdaptMD-S achieve a bet-
ter balance on the space-performance trade-off. Specifically,
AdaptMD-H achieves almost the same performance as local
deduplication in all VM deployment scenarios. This implies that
the hotness-aware scheme in AdaptMD-H effectively avoids
frequent remote access.

Furthermore, we measure the number of CoW pages of the
deduplicated cold pages. Specifically, we calculate the per-
centage of copy-on-write (CoW) pages in cold pages that are
globally deduplicated, and the results show that the percent-
age is always less than 0.1% in different deployment sce-
narios. In particular, about 1500 pages undergo CoW in the
mirror deployment, and the number of deduplicated globally
cold pages reaches 1 800 000, significantly reducing the im-
pact of AdaptMD-H on application performance. The above
experimental results demonstrate the validity of the hotness
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(a) (b)

Fig. 12. Exp#2: comparison with UKSM and nuKSM.

identification of AdaptMD-H. Meanwhile, it achieves up to
20% higher deduplication rate than local deduplication by dedu-
plicating cold pages globally. On the other hand, AdaptMD-S
realizes a very similar deduplication rate with global deduplica-
tion, with a difference of no more than 4% in all cases. Mean-
while, AdaptMD-S also significantly reduces the performance
loss compared with global deduplication; e.g., the execution
time increases by 0%-14%. AdaptMD-S has performance loss
since the memory access may be influenced by lock contention
and cache/TLB misses during VM migration.

Experiment 2: Comparison with UKSM and nuKSM.
We replace the default deduplication module KSM with two
optimized designs UKSM and nuKSM for the global dedu-
plication policy. We denote the UKSM-based global dedupli-
cation as Global-U, and denote the nuKSM-SingleTree-based
and nuKSM-MultiTree-based global deduplication as Global-
NS and Global-NM, respectively, and refer to the original
global deduplication in KSM as Global-K. We also include the
baseline of local deduplication in the experiment. As UKSM
aims to improve deduplication performance (e.g., faster dedu-
plication and lower CPU overhead), right after deduplication
is enabled, we immediately start the application. Thus, the
application runs concurrently while deduplication proceeds.
We set the maximum percentage of occupied CPU cycles
(max_cpu_percentage) used by UKSM as 100% and the
sleep time (sleep_millisecs) between consecutive scans
as zero, so as to maximize the deduplication performance.
nuKSM also uses the same experimental setup as KSM and runs
applications and deduplication process concurrently.

Fig. 12 shows the results under mirror deployment. We omit
the results for other deployments as we observe similar re-
sults. We can see that global deduplication polices, including
Global-U, Global-NS and Global-NM, all have the space-
performance trade-offs. Specifically, Global-U achieves almost
the highest memory savings (e.g., a deduplication rate of 57%),
but always incurs the largest performance loss (e.g., 29-48%
increase in execution time). The reason is that it applies global
deduplication, so it still suffers from the space-performance
trade-off, similar to Global-K. Also, speeding up the dedupli-
cation process causes duplicate pages to be removed earlier,
so Global-U suffers from a higher performance degradation
due to the increased amount of remote accesses. For example,
under the CG workload, Global-U incurs 26% more execution

Fig. 13. Exp#3: effectiveness of the adaptive scheme.

time than Global-K. Since UKSM achieves faster deduplication
speed, so its deduplication rate also increases at a faster rate, as
shown in Fig. 12(b). Global-NM is similar to Global-U in that it
has better deduplication responsiveness due to the use of mul-
tiple comparison trees, and therefore has faster deduplication
speeds than Global-K, which ultimately has a greater perfor-
mance loss. Compared to Global-K, Global-NS deduplicates
duplicated pages more slowly, for example, Global-NS takes
extra 130 seconds to reach a stable deduplication rate com-
pared with Global-K, which makes it have smaller performance
degradation (e.g., 1-27% execution time increment). In short,
this experiment shows that existing optimizations on KSM still
cannot effectively address the space-performance trade-off in
NUMA architectures.

Experiment 3: Effectiveness of the adaptive scheme. To
show the effectiveness of the adaptive scheme, we deploy one
VM per NUMA node, and consider three VM deployment
scenarios: (i) Scenario S1: Low redundancy, in which the four
VMs run four different applications (i.e., Graph, SC, Lib and
CG); (ii) Scenario S2: High redundancy and low resource
requirement, in which two VMs run the same application SC
and the two VMs run Graph and CG; and (iii) Scenario S3:
High redundancy and high resource requirement, in which the
deployment is the same as in Scenario S2, while the number of
threads and data size used by SC and the number of vCPUs in
a VM are scaled up by 5× to simulate a high resource require-
ment setting.

The experimental results are shown in Fig. 13. Note that local
deduplication is not taken as an option in the adaptive design
(Section III-D), and AdaptMD refers to our adaptive scheme.
We can conclude that AdaptMD always chooses the most ap-
propriate deduplication policy in all scenarios. Specifically, in
scenario S1, global deduplication realizes the best trade-off, as
there is no much redundancy across all NUMA nodes and global
deduplication does not incur frequent remote accesses.

In scenario S2, AdaptMD first chooses AdaptMD-S to mi-
grate highly similar applications to the same NUMA node, and
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Fig. 14. Exp#4: effectiveness of the similarity estimation.

then uses global deduplication to eliminate redundant pages
across NUMA nodes, thus achieving a higher deduplication rate
than AdaptMD-H and AdaptMD-S. Specifically, since there
are highly similar applications and sufficient resources on each
NUMA node, AdaptMD chooses AdaptMD-S as the initial
deduplication strategy. After executing AdaptMD-S, there are
no highly similar applications across NUMA nodes, and global
deduplication can save more memory at this time. In addition,
the deduplication rate of AdaptMD-H in S2 has a sudden in-
crease of around 480s, which is due to the termination of the
SC, and all pages become cold and are globally deduplicated
by AdaptMD-H. AdaptMD-H performs better in S3 as the
resources are not sufficient to support application migration.

Experiment 4: Effectiveness of the similarity estimation.
We now examine the effectiveness of the similarity estimation
in AdaptMD-S by comparing it with an idealized offline place-
ment scheme. Specifically, the offline scheme is assumed to
have an oracle to know the accurate similarity values, and we
manually place the similar VMs within the same NUMA node
offline before running the applications. In particular, the accu-
rate similarity value between two VMs is calculated from the
deduplication rate obtained after deduplicating the two VMs.
For example, two VMs with a deduplication rate of 40% means
that 80% of the content of a VM is the same as that of other
VM, so the similarity value is 80%.

Fig. 14 show the access performance and deduplication rate.
We also consider different VM deployment scenarios as before.
We observe that AdaptMD-S has very close access perfor-
mance compared with the idealized placement scheme (i.e.,
Offline-Placement in Fig. 14) under different VM deployment
scenarios. Furthermore, for memory savings, due to similarity-
based migrations, AdaptMD-S eventually realizes the same
deduplication rate. Note that the offline placement scenario
realizes the optimal space-performance trade-off, so our com-
parison results justify the effectiveness of the similarity-based
migration scheme. Fig. 14 also shows that the performance
difference between offline placement and local deduplication

Fig. 15. Exp#5: trade-off on an eight-node NUMA machine.

Fig. 16. Exp#6: impact of coldness threshold (abbrv. TH).

is within 5%. For some applications (e.g., CG), offline place-
ment outperforms local deduplication, mainly because dedu-
plication saves lots of memory, ultimately reducing TLB and
cache contention.

Experiment 5: Impact of the number of NUMA nodes.
We also evaluate AdaptMD on an eight-node NUMA machine,
which contains 256 CPU cores. In the interest of space, we
present only the results under the mirror deployment (Section
IV-A), and Fig. 15 shows the results. We have similar con-
clusions as in the four-node setting shown in Experiment 1.
Global/local deduplication presents a space-performance trade-
off. AdaptMD-S balances the trade-off. It eventually achieves
96% of memory savings of global deduplication, and also re-
duces the execution time by 33-84% for different applications
compared to global deduplication. In this specific scenario,
AdaptMD-H has a similar performance with local deduplica-
tion. It achieves almost the same performance, and slightly
increases the deduplication rate by 9%. In addition, we also
observe that the space-performance trade-off for global/local
deduplication is more severe when using the eight-node server.
This is because when there are more NUMA nodes, more VMs
issue remote memory accesses after global deduplication, and
thus leading to larger performance degradation.

Experiment 6: Impact of the coldness threshold. Fig. 16
shows the results when the coldness threshold is varied from
one to eight. AdaptMD-H has almost the same performance,
while it has a larger deduplication rate for smaller coldness
threshold. The reason is that due to the long scanning period, a
page that is not accessed in one period is indeed cold, so setting
the threshold as one already serves as a conservative choice in
terms of the performance. Setting a larger threshold treats less
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Fig. 17. Exp#7: impact of the similarity threshold.

pages as cold, and hence reduces the deduplication rate. Thus,
we set the default coldness threshold as one (Section III-B) (i.e.,
a page is taken as cold as long as it is not accessed in one scan
period). This experiment also explains why AdaptMD-H incurs
no performance overhead but has limited memory savings.

Experiment 7: Impact of the similarity threshold. We
study the impact of the similarity threshold of AdaptMD-S by
varying it from 10%-60% (even if two VMs run the same kernel
and application, the similarity is often less than 60%). In the
interest of space, we show only the experimental results under
one VM deployment scenario. Specifically, we consider four
applications, SC, CG, Graph, and Lib, and deploy four VMs in
two NUMA nodes, i.e., one NUMA node runs two VMs, and
each VM runs an application. We also consider four different
configurations to verify the impact of similarity thresholds:
(i) {SC, CG}, {SC, Graph}, (ii) {SC, CG}, {CG, Lib}, (iii)
{Lib, CG}, {Lib, SC}, (iv) {Graph, SC}, {Graph, CG}. Note
that these configurations can represent the similarity cases that
run the same application or run different applications. Fig. 17
shows that as the similarity threshold increases, the normalized
execution time decreases, while the deduplication rate also re-
duces. The reason is that a higher threshold reduces the chance
of migration even if the VMs are similar. For example, when
the similarity threshold is 50%, the similarity of the two VMs
running SC is less than 50%, so no VM migration occurs.
Through experimental results, we can see that the similarity of
two VMs running the same application is usually between 30%
and 50%, so we set the similarity threshold of AdaptMD-S to
40%. In addition, we find that the trade-off between memory
savings and memory access performance does not change in
a dramatic way, implying that the similarity threshold is not a
very sensitive parameter.

Experiment 8: Impact of memory usage. To verify the
effectiveness of AdaptMD-H and AdaptMD-S can be applied
to large applications with more memory usage, we increase the
scale of the data processed by Graph, SC and CG to increase
their memory usage. After adjustment: (i) the scale and edgefac-
tor of the graph processed by Graph are 22 and 12 respectively,
and its memory usage is 3.30 GiB, (ii) the number of data
points processed by SC is 2665536, and the memory usage is

Fig. 18. Exp#8: impact of memory usage.

TABLE III
EXP#9: CPU UTILIZATION (% OF CPU CYCLES)

Without bloom filter (BF) 52%

BF with page content-based hashing 57%

BF with two-level hashing 41%

Local deduplication 37%

4.47 GiB, (iii) the problem size processed by CG is 450000,
and the memory usage is 6.02 GiB. In addition, we increase
the size of memory that each virtual machine can use to 8 GiB.
In the interest of space, we show only the experimental results
under the mirror deployment (Section IV-A). Note that 16 VMs
under the mirror deployment occupy 55.2% (i.e. 69 GiB) of the
host’s total memory after increasing the data scale. As shown
in Fig. 18, we can see that AdaptMD-H and AdaptMD-S still
effectively balance the memory savings and memory access per-
formance in NUMA architecture with large-scale applications
and large-scale memory usage.

Experiment 9: Overhead analysis. For the CPU overhead
of AdaptMD-H caused by two-level hashing with Bloom fil-
ters, we consider three baselines: (i) B1, which uses red-black
trees as in the KSM without Bloom filters, (ii) B2, which uses
Bloom filters with three hashes to hash the page content, and
(iii) B3, which does not introduce AdaptMD-H and only uses
local deduplication. To study the CPU overhead in practical
systems, we configure the scanning speed by using the setting
in [15], [32], in which we set pages_to_scan as 1,000 and
sleep_millisecs as 20 ms. Table III shows the average
utilization of one CPU core. The lookups without Bloom filters
(i.e., B1) consume 52% of CPU cycles of one core. If we add
Bloom filters with three hashes to hash the page content (i.e.,
B2), the percentage of CPU cycles increases to 57%. By using
Bloom filters with two level-hashing, AdaptMD-H reduces the
percentage of CPU cycles to 41% as two-level hashing hashes
the checksum rather than the page content.

Compared to local deduplication (i.e., B3), AdaptMD-H with
two-level hashing increases CPU overhead by 4%, which is usu-
ally acceptable. For CPU overhead of AdaptMD-S, our experi-
ment shows that AdaptMD-S costs around 80% of the cycles of
one CPU core, which are mainly costed by bitmap comparison
and page migrations. We emphasize that the execution time of

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 05,2024 at 01:29:31 UTC from IEEE Xplore.  Restrictions apply. 



YAO et al.: ADAPTMD: BALANCING SPACE AND PERFORMANCE IN NUMA ARCHITECTURES WITH ADAPTIVE MEMORY DEDUPLICATION 1601

AdaptMD-S is not long, and it takes about 7 seconds to migrate
a VM (including bitmap construction, similarity comparison,
CPU/memory migration, etc.). Once AdaptMD-S is finished,
AdaptMD will execute the global deduplication to eliminate
page redundancy, and will trigger AdaptMD-S again only after
a user-specified scan period.

For memory overhead, each page costs two bytes, one byte
for Bloom filters and one byte for the inactive counter (Section
III-B). Suppose that the page size is 4 KiB. The memory over-
head in AdaptMD-H is 0.05%. For bitmaps of AdaptMD-S, as
we only need to construct one bitmap (Section III-C) for each
VM and the length is set as the maximum number of pages in
all VMs, the memory overhead is just one bit for each 4 KiB
page. Note that the memory occupied by bitmaps is dynamically
allocated when AdaptMD-S is triggered to execute, and it is
freed after execution.

V. RELATED WORK

Memory deduplication. Existing studies mainly focus on op-
timizing the deduplication process, with the goals of achieving
faster deduplication and higher memory savings. Specifically,
hint-based solutions leverages the I/Os of VMs or the page shar-
ing behaviors to deduplicate short-lived or file pages for more
memory savings [26], [27], [39].Group-based approaches [10],
[21] group VMs by users to ensure isolation and reduce page
comparisons. Classification-based methods [8], [36] reduce the
number of searched pages for deduplication by leveraging page
types and access characteristics. Some previous studies [42],
[43] optimize the data structures used for deduplication, so
as to avoid unnecessary page comparisons to accelerate the
deduplication. SmartMD [15] addresses the space-performance
trade-off for the deduplication in huge page systems. The above
studies do not consider memory deduplication in NUMA ar-
chitectures. nuKSM [32] optimizes the deduplication perfor-
mance in NUMA architectures, while its design is based on
global deduplication only. In contrast, AdaptMD is an adaptive
scheme to support different deployment scenarios to address the
space-performance trade-off.

Optimizations on NUMA architectures. Many studies focus
on improving the memory access performance in NUMA ar-
chitectures. One research direction is to improve data locality
by keeping the running processes/threads close to memory [1],
[12], [33]. For example, Mitosis [1] reduce memory access to
the cross-node page table through page table migration and
replication. Some studies optimize the memory access perfor-
mance by mitigating the contention in memory controllers or
interconnect links [5], [9]. In contrast, AdaptMD focuses on
memory deduplication in NUMA and works to address the
space-performance trade-off.

VI. CONCLUSION

AdaptMD is an adaptive memory deduplication system de-
signed to address the trade-off between memory savings and
access performance in NUMA architectures. AdaptMD builds

on two deduplication techniques to limit remote memory ac-
cess after deduplication: AdaptMD-H leverages hotness aware-
ness and applies global deduplication to cold pages only, and
AdaptMD-S migrates similar applications to the same NUMA
node for local deduplication. We further design an adaptive
scheme that allow AdaptMD to be configured with the proper
deduplication policies for different application deployment
scenarios. Experiments on our AdaptMD prototype demon-
strate the effectiveness of AdaptMD in balancing the space-
performance trade-off for memory deduplication in NUMA
architectures.
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