
Leveled Product Codes for Optimal Block Repairs
in Geo-distributed Storage Systems

Si Wu1, Guantian Lin2, Patrick P. C. Lee3, Yinlong Xu2

1Shandong University 2University of Science and Technology of China
3The Chinese University of Hong Kong

Abstract—To provide fault tolerance with low storage overhead,
modern geo-distributed storage systems use erasure coding to
stripe data redundancy across geographical regions. The preva-
lence of node, rack, and region failures motivates the needs
for both single-block and multi-block repairs, yet block repairs
trigger substantial cross-rack and cross-region data transfers. We
propose a new family of erasure codes, Leveled Product Codes
(LPCs), by adapting the classical Product Codes designed for disk
arrays into geo-distributed storage systems. LPCs localize single-
block repairs within racks and optimize multi-block repairs
with the minimum sum of cross-rack and cross-region data
transfers, while providing fault tolerance against node, rack, and
region failures. We theoretically prove the optimality of LPCs,
and further implement LPCs in a distributed storage prototype.
Our numerical analysis and testbed evaluation show that LPCs
significantly reduce the single-block and multi-block repair times
of state-of-the-art hierarchy-aware erasure codes.

I. INTRODUCTION

Geo-distributed storage systems store massive amounts of
data across geographical regions to provide proximal and
scalable user access, while ensuring data availability even
in the face of catastrophic failures such as earthquakes and
power outages. To safeguard data storage against node and
rack failures within a region, as well as region-wide failures,
modern geo-distributed storage systems employ erasure coding
to stripe low-cost redundancy across geographical regions [2],
[6], [11], [21], [28]. At a high level, an erasure code encodes
a group of data blocks into parity blocks, in which the data
and parity blocks collectively form a stripe, such that any
subset of a sufficient number of data and parity blocks within
a stripe can reconstruct all original data blocks. Compared to
replication, erasure coding significantly reduces the amount of
redundancy, while offering much higher reliability measured
by mean-time-to-data-loss [35]. This makes erasure coding
particularly well-suited for exascale data management in geo-
distributed storage systems.

To maintain data availability, storage systems frequently
perform data repair operations due to the prevalence of node,
rack, and region failures [9], [25], [29]. In traditional erasure-
coded storage, a majority of stripes with failures (e.g., more
than 98%) experience a single failed block [25], and hence
existing erasure codes often focus on optimizing single-block
repairs (e.g., [7], [15], [29]). However, in catastrophic events
[9] or zone maintenance [16], rack and region failures can
occur, thereby causing multiple blocks to become unavailable
(such failed blocks can belong to the same stripe). Also, wide
stripes, which comprise a large number of data blocks and a

small number of parity blocks, are increasingly studied and
deployed to achieve ultra-low storage redundancy [1], [4], [12],
[16], and the likelihood of having multiple failed blocks in wide
stripes is non-negligible [12], [16]. Thus, both single-block
and multi-block repairs are critical in large-scale erasure-coded
storage and should be simultaneously optimized.

Achieving optimal single-block and multi-block repairs for
erasure-coded storage is non-trivial, as they trigger substantial
network transfers in order to retrieve multiple available blocks
of the same stripe for reconstruction of any failed blocks. The
repair penalty becomes more prominent in geo-distributed stor-
age systems, in which substantial cross-rack and cross-region
data transfers are necessary for block repairs. Even though the
literature has proposed various repair-efficient erasure codes,
such as Regenerating Codes [7], Locally Repairable Codes
(LRCs) [14], [15], [17], [29], and hierarchy-aware erasure
codes for rack-based data centers [12], [13], [16], [31], [34],
[37], they still fall short in optimizing both single-block and
multi-block repairs for geo-distributed storage systems with
nodes, racks, and regions (see Section III-B for details).

We propose a new family of erasure codes, namely Leveled
Product Codes (LPCs), to achieve optimal single-block and
multi-block repairs in geo-distributed storage systems. LPCs
build on the classical Product Codes [10], [19], which are
designed for disk arrays, and adapt them into geo-distributed
storage systems. An LPC stripe comprises a two-dimensional
logical array of blocks encoded by row-based and column-
based codes. It incorporates (i) a node-level column-based
code to localize single-block repairs within a rack, (ii) a rack-
level row-based code to tolerate rack failures while optimizing
multi-block repairs with the minimum sum of cross-rack and
cross-region transfers, and (iii) a region-level data placement
strategy to tolerate region failures. To summarize, our paper
makes the following contributions:
• We design the code construction and data placement for

LPCs in geo-distributed storage systems. In particular, to
minimize the sum of cross-rack and cross-region transfers
in multi-block repairs, LPCs adopt a progressive approach
by first repairing only a subset of failed blocks, followed by
locally repairing remaining failed blocks within a rack.

• We formally prove the optimality guarantees for single-block
and multi-block repairs of LPCs; note that the optimal multi-
block repairs also apply to rack and region repairs.

• We implement a distributed storage prototype to realize our
LPCs as well as the state-of-the-art erasure codes, including

RegionRackNode

Figure 1. Geo-distributed storage system; a rectangle with black-dotted lines
indicates a region and a red rectangle means a rack.

hierarchy-aware RS Codes and LRCs as well as Multi-Level
Erasure Codes (MLEC) [34].

• We conduct experiments on a local cluster that simulates
up to 240 nodes. LPCs reduce the single-block repair times
by up to 90.6%, 80.8%, and 62.8%, and the multi-block
repair times by up to 70.0%, 73.2%, and 57.5%, compared
with hierarchy-aware RS Codes, hierarchy-aware LRCs, and
MLEC, respectively, while all codes share similar storage
overhead with up to 11.1% differences.
The source code of our prototype is available at:

https://github.com/hhlgt/leveled-product-codes.

II. BACKGROUND

A. Geo-distributed Storage Systems

We consider a geo-distributed storage system with a hi-
erarchical topological structure as observed in production
(e.g., Facebook f4 [21] and Microsoft Giza [6]), as shown
in Figure 1. It organizes multiple nodes in a rack, and further
organizes multiple racks in a region, such that the entire storage
system spans a number of nodes, racks, and regions. Cross-
rack data transfers are typically much slower than inner-rack
data transfers due to limited cross-rack bandwidth [5], [33],
and cross-region data transfers are also slow as they traverse
different physical areas. Thus, both cross-rack and cross-region
transfers are the performance bottlenecks in data accesses.

B. Erasure Coding

Our work focuses on two widely deployed families of erasure
codes: Reed-Solomon (RS) Codes [27] and Locally Repairable
Codes (LRCs) [14], [15], [17], [29], both of which have also
been applied to hierarchical topologies (Section III).
RS Codes. An RS Code, denoted by RS(k,m), is configured
by two parameters k and m. RS(k,m) encodes k original data
blocks (denoted by D1,D2, · · · ,Dk) into m additional parity
blocks (denoted by P1,P2, · · · ,Pm), such that any k out of the
k+m blocks can recover all k original data blocks; in other
words, it tolerates the failures of any m out of the k+m blocks.
The k+m blocks that are encoded together collectively form
a stripe. A geo-distributed storage system stores many stripes
that are independently encoded. Figure 2 shows an example
of RS(6,3) with k = 6 data blocks and m = 3 parity blocks.

The encoding and decoding of RS Codes are based on the
arithmetic in Galois Field GF(2w) in w-bit words [22]. Each
data/parity block (say B) in RS(k,m) is encoded or decoded
by computing a linear combination of k data/parity blocks (say
B1,B2, · · · ,Bk) of the same stripe as B = ∑

k
i=1 αiBi for some

coding coefficients αi’s, where additions are bitwise-XORs.
Linear combinations satisfy additive associativity, meaning that
the terms αiBi’s can be grouped in arbitrary order in additions.

RS Codes minimize the storage redundancy (i.e., 1+ m
k

times the original data size) to tolerate the loss of any m
out of k+m blocks; this property is called maximum distance
separable (MDS). However, RS Codes have high repair penalty:
the repair of any lost block in RS(k,m) needs to retrieve k
surviving blocks of the same stripe (i.e., k times the block
size). For example, in Figure 2, the repair of D1 in RS(6,3)
needs to retrieve D2, D3, D4, D5, D6, and P1.
LRCs. An LRC, denoted by LRC(k, l,g), is configured by
three parameters k, l, and g. LRC(k, l,g) encodes k data blocks
into l local parity blocks (denoted by L1,L2, · · · ,Ll) and g
global parity blocks (denoted by G1,G2, · · · ,Gg), such that
the k + l + g blocks form a stripe. There are various code
constructions for LRCs [15]–[17], [29], among which Azure’s
Local Reconstruction Codes [15] can tolerate the loss of
most blocks under the same storage redundancy [12]. In this
work, we focus on Azure’s code construction for LRC(k, l,g).
Specifically, suppose that k is divisible by l. LRC(k, l,g) divides
k data blocks evenly into l local groups and computes a local
parity block based on bitwise-XORs of the k

l data blocks in
each local group. It further encodes all k data blocks into g
global parity blocks as in RS Codes [27]. For example, Figure 3
shows an example of LRC(6,2,2) with k = 6 data blocks, l = 2
local parity blocks, and g = 2 global parity blocks.

LRCs exploit stripe locality to improve repair efficiency.
In LRC(k, l,g), the repair of a lost data block or local parity
block only retrieves the remaining k

l surviving blocks within
the same local group, while the repair of a lost global parity
block still retrieves k out of the k+g−1 surviving data blocks
and global parity blocks. For example, in Figure 3, the repair
of D1 in LRC(6,2,2) retrieves D2, D3, and L1, while the repair
of G1 retrieves k = 6 blocks from D1 to D6, and G2.
Other erasure codes. Some erasure codes have been proposed
to mitigate the repair traffic of RS Codes, such as Regenerating
Codes [7] and Piggybacking Codes [26], by performing block
repairs at the granularity of sub-blocks. However, they incur
non-contiguous I/Os and may negate the repair efficiency [32].
Also, their constructions do not address hierarchical topologies.

C. Fault Tolerance Requirements

A geo-distributed storage system should place the blocks of
a stripe across distinct nodes for multi-node fault tolerance. It
should also tolerate whole-region failures in case of catastrophic
events. As whole-region failures happen much less rarely
than node failures in practice [21], we focus on single-region
fault tolerance (a similar concept, called single-cluster fault
tolerance, is found in prior studies [21], [36], [37]). As a region
comprises multiple racks, single-region fault tolerance also
implies multi-rack fault tolerance. Under single-region fault
tolerance, RS(k,m) can place up to m blocks of an RS stripe in
one region, while LRC(k, l,g) can place up to g+ j (1≤ j≤ l)
blocks of an LRC stripe that span j local groups in one region
[37] since the number of local/global parity blocks that can be
used for decoding is g+ j. For example, in Figure 2, RS(6,3)
places three blocks in one region (i.e., three regions in total
for an RS stripe), while in Figure 3, LRC(6,2,2) places every

D1 D3
D2

D4 D6 P1 P3
D5 P2

cross‐rack
transfer

inner‐rack
transfer

cross‐region
transfer

(a) Repair of D1

D1 D3
D2

D4 D6 P1 P3
D5 P2

(b) Repair of D1 and D2

Figure 2. Block repairs in RS(6,3). The repair of D1 (figure (a)) transfers
two cross-rack blocks and two cross-region blocks. The repair of D1 and D2
(figure (b)) transfers two cross-rack blocks and four cross-region blocks.

g+1 = 3 data blocks in one region and all parity blocks in a
separate region (i.e., three regions in total for an LRC stripe).
Both examples achieve single-region fault tolerance.

III. DATA REPAIR PROBLEM

A. Problem Statement

In this work, we focus on both single-block and multi-
block repairs, which reconstruct single and multiple failed
blocks of a stripe, respectively, by retrieving other available
blocks of the same stripe. We assume that cross-rack and cross-
region transfers are the performance bottlenecks in repairs
(Section II-A). Our goal is to minimize the sum of the amounts
of traffic in cross-rack and cross-region transfers for a repair.

Note that other design goals may be considered. One possible
goal is to minimize the weighted sum of cross-rack and cross-
region transfers, by accounting for the more limited cross-
region bandwidth than the cross-rack bandwidth and assigning a
higher weight to cross-region transfers than cross-rack transfers.
Another possible goal is to minimize the maximum load of
cross-rack (or cross-region) transfers when the cross-rack (or
cross-region) bandwidth is heterogeneous. We pose the analysis
of different goals as future work.

Failures can occur at the node, rack, and region levels. To
mitigate the risk of encountering additional failures that lead to
data loss, any failed node, rack, or region should be repaired
as fast as possible. For a single node failure, its repair can
be viewed as a set of single-block repairs, each of which
reconstructs the failed block of a stripe that covers the failed
node. Similarly, for a failed rack or region, their repairs can be
viewed as a set of single-block and multi-block repairs across
all affected stripes. Thus, our work on optimizing single-block
and multi-block repairs can be applied to the repair of a failed
node, rack, and region.

B. Limitations of Existing Hierarchy-aware Erasure Codes

There exist erasure coding designs with hierarchical aware-
ness in the literature [12], [13], [16], [31], [37]. However, we
argue that they still cannot perform efficient repairs in geo-
distributed storage systems. Specifically, they cannot localize
block repairs within racks and will trigger substantial cross-
rack and cross-region transfers for block repairs, due to the

D1 D3
D2

D4 D5
D6

G1 G2
L1 L2

cross‐rack
transfer

inner‐rack
transfer

cross‐region
transfer

(a) Repair of D1

D1 D3
D2

D4 D5
D6

G1 G2
L1 L2

(b) Repair of D1 and D2

Figure 3. Block repairs in LRC(6,2,2). The repair of D1 (figure (a)) transfers
one cross-rack block and one cross-region block. The repair of D1 and D2
(figure (b)) transfers two cross-rack blocks and four cross-region blocks.

lack of stripe locality in the code construction or improper
dispersion of a local group of blocks among racks.
Limitations of hierarchy-aware RS Codes. CAR [31] and
DoubleR [13] extend RS Codes [27] and Minimum-storage
Regenerating (MSR) Codes [7] with hierarchical awareness,
while maintaining the MDS property (i.e., minimum storage
redundancy). We use RS Codes as an example to explain how
hierarchical awareness is incorporated. The key idea is to place
every m blocks of a stripe in a region so as to limit the number
of regions spanned by the stripe, while maintaining single-
region fault tolerance (if a region contains more than m blocks,
a failed region will cause data loss). As a region comprises
multiple racks, we assume that the m blocks are randomly
distributed to the racks in a region. Cross-region transfers are
provably minimized by exploiting the additive associativity of
RS Codes (Section II-B) to perform partial decoding on the
surviving blocks in each region (i.e., adding parts of terms of
a linear combination in decoding) [13], [31]. As RS Codes
lack stripe locality, both single-block and multi-block repairs
always retrieve k surviving blocks for decoding, and inevitably
incur cross-region transfers for k ≥ m.

Figure 2 shows the block repairs of RS(6,3). In Figure 2(a),
the repair of D1 retrieves k = 6 blocks. As there is one block
D2 within the same rack as D1, the repair of D1 needs to
retrieve D3 from another rack, and D4, D5, D6, and P1 from
other regions. Here, we can apply partial decoding to D4, D5,
and D6, in which we transfer D6 to the rack that stores D4 and
D5, and then compute and transfer a partially decoded block
to the region that stores D1. The repair of D1 transfers two
cross-rack blocks and two cross-region blocks. In Figure 2(b),
the repair of both D1 and D2 still needs k = 6 blocks. This
leads to two cross-rack blocks and four cross-region blocks.
Here, we apply partial decoding to D4, D5, and D6 to transfer
two partially decoded blocks to repair two failed blocks.
Limitations of hierarchy-aware LRCs. LRCs incorporate
stripe locality, in which the repair of a data block or local
parity block retrieves only k

l blocks with the same local group
and incurs less repair traffic than RS Codes. Prior studies
[12], [37] place every g+1 blocks of each local group in one
region to minimize the number of regions spanned by each
local group while maintaining single-region fault tolerance [37].

Furthermore, all global parity blocks are placed in a dedicated
region for fault tolerance. Here, we again assume the random
placement of the blocks to the racks within a region.

If k
l > g, then each local group spans more than one region.

Thus, the repair of a single data block or local parity block
incurs cross-region transfers. Also, the repair of a single global
parity block retrieves k blocks from the surviving data blocks
and global parity blocks. The same issue holds for the repair of
multiple blocks within the same local group, as the decoding
within a local group is no longer feasible. Thus, cross-region
transfers are inevitable as the k blocks span multiple regions.

Figure 3 shows the block repairs of LRC(6,2,2). In Fig-
ure 3(a), the repair of D1 retrieves k

l = 3 blocks from the same
local group. As D2 resides in the same rack as D1, the repair
of D1 accesses D3 from another rack and L1 from another
region. In Figure 3(b), the repair of both D1 and D2 retrieves
k = 6 surviving blocks. Similar to the multi-block repair in RS
Codes in Figure 2(b), the repair of D1 and D2 transfers two
cross-rack blocks and four cross-region blocks.

IV. LEVELED PRODUCT CODES

A. Main Idea

We design a new family of erasure codes called Leveled Prod-
uct Codes (LPCs)), which incorporate hierarchical awareness
and stripe locality. LPCs comprise three levels: (i) node level:
LPCs realize a column-based RS Code across nodes inside a
rack to localize single-block repairs and tolerate node failures;
(ii) rack level: LPCs realize a row-based RS Code across
racks to optimize multi-block repairs and tolerate rack failures;
(iii) region level: LPCs realize region-aware data placement for
single-region fault tolerance. LPCs localize single-block repairs
inside racks. Also, LPCs decompose multi-block repairs into a
minimum number of row repairs and a maximum number of
column repairs, in which row repairs are done by retrieving
only a subset of blocks, so that column repairs are later done
locally within racks.

LPCs adapt Product Codes [10], [19] into geo-distributed
storage systems. We address two key challenges: (i) how to
design the data placement of LPCs in geo-distributed storage
systems so as to provide fault tolerance against node, rack, and
region failures, and (ii) how to provide optimality guarantees
for both single-block and multi-block repairs.

B. Construction

Definition. We construct an LPC with five parameters k1, m1,
k2, m2, and r, denoted by LPC(k1,m1,k2,m2,r). It comprises
RS(k1,m1) in the row direction and RS(k2,m2) in the column
direction (note that RS Codes can be replaced by any MDS
codes). Thus, an LPC stripe forms a (k2 +m2)× (k1 +m1)
two-dimensional logical array with storage redundancy (1+
m1
k1
)(1+ m2

k2
). Each LPC stripe is distributed across r regions.

The LPC construction comprises three steps.
Step 1. We organize k1k2 data blocks, denoted by D1, D2,

· · · , Dk1k2 , into a k2× k1 logical array in column-major order.
We encode each of the k1 columns of k2 data blocks to form
m2 column parity blocks, and label all k1m2 column parity

D1 D3 D5

D2 D4 D6

C1 C2 C3

D7
D8

C4

R1
R2

G1

R3
R4

G2

k1 columns m1 columnsk
2 row

s
m

2 row
s

Row encoding

Colum
n encoding

RegionRack

Figure 4. Construction of LPC(k1,m1,k2,m2,r), where k1 = 4, m1 = 2, k2 = 2,
m2 = 1, and r = 3.

blocks (i.e., a m2× k1 logical array) by C1,C2, · · · ,Ck1m2 in
column-major order.

Step 2. We encode each of the k2 rows of k1 data blocks
to form m1 row parity blocks, and label all k2m1 row parity
blocks (i.e., a k2×m1 logical array) by R1,R2, · · · ,Rk2m1 in
column-major order. We also encode each of the m2 rows of
k1 column parity blocks to form m1 global parity blocks, and
label all m1m2 global parity blocks (i.e., a m2×m1 logical
array) by G1,G2, · · · ,Gm1m2 in column-major order.

Step 3. We distribute each column of k2 +m2 blocks into
k2 +m2 distinct nodes, where each column resides in a distinct
rack. We also co-locate every m1 of the k1 +m1 racks in one
region, so an LPC stripe is stored in d k1

m1
e+1 regions.

Figure 4 shows an LPC(4,2,2,1,3) stripe with k1k2 = 8
data blocks, m1 = 2 row parity blocks for each row of data
blocks, and m2 = 1 column parity block for each column of
data blocks. The stripe spans r = 3 regions.

While each global parity block is generated by encoding
the column parity blocks in the same row using the row-based
RS Code, Theorem 1 shows that it can also be generated by
encoding the row parity blocks in the same column using the
column-based RS Code.

Theorem 1. Each column of an LPC(k1,m1,k2,m2,r) is an
RS(k2,m2) stripe.

Proof. Without loss of generality, we focus on the generation of
the global parity block G1. Each row parity block Ri (1≤ i≤ k2)
is generated by RS(k1,m1) as Ri = ∑

k1
j=1 α jD(j−1)k2+i, where

α j’s (1≤ j≤ k1) denote the encoding coefficients of RS(k1,m1).
Also, we have G1 = ∑

k1
j=1 α jC(j−1)m2+1.

We examine the first row of column parity blocks C1, Cm2+1,
C2m2+1, · · · , C(k1−1)m2+1. Each column parity block C(j−1)m2+1
(1 ≤ j ≤ k1) is generated by RS(k2,m2) as C(j−1)m2+1 =

∑
k2
i=1 βiD(j−1)k2+i, where βi’s (1≤ i≤ k2) denote the encoding

coefficients of RS(k2,m2).
We can rewrite G1 as G1 = ∑

k1
j=1 α j ∑

k2
i=1 βiD(j−1)k2+i =

∑
k2
i=1 βi ∑

k1
j=1 α jD(j−1)k2+i =∑

k2
i=1 βiRi. This implies that G1 can

be generated from Ri’s (1≤ i≤ k2) using RS(k2,m2).

C. Fault Tolerance

We analyze the fault tolerance guarantees of LPCs.

Lemma 1. LPC(k1,m1,k2,m2,r) can tolerate any m1 failed
blocks in each row or any m2 failed blocks in each column.

Proof. For each row (column) of an LPC (k1,m1,k2,m2,r)
stripe, if there are up to m1 (m2) failed blocks, the failed
blocks can be repaired by retrieving k1 (k2) surviving blocks
from the same row (column) via RS decoding.

Lemma 1 implies that LPC(k1,m1,k2,m2,r) can tolerate the
failed blocks that span no more than m2 rows or m1 columns.

Lemma 2. LPC(k1,m1,k2,m2,r) can tolerate any f = im1 +
jm2−m1m2 block failures that span i (m2 < i≤ k2 +m2) rows
and j (m1 < j ≤ k1 +m1) columns if and only if the failed
blocks do not contain any (m2 +1)× (m1 +1) block matrix.

Proof. If part: We first consider that there is no (m2 +1)×
(m1+1) block matrix formed among the failed blocks. Suppose
that among the existing failed blocks, there are x rows with
m1 < f1, f2, · · · , fx ≤ j failed blocks, and i− x rows with 0 <
fx+1, fx+2, · · · , fi ≤ m1 failed blocks. Since the failed blocks
in the last i− x rows can be repaired based on Lemma 1, we
focus on the fault tolerance of the first x rows.

We consider two cases. If x≤ m2, which means that each
column has no more than m2 failed blocks, then each column
in the x rows can be repaired by column-based RS decoding.
If x > m2, since there is no (m2 +1)× (m1 +1) block matrix
among the failed blocks, then there are at most m1 columns
that have more than m2 (but no more than x) failed blocks
each, while the remaining columns have no more than m2
failed blocks. For the former columns, they can be repaired by
row-based RS decoding as there are at most m1 failed blocks
in each row, while for the latter columns, they can be repaired
by column-based RS decoding.

Based on the above arguments, we compute the maximum
number of tolerable failed blocks. If x ≤ m2, the number of
tolerable failed blocks is maximized at x = m2. Then, we
have f1 = · · · = fx = j and fx+1 = · · · = fi = m1, meaning
the maximum number of tolerable failed blocks is ∑

i
h=1 fh =

im1 + jm2−m1m2. If x > m2, then among the first x rows, the
columns with more than m2 failed blocks have at most m1x
failed blocks in total, while the remaining columns have at
most (j−m1)m2 failed blocks in total. Among the remaining
i− x rows, there are at most (i− x)m1 failed blocks in total.
Thus, the maximum number of tolerable failed blocks is also
im1 + jm2−m1m2.

Only-if part: If there is a (m2 +1)× (m1 +1) block matrix
among the failed blocks, then the failed blocks in the block
matrix cannot be repaired from neither the row-based RS Code
nor the column-based RS Code.

Remarks. Product Codes with parameters k1, m1, k2, and m2
are shown to tolerate any m1m2 +m1 +m2 failed blocks [19].
This can be derived by setting i = m2 +1 and j = m1 +1 in
Lemma 2, where m1m2 +m1 +m2 failed blocks do not contain
any (m2 +1)× (m1 +1) block matrix. Lemma 2 covers more
general scenarios than the findings in [19] by proving fault
tolerance against more than m1m2 +m1 +m2 failed blocks.
Our findings are critical for analyzing fault tolerance in geo-
distributed storage systems with a much larger number of failed
blocks (under rack or region failures) in catastrophic events.

Algorithm 1 Progressive multi-block repair
Input: A set of failed blocks
Output: Repair policy for the failed blocks

1: Check reparability from Lemma 2;
2: if the failed blocks cannot be repaired then
3: Return “data loss”;
4: end if
5: while there exist failed blocks do
6: // Execute as many column repairs as
possible

7: for all columns with no more than m2 failed blocks do
8: Execute column repairs in parallel;
9: end for

10: if some rows have no more than m1 failed blocks then
11: // Execute one row repair
12: Select the row with maximum number of failed blocks;
13: Execute one row repair;
14: end if
15: end while

Lemma 3. LPC(k1,m1,k2,m2,r) tolerates m1 rack failures.

Proof. If m1 racks fail, there are k2 +m2 rows of m1 failed
blocks. From Lemma 1, the failed blocks can be repaired.

Lemma 4. LPC(k1,m1,k2,m2,r) tolerates a region failure.

Proof. If a region fails, the m1 racks in this region fail. From
Lemma 3, the failed region can be repaired.

D. Block Repairs

We describe the details of single-block and multi-block
repairs in LPCs. We finally prove their optimality.
Single-block repair. As LPCs place each column of blocks
inside a rack, any single-block repair and the repair of up
to m2 failed blocks within the same column can be done by
retrieving any k2 surviving blocks in the same column (i.e.,
same rack) without any cross-rack or cross-region transfer. For
example, in Figure 5(a), the repair of D1 accesses D2 and C1
within a rack.
Multi-block repair. Conventional wisdom suggests that if
there are more than m2 failed blocks within the same column,
a column repair is infeasible. Nevertheless, we develop a
progressive approach to allow LPCs to perform a multi-block
repair even with more than m2 failed blocks in the same column.
Specifically, LPCs execute row repairs to decode some failed
blocks across the affected columns, so that column repairs
can locally decode the remaining failed blocks within racks.
As a column repair can be executed completely inside a rack
while a row repair involves block accesses across racks and
regions, our idea is to execute the maximum possible number
of column repairs and the minimum possible number of row
repairs in a multi-block repair. Such a progressive multi-block
repair approach provably minimizes the sum of cross-rack and
cross-region transfers.

Algorithm 1 shows the steps of a progressive multi-block
repair. We first check if a set of failed blocks can be repaired
based on Lemma 2 and return “data loss” if the set of failed
blocks cannot be repaired (Lines 1-4). We next find all columns

D1 D3 D5

D2 D4 D6

C1 C2 C3

D7
D8
C4

R1
R2
G1

R3
R4
G2

cross‐rack
transfer

inner‐rack
transfer

cross‐region
transfer

(a) Single-block repair

D1 D3 D5

D2 D4 D6

C1 C2 C3

D7
D8
C4

R1
R2
G1

R3
R4
G2

① ③

②

(b) Multi-block repair

Figure 5. Block repairs in LPC(4,2,2,1,3). The single-block repair of D1
(figure (a)) is done within a rack. The multi-block repair of D1, D4, D5, D7,
D8, C3 (figure (b)) transfers one cross-rack block and four cross-region blocks.

with no more than m2 failed blocks and execute column repairs
in parallel (Lines 6-9). We then find the rows with no more than
m1 failed blocks, select the row with the maximum number
of failed blocks, and execute a row repair on the selected row
(Lines 10-14). We repeat the executions of column repairs and
a row repair until all failed blocks are repaired.

We elaborate on the details of a row repair, assuming that
there are f failed blocks in the row:
• Step 1: Selecting the main region and the main rack. We

randomly select a region and a rack therein as the main
region and the main rack, respectively.

• Step 2: Selecting helper regions. We select the smallest
number of helper regions, such that the total number of
surviving blocks in this row in all helper regions and the
main region is at least k1.

• Step 3: Transferring blocks for decoding. We first consider
f = 1. Then, for each helper region, if the number of
surviving blocks is one, then we directly transfer the surviving
block to the main rack; otherwise, we select the rack that
stores at least one surviving block as the relay, which
performs partial decoding and transfers a partially decoded
block [12], [13], [31], [36], [37]. Specifically, the relay
collects other surviving blocks across racks within the same
region, computes a partially decoded block, and transfers the
partially decoded block to the main rack. If f > 1, then for
each helper region, we directly transfer the surviving blocks
to the main rack.

• Step 4: Decoding. We decode all failed blocks in this row
in the main rack.

• Step 5, Redistributing decoded blocks. We redistribute the
decoded blocks from the main rack to other racks and regions.
We now analyze the cross-rack and cross-region transfers

of a row repair. To simplify our analysis, we assume that k1
is divisible by m1, such that each region stores exactly m1
blocks in a row. In the main region, suppose that there are x
failed blocks and m1− x surviving blocks; in other words, in
the helper regions, there are f − x failed blocks.
• (i) We start with f > 1. Suppose that the main rack contains

one failed block. Then, we access m1− x surviving blocks

across racks in the main region and k1−m1 + x surviving
blocks across regions from the helper regions for decoding.
After decoding, we re-distribute x−1 decoded blocks across
racks in the main region and f − x decoded blocks to other
regions. Thus, the numbers of cross-rack and cross-region
transfers are m1−1 and k1−m1+ f blocks, respectively. Note
that we can obtain the same numbers even if the main rack
contains one surviving block. This implies that the random
selection of the main region and main rack has no impact
on the numbers of cross-rack and cross-region transfers.

• (ii) From (i), the sum of cross-rack and cross-region transfers
is fixed as k1+ f −1 blocks. We now explain why we exclude
partial decoding for f > 1. In Step 3, suppose there are s > f
surviving blocks in one helper region. In our design, we
directly transfer the s blocks across regions. However, if we
apply partial decoding, then the relay accesses s−1 blocks
across racks, computes and transfers f blocks corresponding
to the failed blocks. This means that the number of cross-
region blocks decreases by s− f , but the number of cross-rack
blocks increases by s− 1, i.e., the sum of cross-rack and
cross-region transfers increases.

• (iii) We now consider f = 1. There are k1
m1
−1 helper regions

with m1 surviving blocks (and a last helper region with one
surviving block). In Step 3, in each such helper region, the
number of cross-region blocks decreases by m1−1 and the
number of cross-rack blocks increases by m1−1 by applying
partial decoding (i.e., the sum keeps unchanged) From (i), the
numbers of cross-rack and cross-region blocks are k1− k1

m1

and k1
m1

, respectively.
Thus, the numbers of cross-rack and cross-region blocks are

#(cross-rack blocks) =
{

k1− k1
m1

, if f = 1;
m1−1, if f > 1,

(1)

#(cross-region blocks) =
{ k1

m1
, if f = 1;

k1−m1 + f , if f > 1,
(2)

where f is the number of failed blocks in a row.
If k1 is not divisible by m1, the sum of cross-rack and

cross-region transfers stays unchanged (i.e., k1 + f −1) and is
not affected by the number of blocks in a region. However,
the individual numbers of cross-rack and cross-region blocks
may be different. For f = 1, the two numbers are decided
by the numbers of surviving blocks (which may be diverse)
in the helper regions, while for f > 1, the two numbers are
determined by the number of blocks in the main region. We
pose the analysis of general k1 and m1 as future work.

For example, in Figure 5(b), the multi-block repair of D1,
D4, D5, D7, D8, and C3 works as follows. We first execute two
column repairs for D1 and D4. We then select the first row and
execute a row repair to decode D5 and D7. Specifically, we
select the second region and the first rack therein as the main
region and the main rack, respectively. We transfer D1, D3, R1,
and R3 to the main rack to decode D5 and D7. We re-distribute
D7 to another rack. Finally, we execute two column repairs
to decode C3 and D8. The multi-block repair transfers one
cross-rack block and four cross-region blocks.

D1 D3 D5

D2 D4 D6

C1 C2 C3

D7
D8
C4

R1
R2
G1

R3
R4
G2

①

②

cross‐rack
transfer

inner‐rack
transfer

cross‐region
transfer

(a) Rack repair

D1 D3 D5

D2 D4 D6

C1 C2 C3

D7
D8
C4

R1
R2
G1

R3
R4
G2

②

①

(b) Region repair

Figure 6. Rack and region repairs in LPC(4,2,2,1,3). The rack repair
(figure (a)) transfers four cross-rack and four cross-region blocks. The region
repair (figure (b)) transfers two cross-rack and eight cross-region blocks.

Rack repair. A failed rack implies a column of failed blocks
(including k2 data blocks and m2 column parity blocks). Using
the progressive multi-block repair, we first perform k2 row
repairs for the k2 data blocks (which can be executed in parallel),
so that we can later perform a column repair to decode the m2
column parity blocks locally within the failed rack. Note that
there is only one failed block in each row repair, so we apply
partial decoding. From Equations (1) and (2), the numbers of
cross-rack and cross-region blocks are

#(cross-rack blocks) = k1k2− k1k2
m1

, (3)

#(cross-region blocks) = k1k2
m1

. (4)

For example, in Figure 6(a), in order to repair the blocks of
the first rack, we perform two row repairs to decode D1 and
D2. Then, we perform a column repair to decode C1 locally
in the failed rack. The rack repair transfers four cross-region
blocks and four cross-rack blocks.
Region repair. A failed region implies m1 failed columns (i.e.,
k2m1 data blocks and m1m2 column parity blocks). Using the
progressive multi-block repair, we first perform k2 row repairs
for the k2m1 data blocks, and later perform m1 column repairs
to decode the m1m2 column parity blocks. We exclude partial
decoding as there are m1 failed blocks in each row repair.
From Equations (1) and (2), the numbers of cross-rack and
cross-region blocks are

#(cross-rack blocks) = m1k2− k2, (5)

#(cross-region blocks) = k1k2. (6)

For example, in Figure 6(b), to repair all blocks in the first
region, we perform two row repairs to decode D1 to D4. Then,
we perform two column repairs to decode C1 and C2 locally
within each rack. The region repair transfers eight cross-region
blocks and two cross-rack blocks.
Optimality. We now show that all types of block repairs
minimize the sum of cross-rack and cross-region transfers.

First, each single-block repair and the repair of up to m2
blocks within the same column are optimal as they can be

locally done within a rack without any cross-rack and cross-
region transfer.

Next, we show the optimality of multi-block repair. In each
round of the while loop in Algorithm 1, we always execute the
most column repairs but only one row repair with the maximum
number of repairable failed blocks. The selection of a row in a
round enables more column repairs in the next round. Overall,
we execute the maximum number of column repairs and the
minimum number of row repairs in a multi-block repair.

If we do not select the row with the maximum number of
repairable failed blocks in a round, then we need at least two
row repairs to maintain the same number of subsequent column
repairs. From Equations (1) and (2), the sum of cross-rack and
cross-region transfers increases (the number of row repairs also
increases). Thus, we can deduce that all row repairs minimize
the sum of cross-rack and cross-region transfers. To elaborate,
we revisit the example in Figure 5(b). After executing two
column repairs for D1 and D4, we select the first row and
perform a row repair to decode D5 and D7. This single row
repair transfers one cross-rack block and four cross-region
blocks. If we do not select the first row, then we need to
execute two row repairs to decode C3 and D8, so that we
can perform two column repairs for D5 and D7. The two row
repairs transfer four cross-rack blocks and four cross-region
blocks (i.e., more transferred blocks).

Finally, both rack repair and region repair are in essence
multi-block repairs. The optimality of multi-block repairs can
be applied to both rack and region repairs.

V. EVALUATION

We compare via numerical analysis and testbed experiments
our LPC(k1,m1,k2,m2,r) with three baselines: (i) hierarchy-
aware RS(k,m), which places every m blocks of a stripe
in one region and applies partial decoding [13], [31], (ii)
hierarchy-aware LRC(k, l,g), which places every g+1 blocks
of each local group in one region and applies partial decod-
ing [12], [37], (iii) Multi-Level Erasure Codes (denoted by
MLEC(k1,m1,k2,m2)) [34], which also builds upon Product
Codes but places a column of blocks in one region. For fair
comparisons, we also apply partial decoding to MLEC.

We summarize the overall results as follows. From numerical
analysis, LPCs completely eliminate cross-rack and cross-
region transfers for single-block repair and reduce the sum of
cross-rack and cross-region transfers of RS Codes, LRCs, and
MLEC by up to 93.4%, 92.9%, and 87.4%, respectively, for
multi-block repair (Section V-A). From testbed experiments,
LPCs reduce the single- and multi-block repair times of RS
Codes, LRCs, and MLEC by up to 90.6%, 80.8%, and 62.8%;
and 70.0%, 73.2%, and 57.5%, respectively (Section V-B).

A. Numerical Analysis

We measure the cross-rack transfers and cross-region trans-
fers individually, as well as their sum, for both single-block
and multi-block repairs.
Settings. We evaluate LPC(k1,m1,k2,m2,r) under 2 ≤ k1 ≤
12, 2 ≤ k2 ≤ 6, and 1 ≤ m1,m2 ≤ 2. We then configure the

Table I
PARAMETER SETTINGS FOR FOUR ERASURE CODES.

LPC RS LRC MLEC
S1 (3,1,2,1,4) (6,6) (6,3,2) (3,1,2,1)
S2 (4,2,2,1,3) (8,8) (8,4,4) (4,2,2,1)
S3 (2,1,3,1,3) (6,6) (6,2,3) (2,1,3,1)
S4 (4,2,3,1,3) (12,12) (12,4,6) (4,2,3,1)
S5 (4,2,4,1,3) (16,16) (16,4,8) (4,2,4,1)
S6 (8,2,2,1,5) (16,16) (16,8,4) (8,2,2,1)
S7 (6,2,4,1,4) (24,16) (24,6,8) (6,2,4,1)
S8 (8,2,3,1,5) (24,16) (24,8,6) (8,2,3,1)
S9 (10,2,3,1,6) (30,15) (30,10,6) (10,2,3,1)
S10 (8,2,4,1,5) (32,16) (32,8,8) (8,2,4,1)
S11 (6,2,6,1,4) (36,18) (36,6,12) (6,2,6,1)
S12 (12,2,3,1,7) (36,18) (36,12,6) (12,2,3,1)

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S120
5

10
15
20

Re
pa

ir
Co

st
 (B

lo
ck

)

RS LRC MLEC LPC

(a) Single-block repair

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S120
5

10
15
20
25

Re
pa

ir
Co

st
 (B

lo
ck

) RS LRC MLEC LPC

(b) Three-block repair

Figure 7. Repair traffic for single- and multi-block repairs, in terms of numbers
of cross-rack blocks (solid bars) and cross-region blocks (shaded bars).

parameters of RS Codes, LRCs, and MLEC to keep the same
number of data blocks in a stripe (by setting k1×k2 = k), while
maintaining similar storage overhead and fault tolerance. We
consider 12 parameter settings listed in Table I. For single-block
repairs, we average the amounts of transfers over all blocks in
a stripe. For multi-block repairs, we choose 10 random patterns
of two or three failed blocks in a stripe and apply the same
failure pattern to each erasure code, and derive the average
amounts of transfers. We consider a topology with sufficient
regions and nodes, and each region has two racks.
Results for single-block repairs. Figure 7(a) shows the cross-
rack and cross-region transfers for single-block repairs under
the 12 parameter settings. In all settings, LPCs require no
cross-rack or cross-region transfer. RS Codes need k blocks to
repair a failed block, and hence have the highest sum of cross-
rack and cross-region transfers. LRCs have k

l ≤ g under all
settings, meaning that LRCs always place a local group entirely
in one region. Thus, the repair of a data block or local parity
block incurs no cross-region transfer, but the repair of a global
parity block still incurs cross-region transfers. MLEC places
a column of blocks in one region, so it has no cross-region
transfer, but still incurs cross-rack transfers.
Results for multi-block repairs. Figure 7(b) shows the repair

traffic for repairing three failed blocks (similar results are
observed for repairing two failed blocks). LPCs reduce the
sum of cross-rack and cross-region transfers of RS Codes,
LRCs, and MLEC by 69.6%-93.4%, 81.1%-92.9%, and 64.9%-
87.4%, respectively. LPCs significantly reduce the cross-rack
transfers of RS Codes, LRCs, and MLEC, and even have no
cross-rack transfer when m1 = 1; in this case, LPCs store one
column/rack in one region, so a multi-block repair has no cross-
rack transfer (Equation (1)). LPCs also significantly reduce the
cross-region transfers.

B. Testbed Experiments

Implementation. We built a distributed storage prototype, in
which we implemented LPCs, RS Codes, LRCs and MLEC
based on Jerasure [23] and block repairs. Our prototype
comprises a coordinator, multiple clients, and multiple regions.
Each region contains a proxy and multiple racks, where
each rack contains multiple nodes. The coordinator maintains
the metadata, generates data placements, and coordinates the
proxies in different regions to perform block repairs. Our
prototype is implemented in C++ with around 8000 SLoC.
Setup. We deploy our prototype on a local cluster with 15
physical machines, each of which runs CentOS 7.9.2009 with
2 dodeca-core 2.20 GHz Intel(R) E5-2650 v4 CPUs, 64 GB
RAM, a Seagate ST1000NM0023 7200 RPM 1 TB SATA hard
disk, and 10 Gbps bandwidth. We deploy the coordinator and
clients in one machine, assign two machines as network cores
to simulate cross-rack and cross-region transfers, respectively.
We use each of the remaining machines to emulate a region.
In each region, we deploy two racks with 10 nodes each (i.e.,
a total of 240 nodes). We use the WonderShaper tool [3] to
control the cross-rack and cross-region bandwidth. Such cluster
settings have been explored in prior studies [12], [20], [40].
Methodology. We consider the four parameter settings, S1 to
S4, from Table I, where all erasure codes share similar storage
redundancy with up to 11.1% differences. By default, we set
the block size as 64 MB, the cross-rack bandwidth as 1 Gbps,
the cross-region bandwidth as 0.5 Gbps, and eight stripes in
total (i.e., the total storage size is around 12 GB).

In RS Codes, LRCs, and MLEC, we distribute the blocks
randomly to the two racks in a region to preserve single-region
fault tolerance (Section III). For a single-block repair, we
repair the failed block in each stripe one by one and record
the average time. For multi-block repair, we randomly trigger
10 patterns of two or three failed blocks in a stripe and apply
the same failure pattern to each erasure code; we again obtain
the average repair time. We further average the results of each
experiment over five runs.
Single-block repair performance. Figure 8(a) shows the
single-block repair performance under different settings (the
error bars show the maximum and minimum results across
five runs). The four erasure codes have larger repair time
under larger parameters. Overall, LPCs reduce the single-block
repair time of RS Codes, LRCs, and MLEC by 81.6%-90.6%,
73.5%-80.8%, and 50.5%-62.8%, respectively, across the four
parameter settings.

S1 S2 S3 S40

4

8

12
Re

pa
ir

Ti
m

e
(s

) RS LRC MLEC LPC

(a) Different parameter settings

16 32 64 128
Block Size (MB)

0

5

10

15

Re
pa

ir
Ti

m
e

(s
)

RS
LRC

MLEC
LPC

0.25:1 0.5:1 0.25:2 0.5:2
Ratio

0

4

8

12

Re
pa

ir
Ti

m
e

(s
) RS

LRC
MLEC
LPC

(b) Different block sizes (c) Different bandwidth settings

Figure 8. Performance for single-block repairs.

S1 S30

2

4

6

Re
pa

ir
Ti

m
e

(s
) RS LRC MLEC LPC

S1 S30

4

8

12

Re
pa

ir
Ti

m
e

(s
) RS LRC MLEC LPC

(a) Two failed blocks, 32 MB (b) Two failed blocks, 64 MB

S1 S30
2
4
6
8

10

Re
pa

ir
Ti

m
e

(s
) RS LRC MLEC LPC

S1 S30
4
8

12
16

Re
pa

ir
Ti

m
e

(s
) RS LRC MLEC LPC

(c) Three failed blocks, 32 MB (d) Three failed blocks, 64 MB

Figure 9. Performance for multi-block repairs.

We also evaluate the impact of block size, varied from 16 MB
to 128 MB, on single-block repair performance. We focus on
the setting S1. Figure 8(b) shows the results. LPCs reduce the
single-block repair times of RS Codes, LRCs, and MLEC by
81.6%-88.5%, 73.8%-78.4%, and 51.2%-60.0%, respectively.
LPCs have larger gains with a larger block size.

We further evaluate the impact of cross-region and cross-rack
bandwidth in four combinations: 0.25 & 1 Gbps, 0.5 & 1 Gbps,
0.25 & 2 Gbps, and 0.5 & 2 Gbps. We focus on the setting
S1 with a block size of 64 MB. Figure 8(c) shows the results.
LPCs reduce the single-block repair times of RS Codes, LRCs,
and MLEC by 81.6%-88.6%, 71.5%-79.0%, and 53.3%-56.5%,
respectively. LPCs have larger gains with more scarce cross-
rack (cross-region) bandwidth, as single-block repairs in LPCs
are locally performed and are not affected by the cross-rack
(cross-region) bandwidth, as opposed to other baselines.
Multi-block repair performance. We now evaluate multi-
block repair performance with two and three failed blocks. We
adopt the settings S1 and S3, and also consider two block sizes,
32 MB and 64 MB. Figure 9 shows the results (the error bars
show the maximum and minimum results across five runs).
LPCs achieve the smallest multi-block repair time. Note that
LPCs have a higher performance gain with a smaller number
of failed blocks, as the sum of cross-rack and cross-region
transfers (i.e, k1+ f −1, where f is the number of failed blocks)
increases with f , while RS Codes and LRCs need k blocks

for multi-block repairs. For example, with two failed blocks
with a block size of 32 MB, LPCs reduce the multi-block
repair times of RS Codes, LRCs, and MLEC by 64.4%-70.0%,
64.4%-73.2%, and 56.9%-57.5%, respectively.

VI. RELATED WORK

Erasure coding in geo-distributed storage systems. Erasure
codes have been deployed in geo-distributed data centers for
low-cost redundancy [6], [11], data security [28], region-level
fault tolerance [2], [21]. These studies do not consider how to
mitigate the significant cross-region transfers in block repairs.
We design LPCs to effectively mitigate cross-region transfers
in data repairs, and provide the optimality guarantees for LPCs.
Repair optimizations in hierarchical settings. Some studies
focus on minimizing cross-rack transfers for single-block
repairs in RS Codes [30], [31] and regenerating codes [13], [24].
Other studies consider LRCs and place each local group into
a minimum number of racks to minimize cross-rack transfers
for single-block repairs [20], [37], [40]. The studies [12], [39]
address the high repair penalty in wide stripes, and apply LRCs
[12] and XOR-Hitchhiker-RS Codes [39] to mitigate cross-
rack transfers for single-block repairs. Our work complements
existing studies by optimizing both single-block and multi-
block repairs in geo-distributed storage systems.
Product Codes. Explicit constructions of Product Codes
[10], [19] have been studied for high fault tolerance against
disk failures in disk arrays. The idea has been extended
for distributed storage. For example, CORE [8] provides
cross-object redundancy with XOR-based column parities for
high repair efficiency, but lacks support for hierarchical geo-
distributed settings. R-STAIR codes [18] address node-level and
rack-level fault tolerance, but focus only on single-block repairs.
HACFS [38] transitions between fast and compact Product
Codes to balance storage overhead and access performance.
MLEC [34] builds on Product Codes to realize inner-rack single-
block repairs for data centers. LPCs enhance MLEC in several
aspects. First, LPCs consider a geo-distributed setting and
optimize cross-region transfers, where MLEC shows suboptimal
performance from our evaluation. Second, LPCs address multi-
block repairs but not in MLEC. Third, LPCs are studied with
both theoretical analysis and prototype evaluation, MLEC is
studied with simulations only.

VII. CONCLUSION

We study both single-block and multi-block repairs in geo-
distributed storage systems. We propose Leveled Product Codes
(LPCs), which optimize block repair operations by localizing
single-block repairs within racks and performing multi-block
repairs with the provably minimum sum of cross-rack and cross-
region transfers, while tolerating node, rack, and region failures.
Our numerical analysis and testbed experiments validate the
efficiency of LPCs in both single-block and multi-block repairs.
Acknowledgements. This work is supported by NSFC
(62202440), Research Grants Council of Hong Kong (AoE/P-
404/18). The corresponding author is Patrick P. C. Lee.

REFERENCES

[1] Backblaze. Erasure coding used by Backblaze. https://www.backblaze.
com/blog/reed-solomon/.

[2] CubeFS - Erasure Code Subsystem. https://cubefs.readthedocs.io/en/
latest/design/blobstore.html.

[3] The Wonder Shaper 1.4. https://github.com/magnific0/wondershaper.
[4] VastData. https://vastdata.com/providing-resilience-efficiently-part-ii/.
[5] F. Ahmad, S. T. Chakradhar, A. Raghunathan, and T. Vijaykumar.

ShuffleWatcher: Shuffle-aware scheduling in multi-tenant Mapreduce
clusters. In Proc. of USENIX ATC, 2014.

[6] Y. L. Chen, S. Mu, J. Li, C. Huang, J. Li, A. Ogus, and D. Phillips.
Giza: Erasure coding objects across global data centers. In Proc. of
USENIX ATC, 2017.

[7] A. G. Dimakis, P. B. Godfrey, Y. Wu, M. J. Wainwright, and K. Ram-
chandran. Network coding for distributed storage systems. IEEE Trans.
on Information Theory, 56(9):4539–4551, 2010.

[8] K. S. Esmaili, L. Pamies-Juarez, and A. Datta. CORE: Cross-object
redundancy for efficient data repair in storage systems. In Proc. of IEEE
BigData, 2013.

[9] D. Ford, F. Labelle, F. Popovici, M. Stokely, V.-A. Truong, L. Barroso,
C. Grimes, and S. Quinlan. Availability in globally distributed storage
systems. In Proc. of USENIX OSDI, 2010.

[10] J. Hafner. HoVer erasure codes for disk arrays. In Proc. of IEEE/IFIP
DSN, 2006.

[11] R. Halalai, P. Felber, A.-M. Kermarrec, and F. Taı̈ani. Agar: A caching
system for erasure-coded data. In Proc. of IEEE ICDCS, 2017.

[12] Y. Hu, L. Cheng, Q. Yao, P. P. C. Lee, W. Wang, and W. Chen. Exploiting
combined locality for wide-stripe erasure coding in distributed storage.
In Proc. of USENIX FAST, 2021.

[13] Y. Hu, X. Li, M. Zhang, P. P. C. Lee, X. Zhang, P. Zhou, and D. Feng.
Optimal repair layering for erasure-coded data centers: From theory to
practice. ACM Trans. on Storage, 13(4):33, 2017.

[14] C. Huang, M. Chen, and J. Li. Pyramid Codes: Flexible schemes to
trade space for access efficiency in reliable data storage systems. ACM
Trans. on Storage (TOS), 9(1):1–28, 2013.

[15] C. Huang, H. Simitci, Y. Xu, A. Ogus, B. Calder, P. Gopalan, J. Li, and
S. Yekhanin. Erasure coding in Windows Azure Storage. In Proc. of
USENIX ATC, 2012.

[16] S. Kadekodi, S. Silas, D. Clausen, and A. Merchant. Practical design
considerations for wide Locally Recoverable Codes (LRCs). In Proc. of
USENIX FAST, 2023.

[17] O. Kolosov, G. Yadgar, M. Liram, I. Tamo, and A. Barg. On fault
tolerance, locality, and optimality in Locally Repairable Codes. In Proc.
of USENIX ATC, 2018.

[18] M. Li and P. P. C. Lee. Relieving both storage and recovery burdens in big
data clusters with r-stair codes. IEEE Internet Computing, 22(4):15–26,
2018.

[19] M. Li, J. Shu, and W. Zheng. GRID codes: Strip-based erasure codes
with high fault tolerance for storage systems. ACM Trans. on Storage,
4(4):1–22, 2009.

[20] S. Ma, S. Wu, C. Li, and Y. Xu. Repair-optimal data placement for
locally repairable codes with optimal minimum hamming distance. In
Prof. of ACM ICPP, 2022.

[21] S. Muralidhar, W. Lloyd, S. Roy, C. Hill, E. Lin, W. Liu, S. Pan,
S. Shankar, V. Sivakumar, L. Tang, et al. f4: Facebook’s warm BLOB
storage system. In Proc. of USENIX OSDI, 2014.

[22] J. Plank and C. Huang. Tutorial: Erasure coding for storage applications.
In Slides presented at USENIX FAST, 2013.

[23] J. S. Plank, J. Luo, C. D. Schuman, L. Xu, Z. Wilcox-O’Hearn, et al. A
performance evaluation and examination of open-source erasure coding
libraries for storage. In Proc. of USENIX FAST, 2009.

[24] N. Prakash, V. Abdrashitov, and M. Médard. The storage versus repair-
bandwidth trade-off for clustered storage systems. IEEE Trans.on
Information Theory, 64(8):5783–5805, Aug 2018.

[25] K. Rashmi, N. B. Shah, D. Gu, H. Kuang, D. Borthakur, and K. Ram-
chandran. A solution to the network challenges of data recovery in
erasure-coded distributed storage systems: A study on the Facebook
warehouse cluster. In Proc. of USENIX HotStorage, 2013.

[26] K. V. Rashmi, N. B. Shah, and K. Ramchandran. A piggybacking design
framework for read-and download-efficient distributed storage codes.
IEEE Trans. on Information Theory, 63(9):5802–5820, 2017.

[27] I. Reed and G. Solomon. Polynomial codes over certain finite fields.
Journal of the Society for Industrial and Applied Mathematics, 8(2):300–
304, 1960.

[28] J. K. Resch and J. S. Plank. AONT-RS: Blending security and
performance in dispersed storage systems. In Proc. of USENIX FAST,
2011.

[29] M. Sathiamoorthy, M. Asteris, D. Papailiopoulos, A. G. Dimakis,
R. Vadali, S. Chen, and D. Borthakur. XORing Elephants: Novel erasure
codes for big data. In Proc. of VLDB Endowment, pages 325–336, 2013.

[30] Z. Shen, J. S. amd Zhijie Huang, and Y. Fu. ClusterSR: Cluster-aware
scattered repair in erasure-coded storage. In Proc. of IEEE IPDPS, 2020.

[31] Z. Shen, J. Shu, and P. P. C. Lee. Reconsidering single failure recovery
in clustered file systems. In Proc. of IEEE/IFIP DSN, 2016.

[32] K. Tang, K. Cheng, H. H. W. Chan, X. Li, P. P. C. Lee, Y. Hu, J. Li, and
T.-Y. Wu. Balancing repair bandwidth and sub-packetization in erasure-
coded storage via elastic transformation. In Proc. of IEEE INFOCOM,
2023.

[33] A. Vulimiri, C. Curino, P. B. Godfrey, T. Jungblut, J. Padhye, and
G. Varghese. Global analytics in the face of bandwidth and regulatory
constraints. In Proc. of USENIX NSDI, 2015.

[34] M. Wang, J. Mao, R. Rana, J. Bent, S. Olmez, A. George, G. W. Ransom,
J. Li, and H. S. Gunawi. Design considerations and analysis of multi-
level erasure coding in large-scale data centers. In Proc. of ACM SC,
2023.

[35] H. Weatherspoon and J. D. Kubiatowicz. Erasure coding vs. replication:
A quantitative comparison. In Proc. of IPTPS, 2002.

[36] S. Wu, Q. Du, P. P. C. Lee, Y. Li, and Y. Xu. Optimal data placement for
stripe merging in Locally Repairable Codes. In Proc. of IEEE INFOCOM,
2022.

[37] S. Wu, Z. Shen, and P. P. C. Lee. On the optimal repair-scaling trade-off
in Locally Repairable Codes. In Proc. of IEEE INFOCOM, 2020.

[38] M. Xia, M. Saxena, M. Blaum, and D. A. Pease. A tale of two erasure
codes in HDFS. In Proc. of USENIX FAST, 2015.

[39] G. Yang, H. Xue, Y. Gu, C. Wu, J. Li, M. Guo, S. Li, X. Xie, Y. Dong,
and Y. Zhao. XHR-Code: An efficient wide stripe erasure code to reduce
cross-rack overhead in cloud storage systems. In Proc. of IEEE SRDS,
2022.

[40] H. Zhao, S. Wu, H. Liu, Z. Tang, X. He, and Y. Xu. Toward optimal
repair and load balance in locally repairable codes. In Proc. of ACM
ICPP, 2023.

