An Analysis of Ethereum Workloads from a
Key-Value Storage Perspective

Yanjing Ren', Jia Zhao!, Jingwei Li*, Patrick P. C. Lee'

"The Chinese University of Hong Kong

Abstract—Blockchains have revolutionized trust and trans-
parency in distributed systems, yet their heavy reliance on key-
value (KV) storage for managing immutable, rapidly growing
data leads to performance bottlenecks due to I/O inefficiencies.
In this paper, we analyze Ethereum’s storage workload traces,
with billions of KV operations, across four dimensions: storage
overhead, KV operation distributions, read correlations, and
update correlations. Our study reveals 11 key findings and
provides suggestions on the design and optimization of blockchain
storage.

I. INTRODUCTION

Blockchains have been popularized by cryptocurrencies, such
as Bitcoin [9] and Ethereum [1], and support applications
including smart contracts [21], supply chain tracking [24], and
decentralized finance (DeFi) [27]. To achieve high-performance
data persistence, existing blockchains mainly use key-value
(KV) stores (e.g., based on the log-structured merge tree
(LSM) [23]) to organize data in the form of KV pairs for
storage management [4], [17]. For example, Ethereum, the
leading blockchain platform for smart contracts and DeFi,
employs the LSM-based Pebble KV store [19] to manage
blockchain data (e.g., accounts, contracts, and transactions)
[4]. However, Ethereum’s performance is constrained by I/O
operations [20]. Due to the immutable, append-only nature of
blockchain data and its unbounded data growth (about 200 GiB
annually [2]), the I/O costs of KV storage significantly increase
as the blockchain size expands over time. Note that LSM-tree
compaction, a key background process that can remove stale
data from LSM-based storage, cannot fundamentally mitigate
this growing I/O burden due to the immutability of historical
transactions in blockchains.

Existing studies have proposed optimizations to address
KV storage inefficiencies in Ethereum, such as integrating
authenticated data structures into storage backends [26], [32]
and semantic-aware LSM layouts [12], [13], [20]. However,
recent updates of the Ethereum client introduce new storage
structures [3], [22], [28] that result in different KV workload
characteristics, rendering existing optimizations less effective.

In this paper, we analyze 140-day Ethereum’s storage
workloads from a KV storage perspective. We characterize KV
operations for 29 classes of KV pairs, where the classification
is defined by Ethereum’s storage semantics [S]. We focus on
storage overhead, KV operation distribution, read correlations,
and update correlations across the classes under different

storage mechanisms (e.g., caching and snapshot acceleration).

To this end, we present 11 key findings and provide insights

into optimizing storage and cache management for blockchains.

University of Electronic Science and Technology of China

Our analysis reveals substantially different workload char-
acteristics across different classes of KV pairs. We highlight
some key observations from our analysis: (i) 15 out of 29
classes have only one KV pair for maintaining system state,
while five dominant classes account for over 99.2% of total KV
pairs, with only an average size of 79.1 bytes; (ii) only three
classes perform scans (a.k.a. range queries), while deletions are
common; and (iii) read and update correlations exist within the
same class and across different classes. Our analysis suggests
that LSM KV stores are sub-optimal for Ethereum due to
excessive deletions and rare scans. Also, the current caching
design in Ethereum underperforms due to its lack of read
correlation awareness. This suggests the necessity of a hybrid
KV store design that incorporates specialized data structures
based on data semantics and access patterns, efficient deletion
mechanisms, and correlation-aware storage management, so as
to achieve high performance.

We have released our scripts for trace collection and analysis
at https://github.com/adslabcuhk/geth_analysis. While we do
not release the raw traces due to their large volume, the raw
traces can be obtained from the public Ethereum blockchain
using our provided scripts.

II. BACKGROUND AND RELATED WORK

In this section, we provide an overview of data management
in blockchain systems, using Ethereum as a primary case study.
We also review related work and distinguish our study from
existing KV storage benchmarking efforts.

A. Blockchain Basics

Blockchain overview. Figure 1 shows the logical data orga-
nization based on Ethereum’s blockchain. A blockchain is a
decentralized, immutable ledger maintained by a distributed
network of nodes that synchronize states via consensus proto-
cols, such as Proof of Work (PoW) [7] or Proof of Stake
(PoS) [6]. It supports smart contracts (i.e., self-executing
programs that automate agreement terms) and maintains a
dynamically updated world state, which maps accounts to
account information such as account balances and contract
data. It operates on transactions, which encode asset transfers
or contract executions. Transactions are validated by nodes,
grouped into blocks, and cryptographically linked into a
verifiable chain starting from the genesis block (i.e., the first
block of the blockchain). Each block also includes transaction
receipts that record execution outcomes.

https://github.com/adslabcuhk/geth_analysis

Genesis

block (1 P11] Tk

N = TR o e o R TR s R £
1 ¥ ! CJ 5
L L [state NNl
i Receipts !Accounttrie ________Storage trie ! 'Transactions; |%

trie World state trie =

Figure 1: Logical data organization of Ethereum’s blockchain.

Each blockchain node employs authenticated data structures
(ADSs) to ensure data integrity in local storage. For example,
Ethereum uses a Merkle Patricia Tree (MPT) [30], which
combines Merkle Tree’s cryptographic proofs with efficient
Patricia Trie storage. It organizes accounts, contract storage,
transactions, and receipts in different MPTs. However, frequent
MPT modifications (e.g., world state updates) and deep traver-
sals (e.g., for account lookup and proof generation) significantly
increase 1/0 overhead and raise scalability concerns.

Data management in Ethereum. Ethereum’s official client
(i.e., an application for transaction processing and blockchain
data management) is go-ethereum (Geth) [4]. Geth runs on
every node and organizes blockchain data as KV pairs in a
high-performance database (Pebble [19] by default). The header
and body of each block are separately stored as different KV
pairs. The world state (including accounts and contract storage)
is organized in multiple MPTs, and each MPT node is also
represented as a KV pair. Geth further keeps auxiliary metadata
(e.g., chain configurations and journaling) in the same KV store
for system maintenance. Keys are prefixed with type-specific
identifiers (e.g., ‘h’ for block headers and ‘b’ for block bodies)
followed by contextual metadata (e.g., block heights, block
hashes, or transaction hashes), while values are compactly
serialized via Recursive Length Prefix encoding for storage
efficiency.

Evolution of Geth. Geth’s implementation has been evolving
over the past years to enhance performance. Earlier Geth
versions store MPT nodes as hash-keyed KV pairs, but this
introduces redundant entries and frequent recomputations
during trie updates. Thus, Geth moves to a path-based storage
model [22], which encodes trie traversal paths directly into
keys via a prefix-aware scheme. This significantly reduces
redundant entries and recomputations, thereby improving
retrieval performance and storage efficiency.

Geth caches KV pairs using the least-recently used (LRU)
policy in multiple caches, each for a specific class of KV
pairs. In addition to LRU caching, Geth introduces snapshot
acceleration [28], which maintains a real-time, flat snapshot of
the current world state to avoid frequent MPT traversals during
account lookups (e.g., from up to 64 requests per lookup [12]
to a single request). It also introduces the freezer database
[3], which offloads stale blockchain segments (e.g., blocks
beyond finality thresholds) into immutable flat files, so as
to reduce KV pairs in the KV store. However, moving data
from the KV store to the freezer database introduces lifecycle
management complexity and pruning overhead. To further
reduce performance and storage overhead, one proposal (not

yet implemented at the time of writing) is to fully prune
historical data older than one year [18].

Synchronization and KV operations. Geth’s synchronization
process generates significant KV operations. It follows a two-
step approach. First, each node downloads unprocessed blocks
and associated metadata from peer nodes and stores them in its
local KV store. Second, each node reads KV pairs (including
the world state, blocks, and other metadata) from the KV store
to verify downloaded blocks by processing their transactions.
The verification process involves frequent updates of the world
state and metadata, thereby incurring substantial KV operations.

Geth supports three types of nodes: (i) full nodes, (ii) archive
nodes, and (iii) light nodes. Full nodes are the backbone of
Ethereum’s network and maintain a complete blockchain copy
and the latest world state. They also play a crucial role in
ensuring the integrity and availability of the blockchain network
by validating and propagating transactions. Archive nodes store
the entire historical state of the blockchain, but are rarely used
in practice [14], while light nodes download and verify minimal
data on demand.

Geth supports two synchronization modes for full nodes:
(1) full synchronization and (ii) snap synchronization. The
synchronization mode determines how a node processes blocks
and maintains the world state, thereby directly impacting KV
storage workload. Full synchronization processes every block
from the genesis block, while snap synchronization starts from a
relatively recent block and performs synchronization to the head
of the chain. A node that starts with snap synchronization will
switch to block-by-block full synchronization upon reaching
the head of the chain. In this paper, we focus on full
synchronization in full nodes, so as to comprehensively analyze
Ethereum’s KV storage workload during transaction processing.

Applicability beyond Geth. Our study focuses on Geth, which
is the most widely used Ethereum client and constitutes over
50% of all deployed clients [15]. Other clients (e.g., Besu
[17] and Erigon [29]) are also implemented based on the
Ethereum Yellow Paper [30] and exhibit similar KV storage
semantics. Thus, we expect that these clients share comparable
workload characteristics with Geth. A detailed comparative
analysis across clients is posed as future work.

B. Related Work

KV storage optimization for Ethereum. Prior studies have
proposed various optimizations for Ethereum’s storage man-
agement. mLSM [26] combines Merkle trees and LSM trees
to reduce read and write amplifications while maintaining
authentication efficiency. Block-LSM [13] optimizes LSM
layouts for blockchain workloads with semantic-aware data
grouping and block-aligned compaction. MoltDB [20] notes
that 98% of transaction processing time is spent on /O
operations, primarily due to ancient state data, and proposes
segregation for ancient state data. ChainKV [12] separates the
storage of state and non-state data and applies prefix-based
MPT-to-KV transformation. COLE [32] introduces a new ADS
with column-based learned storage to improve performance

and storage efficiency. SlimArchive [16] reduces the storage
requirements for Ethereum archive nodes by removing duplicate
data based on a hash-based storage model.

However, Geth’s recent updates [4] have reshaped its storage
management, rendering existing optimizations [12], [13], [20],
[26], [32] less effective. For example, the path-based storage
model [22] is incompatible with mLSM [26] and Block-
LSM [13]. Specifically, mLSM combines both MPT and LSM
structures and alters state data management and MPT proof
generation, and such a combination is incompatible with the
path-based model’s traversal path encoding and MPT-based
proof generation. Block-LSM [13] adds block-based prefixes to
the keys of KV pairs, but this prevents the path-based storage
model from eliminating redundant KV pairs. Also, the path-
based model can achieve comparable storage savings to COLE
[32], but without requiring ADS modifications as in COLE.

Despite various advancements, existing approaches often
rely on coarse-grained workload characteristics and do not
address blockchain-specific access patterns of different data
types in their designs. Their dependence on LSM KV stores
also introduces high I/O overhead from compaction and
deletions. We will evaluate the impact of various optimization
strategies on I/O characteristics, including caching and snapshot
acceleration, via trace analysis, so as to provide insights into
the future design of storage management for blockchains.

Characterization of KV workloads. Prior measurement
studies have characterized KV workloads using real-world
traces from deployed KV stores. For instance, Atikoglu et al.
[8] analyze Facebook’s Memcached workloads at massive scale.
Rabl et al. [25] evaluate six modern KV stores for application
performance monitoring. Chen et al. [11] analyze the perfor-
mance of interactive cloud services, including Memcached
and NGINX. Yang et al. [31] analyze production environment
traces from Twitter’s memory caches. Cao et al. [10] analyze
the KV workloads of RocksDB across three production use
cases at Facebook. These workload studies highlight that the
characteristics of real-world KV workloads vary significantly
across different applications (e.g., social graphs, Al, caching),
thereby necessitating tailored KV store designs instead of
relying on a single solution.

Our work provides the first quantitative characterization of
Ethereum’s KV workloads. It is distinct from the existing
KV workload studies due to its Ethereum-specific nature. In
particular, our analysis reveals some unique findings. For
example, scans are rare in Ethereum workloads and occur
in only three of 29 classes with a negligible frequency (§IV-B).
Deletions are significant, driven by application requirements
and Geth’s storage evolution (e.g., moving KV pairs to the
freezer database) (§IV-B), and such significant deletions are
uncommon in practical KV workloads. In addition, read
and update operations exhibit correlations within and across
classes, and such correlation patterns are not found in existing
KV workload studies. These findings provide insights for
redesigning KV stores and caches specifically for Ethereum
and general blockchain systems.

III. TRACES
A. Trace Collection

We have collected KV operation traces from Ethereum’s
storage backend by modifying a Geth client to log information
during synchronization. We capture traces from the KV store
interface, so as to include all KV operations issued by Geth. The
traces cover KV workloads for 1 M blocks (blocks 20.5M to
21.5M) from August 10, 2024 to December 28, 2024 (140 days
in total). The traces provide a representative and up-to-date view
of Ethereum’s workloads (Ethereum has 21.7 M blocks as of
February 1, 2025). Our trace collection follows Geth’s default
configuration, including the Pebble KV store [19] and its path-
based storage model [22], and is independent of the underlying
storage hardware used for trace collection. We analyze two
traces: CacheTrace (with a total size of 1.3 TiB), captured
with caching and snapshot acceleration enabled, and BareTrace
(with a total size of 4.1 TiB), captured without these features.
In the current Geth implementation, snapshot acceleration is a
dependent feature of caching and is enabled or disabled with
caching. The total cache size is 1 GiB by default, shared by
multiple caches in Geth.

B. Basic Statistics

The traces capture KV operations from a full node (i.e.,
a node that stores and maintains all blocks and the latest
world state) that processes 1 M blocks in full synchronization
mode. BareTrace contains 9.16 B KV operations with 601.3M
unique keys, accounting for 24.6% of all 2.44 B keys in the
KV store after synchronizing 21.5M blocks. On the other
hand, CacheTrace contains 2.86 B KV operations with 755.2M
unique keys, accounting for 19.2% of all 3.94 B keys in the KV
store. It contains significantly more unique keys and KV pairs
than BareTrace due to snapshot acceleration, which introduces
additional KV pairs by snapshotting the latest world state.
On the other hand, CacheTrace has significantly fewer KV
operations than BareTrace, as its caching mechanism reduces
the number of KV operations issued to the KV store interface.

Based on Geth’s storage semantics [5], each KV pair is
assigned a distinct prefix that corresponds to a specific class. We
identify 29 classes, as shown in Table I, where the classification
is determined by type-specific prefixes. We focus on five
operation types: reads, writes, updates, deletes, and scans. Note
that Geth does not distinguish between writes and updates; we
classify a write as an update if it is issued to an existing key
in the KV store.

Geth supports a broad range of KV classes, but only 29
KV classes are actually used by Geth from our traces, which
represent a recent view of Ethereum’s workloads. As Geth
evolves, our analysis can be readily extended to accommodate
more classes. We do not expect significant workload changes in
future Ethereum as it mainly performs transaction processing
and account updates.

IV. FINDINGS

In this section, we present 11 key findings derived from our
trace analysis. We group the findings into four categories: (i)

Class Description # KV pairs (%) \ Key size Value size
TrieNodeStorage Storage nodes in the storage trie 1656.6 M (42.1%) |37.64+0.0001 70.34+0.003
SnapshotStorage Flat storage data for the smart contract of the | 1222.3M (31.1%) 65 12.54+0.0006
current world state
TxLookup Transaction and receipt lookup metadata 386.2M (9.81%) 33 4
TrieNodeAccount Account nodes in the state trie 367.0M (9.32%) 18.54+0.0001 115.740.006
SnapshotAccount Store flat account nodes of current world state | 269.4M (6.84%) 33 15.940.002
HeaderNumber Block hash to block ID mappings 21.5M (0.55%) 33 8
BloomBits Bloom filter bits for log search 10.7M (0.27%) 43 398.0+0.11
Code Smart contract bytecode storage 1.47M (0.04%) 33 6732.7£10.0
SkeletonHeader Block headers for skeleton synchronization, 0.55M (0.01%) 9 609.740.02
which downloads block headers and fills in
block data as needed
BlackHeader Block header data (e.g., parent block, times- | 0.27M (0.007%) 31.0+0.06 217.7+1.05
tamp, gas limit)
BlockReceipts Transaction receipts for each block 0.09M (0.002%) 41 75910.74+346.5
BlockBody Block body data (e.g., transactions and uncle | 0.09M (0.002%) 41 79348.14+340.2
blocks)
StatelD World state version identifier 0.09M (0.002%) 33 8
BloomBitsIndex Data table of a chain indexer for progress |0.005M (0.0001%) | 15.040.003 32.0+0.009
tracking
Ethereum-genesis Genesis state for the database 1 (-) 49 710909
SnapshotJournal In-memory differential layers across system 1(-) 15 8369153
restarts within a snapshot journal
Ethereum-config Ethereum network configuration 1) 48 603
LastStatelD StatelD of the latest stored world state 1) 11 8
Unclean-shutdown List of local crashes 1) 16 33
SnapshotGenerator Snapshot generation marker across restarts 1) 17 7
TrieJournal In-memory trie node layers across restarts 1(-) 11 352749130
DatabaseVersion Database schema version 1() 15 1
LastBlock Latest known full block’s hash 1) 9 32
SnapshotRoot Last snapshot’s hash 1) 12 32
SkeletonSyncStatus | Skeleton synchronization status across restarts 1() 18 146
LastHeader Latest known block header’s hash 1) 10 32
SnapshotRecovery Snapshot recovery marker across restarts 1(-) 16 8
TransactionIndexTail | Oldest block whose transactions are indexed 1) 20 8
LastFast Latest incomplete block for fast synchroniza- 1(-) 8 32
tion (now replaced by snap synchronization)

Table I: Overview of classes identified based on Geth’s storage semantics. For each class, we report the number of KV pairs in units of one
million (M) and its percentage over all KV pairs in CacheTrace, except for those with only one KV pair. We also report the average key and
value sizes in bytes. For classes with variable key and value sizes, we include 95% confidence intervals (under normal distribution).

KV storage management, (ii) KV operation distribution, (iii)
read correlation, and (iv) update correlation.

A. KV Storage Management

We first analyze the KV size distribution across different
classes to evaluate blockchain storage overhead. We extract all
KV pairs, including those from snapshot acceleration, from the
KV store after CacheTrace is captured (recall that BareTrace
has snapshot acceleration disabled). Note that some KV pairs
in the KV store are not accessed; that is, they are written
during the synchronization of the first 20.5M blocks but are
then never accessed during trace collection.

Finding 1. Five classes of KV pairs dominate KV storage.

Table I shows the statistics of each class. Across the 29
classes, five classes dominate KV storage and altogether
contribute to over 99.2% of all KV pairs. The five classes
are grouped into two categories: (i) snapshot acceleration,
including SnapshotAccount and SnapshotStorage, which store
flat account and contract data synchronized with the latest
world-state, respectively; and (ii) Ethereum data, including
TrieNodeAccount, TrieNodeStorage, and TxLookup, which
represent account MPT nodes, contract storage MPT nodes,
and transaction lookup indexes, respectively. All of them, except
TxLookup, are the world state data. Since Geth migrates old
block data (e.g., BlockHeader, BlockBody, and BlockReceipts)
to the freezer database (§II-A), the KV store only stores a

‘ ‘ 0 .
0 200 400 600 0 200 400 600
KV size (byte) KV size (byte)
(a) TrieNodeAccount (b) TrieNodeStorage
100 1115 300

66 ¢ 198

384
'

100

100
KV size (byte)

(¢) SnapshotAccount

150 0 50
KV size (byte)

(d) SnapshotStorage

00 50

Figure 2: KV size distribution. Since the distributions of KV size are
not continuous, we use scatter points to represent each distribution.
The x-axis represents the size of KV pairs in bytes. We also mark
the actual range of the KV sizes for clarity.

small number of recent blocks, while all world state data is
kept in the KV store. Thus, the world state dominates KV
storage. In addition, with a large number of transactions in
each block, TxLookup also accounts for 9.8% of all KV pairs.

For the remaining 24 classes, 15 of them have only one
KV pair each, primarily for Geth’s system maintenance (e.g.,
system configurations and journals). The other nine classes
manage blockchain-related data (e.g., blocks, receipts, smart
contract code, and chain state information) to facilitate efficient
block validation and smart contract execution.

Finding 2. KV sizes (per KV pair) vary across classes.

Table I shows that the five dominant classes (see Finding 1)
exhibit small KV sizes, averaging 79.1 bytes. Figure 2 shows
the KV size distributions for four of the dominant classes
(TxLookup is excluded due to its fixed size of 33 bytes). TrieN-
odeAccount (Figure 2(a)) and TrieNodeStorage (Figure 2(b))
peak at small sizes (i.e., 113 bytes and 71 bytes, respectively),
but have long tails extending to 539 bytes and 570 bytes,
respectively. In contrast, SnapshotAccount (Figure 2(c)) and
SnapshotStorage (Figure 2(d)) show more uniform distribu-
tions, with peaks at three distinct sizes (38 bytes, 70 bytes,
103 bytes for SnapshotAccount, and 66 bytes, 86 bytes,
98 bytes for SnapshotStorage). Their maximum sizes are
smaller than those of TrieNodeAccount and TrieNodeStorage.

For the nine blockchain-related classes, Code (smart contract
code), BlockBody (block bodies), and BlockReceipts (trans-
action execution receipts) have significantly larger KV sizes,
averaging 6.61 KiB, 77.5KiB, and 74.2 KiB, respectively. The
remaining six classes have an average KV size of 239.6 bytes.
For the 15 system maintenance classes, most have small KV
sizes (averaging 95.2 bytes), except for TrieJournal (world
state journaling), SnapshotJournal (snapshot journaling), and
Ethereum-genesis (Ethereum genesis data), which have large
average KV sizes of 336.4MiB, 7.98 MiB, and 0.68 MiB,
respectively. In summary, small KV pairs dominate KV storage,
while large KV pairs (over 1KiB) account for only 0.04% of
all KV pairs.

CacheTrace - = BareTrace

102
5‘)
w\ AN "
g0 g 102 g
£ 10 £ 10 £
1
1 1 0 1 10 100
KV palrs % KV palrs % KV pairs (%)
(a) TrieNodeAccount (b) TrieNodeAccount (c) TrieNodeAccount
reads updates deletes
4
50 510 5"
c 4 c 4 c
s\ g 10\ S 0
g102 g102 =~ g
C C C
1
0 1 10 100
KV palrs % KV pa|rs % KV pairs (%)
(d) TrieNodeStorage (e) TrieNodeStorage (f) TrieNodeStorage
reads updates deletes
z 102 3 z 102
f = [=4 c
g 2 0 g
510 g g10
[w w
1 1l
0 1 10 100 0 1 10 100
KV pairs (%) KV pa|rs % KV pairs (%)
(g) SnapshotAccount (h) SnapshotAccount (i) SnapshotAccount
reads updates deletes
4
510" 510 0
f=d c =
3 32 S a2
310" 210 310
o o o
[w [
1 1!
0 1 10 100 1 0 1 10 100
KV pairs (%) KV palrs % KV pairs (%)
(j) SnapshotStorage (k) SnapshotStorage (1) SnapshotStorage
reads updates deletes

Figure 3: Frequency distribution of KV operations on world state.
Both axes are in log scale.

B. KV Operation Distribution

We analyze the distribution of KV operations across each
class of KV pairs in different traces, as shown in Table II and
Table III for CacheTrace and BareTrace, respectively.

Finding 3. Most KV pairs are rarely or never read.

We first examine the read ratios of KV pairs. Table IV further
shows the read ratio of KV pairs in each class (measured by the
fraction of KV pairs that are read in each class) in CacheTrace
and BareTrace. Here, we exclude TxLookup, which has zero
reads (Tables II and III); the reason is that our trace collection
captures KV operation traces during Geth’s synchronization
(§$IMI-A), in which Geth does not serve any application and issue
queries to transactions. From Table IV, TrieNodeAccount and
TrieNodeStorage have low read ratios in both traces (e.g., up to
14.7% of TrieNodeAccount KV pairs are read in BareTrace);
the read ratios of SnapshotAccount and SnapshotStorage
are even lower. Figure 3 shows that most KV pairs read in
CacheTrace are read only once: among all KV pairs being read,
71.5%, 81.8%, 48.1%, and 63.1% of them are read just once
in SnapshotAccount, SnapshotStorage, TrieNodeAccount, and
TrieNodeStorage, respectively. In BareTrace, among all KV
pairs being read, 8.40% and 15.2% of them are read only

Table II: Statistics of KV operation distribution in CacheTrace. We show the percentages of writes, updates, reads, scans, and deletes in each

class.

Table III: Statistics of KV operation distribution in BareTrace. We show the percentages of writes, updates, reads, scans, and deletes in each

class.

once in TrieNodeAccount and TrieNodeStorage, respectively.
As most KV pairs are either never read or read only once,

% of all

Class KV operations Writes (%) | Updates (%) | Reads (%) | Scans (%) | Deletes(%)
TrieNodeStorage 38.5 8.51 50.9 35.7 - 4.87
SnapshotStorage 17.9 14.3 32.6 45.0 0.002 8.09

TxLookup 11.1 52.0 0.0004 - - 48.0
TrieNodeAccount 23.2 2.32 59.7 38.0 - 0.003
SnapshotAccount 7.48 7.20 64.9 27.9 0.000001 0.006

HeaderNumber 0.05 74.9 0.0007 25.1 - -

BloomBits 0.02 97.8 - 2.20 - -

Code 0.41 1.11 11.7 87.2 - -

SkeletonHeader 0.05 16.4 0.40 83.2 - -
BlockHeader 0.62 16.9 0.0002 60.6 5.63 16.9
BlockReceipts 0.11 32.1 0.0003 35.8 - 32.1

BlockBody 0.14 242 0.0002 51.6 - 24.2

StatelD 0.07 50.0 0.0005 - - 50.0

BloomBitsIndex 0.002 0.55 0.55 98.9 - -

LastStatelD 0.03 - 0.11 99.9 - -
Unclean-shutdown 0.00004 - 50.0 50.0 - -

LastBlock 0.04 - 99.7 0.28 - -
SnapshotGenerator 0.0004 - 100.0 - - -

SnapshotRoot 0.0007 - 50.0 - - 50.0

SkeletonSyncStatus 0.009 - 99.8 0.19 - -
LastHeader 0.03 - 100.0 - - -
TransactionIndexTail 0.00009 - 59.9 40.1 - -
LastFast 0.03 - 100.0 - - -

% of all

Class KV operations Writes (%) | Updates (%) | Reads (%) | Scans (%) | Deletes(%)
TrieNodeStorage 57.3 1.96 36.8 60.2 - 1.10
TxLookup 3.46 52.0 0.0004 - - 48.0
TrieNodeAccount 38.6 0.62 58.1 41.3 - 0.0005
HeaderNumber 0.03 41.3 0.0004 58.7 - -
BloomBits 0.006 94.3 - 5.75 - -
Code 0.13 1.11 11.7 87.2 - -
SkeletonHeader 0.05 4.57 1.45 75.6 - 18.4
BlockHeader 0.20 16.4 0.0002 61.7 547 16.4
BlockReceipts 0.03 32.1 0.0003 359 - 32.0
BlockBody 0.05 23.2 0.0002 53.5 - 23.2
StatelD 0.02 50.0 0.0005 - - 50.0
BloomBitsIndex 0.002 0.15 0.15 99.7 - -
LastStatelD 0.03 - 333 66.7 - -
Unclean-shutdown 0.00005 - 50.0 50.0 - -
LastBlock 0.01 - 98.9 1.05 - -
SkeletonSyncStatus 0.003 1.51 97.7 0.75 - -
LastHeader 0.01 - 100.0 - - -
TransactionIndexTail 0.00003 - 55.3 44.7 - -
LastFast 0.01 - 100.0 - - -

relocating such KV pairs to separate storage can reduce the

KV store size and indexing overhead.

Class BareTrace (%) \ CacheTrace (%) \

SnapshotAccount - 11.0
SnapshotStorage - 12.0
TrieNodeAccount 14.7 13.0
TrieNodeStorage 8.34 6.59

Table IV: Read ratios of KV pairs in both traces.

Finding 4. Scans are rare in Ethereum.

Scans for key ranges are very rare in Ethereum. As shown
in Table II, scans occur only in SnapshotAccount, Snap-
shotStorage, and BlockHeader, and account for a negligible
percentage of KV operations. SnapshotAccount has only
two scans (less than 1079% of its KV operations), while
scans in SnapshotStorage account for only 0.002% of its
KV operations. In contrast, BlockHeader shows more scans,
with 5.63% in CacheTrace and 5.47% in BareTrace. Scans are
rare mainly because most KV operations in Ethereum come
from transaction processing (§1I-A), which only modifies two
accounts instead of scanning a range of neighboring accounts.
For smart contracts, scans are also uncommon. This finding
suggests that a hybrid KV store design may be useful to avoid
order maintenance for all classes of KV pairs.

Finding 5. Deletions are significant, with some keys repeatedly
deleted and reinserted.

Tables II and III show that deletions are common in
TxLookup and BlockHeader, accounting for 48.0% and 16.9%
of KV operations in CacheTrace and 48.0% and 16.4% of KV
operations in BareTrace, respectively. TxLookup has a high
deletion rate since Ethereum indexes only recent transactions,
while BlockHeader has a high deletion rate as Ethereum
performs data pruning to relocate old blocks to the freezer
database. In contrast, SnapshotStorage, TrieNodeStorage,
SnapshotAccount, and TrieNodeAccount have low deletion
rates, as Ethereum removes only obsolete MPT nodes, which
are limited in the path-based storage model.

Furthermore, Figures 3(c), 3(f), 3(1), and 3(1) show that
some keys have a deletion frequency greater than one (i.e.,
they are repeatedly deleted and reinserted) due to frequent
modifications of MPTs during transaction processing. In LSM
KV stores, deletions write tombstone entries that persist until
compaction. Thus, log-based storage with batched deletions
can effectively reduce redundant operations and unnecessary
compaction; alternatively, hash-based storage with in-place
deletions can also improve KV store performance.

Finding 6. Caching has limited effectiveness for medium-
frequency KV pairs.

Caching and snapshot acceleration in CacheTrace signifi-
cantly reduce the total number of reads, from 4.65B in Bare-
Trace to 0.96 B in CacheTrace. However, the read frequency
distribution of KV pairs remains largely unchanged, except for
the most frequently read KV pairs. Figures 3(a) and 3(d) show
that caching and snapshot acceleration effectively reduce reads
to the top 0.1% most-read KV pairs by 99.97% for TrieNodeAc-
count and 99.94% for TrieNodeStorage. For medium-frequency
KV pairs (e.g., read 10 to 100 times), the reduction is less

pronounced (e.g., 50.0-64.4% for TrieNodeAccount). Such
differences indicate that while caching is effective for high-
frequency KV pairs, it is less effective for medium-frequency
KV pairs, as the simple LRU cache eviction strategy (§1I-A)
does not take into account the specific workload characteristics
of different classes of KV pairs. This suggests that a unified
cache design that addresses Ethereum’s storage semantics
and workload patterns may be useful to further alleviate I/O
bottlenecks in Ethereum.

Finding 7. Snapshot acceleration reduces reads and writes to
the world state, but incurs high storage overhead.

Snapshot acceleration, in conjunction with caching, reduces
reads to TrieNodeAccount and TrieNodeStorage by 82.7%
and 87.5% in CacheTrace compared to BareTrace, respec-
tively. Although it incurs extra reads to SnapshotAccount
and SnapshotStorage, the overall reduction in reads related
to the world state (i.e., TrieNodeAccount, TrieNodeStorage,
SnapshotAccount, and SnapshotStorage) is 79.7%. Snapshot
acceleration also reduces writes (including updates) to TrieN-
odeAccount and TrieNodeStorage. The total number of writes
(including updates) for TrieNodeAccount, TrieNodeStorage,
SnapshotAccount, and SnapshotStorage drops by 64.2%
from 4.11 B in BareTrace to 1.47 B in CacheTrace. However,
snapshot acceleration incurs high storage overhead, with the
number of KV pairs in the KV store increasing by 61.5% from
2.44B in BareTrace to 3.94 B in CacheTrace.

C. Read Correlations

Geth batches and flushes writes (updates) to the KV store at
the end of verifying each block, while reads are triggered on-
demand during transaction processing and the read performance
can be degraded by random I/O patterns. Thus, it is critical
to understand read behavior. In BareTrace and CacheTrace,
50.8% and 33.7% of all KV operations are reads, respectively.
Here, we focus on studying read correlations.

We study the significance of read correlations using the
frequency of correlated reads. We define a distance metric as
the number of reads separating two specific reads (e.g., a zero
distance means adjacent reads). Correlated reads are defined
as unordered pairs of reads for two KV pairs, each from a
specified (same or different) class, and are counted only if
they occur at least twice for a given distance across the whole
trace. To calculate the number of correlated reads between two
classes (say, classes A and B, where A and B can be the same
or different) under a specific distance d, we scan the entire
trace and count the occurrences of unordered KV pairs (i.e.,
one from class A and the other from class B) whose reads
are separated by exactly d reads; a higher occurrence count
indicates stronger read correlations at distance d. We analyze
the top three class pairs that contribute to the highest number
of correlated reads at distance zero (i.e., the correlated reads
come from adjacent reads) across different classes and within
the same class.

Finding 8. Correlated reads are clustered in small regions.

Figures 4(a) and 4(b) depict the counts of correlated reads
for different class pairs across different distances in CacheTrace

© TA-TS & C-SS + SA-SS s « TS-TS & TA-TA = S5-5S
10" b= =e~ ..
T~
ST ——
RS
TR
o
20 22 24 26 28 210
Distance Distance
(a) Cross-class (CacheTrace) (b) Intra-class (CacheTrace)
0 & TA-TS = C-TS % C-TA = TS-TS < TA-TA < BH-BH
10 1007 == e
S
0 20 22 24 26 28 210
Distance Distance

(c) Cross-class (BareTrace) (d) Intra-class (BareTrace)

Figure 4: Distance-based read correlation analysis results for Ca-
cheTrace and BareTrace. The axes are in log scale. Classes in the
legend are abbreviated as: TrieNodeAccount (TA), TrieNodeStorage
(TS), SnapshotAccount (SA), SnapshotStorage (SS), BlockHeader
(BH), and Code (C).

(a larger count means higher read correlations). The number of
correlated reads decreases significantly as the distance increases,
indicating that correlations are confined to small regions
(e.g., within 64 reads). In particular, intra-class correlations
(Figure 4(b)) exhibit significantly more correlated reads (nearly
two orders of magnitude higher) at distance zero than cross-
class correlations (Figure 4(a)).

Figures 4(c) and 4(d) show the counts of correlated reads
for different class pairs across different distances in BareTrace.
TrieNodeAccount-TrieNodeStorage (TA-TS) shows a large
number of correlated reads across all distances, peaking
at 6409M at distance four. Despite fewer reads to Code
(compared to TrieNodeAccount and TrieNodeStorage), the
cross-class correlations Code-TrieNodeAccount (C-TA) and
Code-TrieNodeStorage (C-TS) exhibit non-negligible cross-
class correlations with high correlated read counts. Intra-class
correlations for TrieNodeAccount and TrieNodeStorage are
more pronounced and peak at 1.21B and 2.64 B at distance
zero, respectively. Compared to CacheTrace, BareTrace shows
significantly higher correlated read counts, implying that
caching and snapshot acceleration reduce read correlations.

Finding 9. Correlated reads are skewed in frequency.

Figure 5 shows the frequency distribution of correlated reads
at distances zero and 1024 (the smallest and largest distances
in our analysis, respectively) in CacheTrace and BareTrace.
Following Finding 8, we focus on the six most prominent
class pairs in each trace. In both traces, the frequency of
correlated reads at distance zero is significantly higher than at
distance 1024. At distance zero, the highest number of cross-
class correlated reads occurs in Code-SnapshotStorage (C-SS)
(106 in CacheTrace) and TrieNodeAccount-TrieNodeStorage
(TA-TS) (0.79M in BareTrace). For intra-class correlated
reads, TrieNodeAccount-TrieNodeAccount (TA-TA) exhibits
the highest frequencies in both CacheTrace (405) and BareTrace
(1.95M). Caching and snapshot acceleration in CacheTrace

reduce the skewness of frequency distribution compared to
BareTrace, which shows a more skewed frequency distribution
at distance zero. The finding suggests that correlated reads
tend to be clustered in small regions, consistent with previous
findings.

D. Update Correlations

Following the same method in read correlations (§IV-C), we
analyze the intra-class and cross-class correlated updates of
different classes of KV pairs.

Finding 10. Correlated updates are clustered in small regions.

Figure 6 shows the update correlations of the top three
class pairs that contribute to the highest number of correlated
updates across different classes and within the same class. For
cross-class update correlations in CacheTrace (Figure 6(a)), the
most frequent correlated updates are in LastFast-LastHeader
(LF-LH) and LastBlock-LastFast (LB-LF) class pairs. The
correlated updates of the two class pairs all peak at I M at a
distance of zero, and decrease to zero at a distance of four.
The reason is that these classes are used to record the latest
state of blockchain synchronization and only have one KV pair
each (Table I). These KV pairs are updated whenever a new
block is added to the chain in a batch manner, which explains
the small distance of the correlated updates.

Similarly, in BareTrace (Figure 6(c)), the most frequent
correlated updates also occur within these classes. However,
due to the absence of snapshot acceleration, the number of
updates is much higher (i.e., 3.99B and 1.27 B in BareTrace
and CacheTrace, respectively), which affects the order of
updates and leads to differences in ranking. Thus, LastHeader-
LastStatelD (LH-LS) replaces Code-LastHeader (C-LH) in the
top three class pairs. Compared to read correlations, cross-class
update correlations are more clustered, since the updates are
in a batch manner controlled by Geth and only happen when
a new block is added, while the reads mainly depend on the
transaction execution order.

For intra-class update correlations in both CacheTrace
(Figure 6(b)) and BareTrace (Figure 6(d)), the most frequent
correlated updates are within the world state classes and the
Code class, which is bound to the smart contracts in the
world state. The frequency of correlated updates decreases
as the distance increases, with the count of correlated updates
becoming zero when the distance is 1024 for Code. This
suggests that updates within these classes also have a strong
correlation within a small distance.

Finding 11. Correlated updates have unique frequency distri-
bution.

Figure 7 shows the frequency distribution of intra-class
correlated updates. Recall that the most frequent correlated
updates across classes are within the class pairs between
LastFast, LastHeader, and LastBlock, but they only contain one
KV pair each. Thus, we do not show the frequency distribution
of correlated updates across these classes.

For intra-class correlated updates, the frequency distribution
is unique for each class. At distance zero, TrieNodeStorage

2 2
== TS-TS 10 — TA-TS 10 - TSTS
N - TATA — 0SSl - TATA
S $5.55 3 . SASS 3,1 T s5.55
s O - 2O Santt e = L T -
Kl\'-;\.;__\'- 8 L R 8 10 ‘\._
‘ ‘ - 1 1!
0 1 10 100 0 1 10 100 0 1 10 100 0 1 10 100

Co-read KV pairs (%)
(a) Cross-class (CacheTrace),
distance zero

Co-read KV pairs (%)
(b) Intra-class (CacheTrace),
distance zero

Co-read KV pairs (%)
(c) Cross-class (CacheTrace),
distance 1024

Co-read KV pairs (%)
(d) Intra-class (CacheTrace),
distance 1024

6
10 - - TSTS - - TS-TS
=10 <= TATA - TATA
§ ~ BH-BH SsL BH-BH
(&) " -, T
102 ~— .
—— e
1! . | L. | 1!
0 1 10 100 0 1 10 100 0 1 10 100 0 1 10 100
Co-read KV pairs (%) Co-read KV pairs (%) Co-read KV pairs (%) Co-read KV pairs (%)
(e) Cross-class (BareTrace), (f) Intra-class (BareTrace), (g) Cross-class (BareTrace), (h) Intra-class (BareTrace),
distance zero distance zero distance 1024 distance 1024
Figure 5: Frequency distribution of correlated reads. The axes are in log scale.
6 LF-LH # LB-LF = C-LH « TSTS = S5 . 6 1
1% 1of _'_‘T;-Tf TS $5-5S # C-C 10°} - -T1s15 10 - - TSTS
‘--;.;:_'{;'1“~» , N —_ - \\ - %
§106““ R §104\\\ _.(S:SCSS = N $5-5S
Q 14 . = Lol T~ - 2 N
o 10 ‘\ O, o =TT L (&) \ ~
102 \ 10 \;_;:‘\‘ S S S
o6 a8 A0 1 CREPCREP RIS R 1 T 1
2 2 2" 2 0 2 2 2 2 2" 2 0 10 100 0 1 10 100
Distance Distance Co-updated KV pairs (%) Co-updated KV pairs (%)

(a) Cross-class (CacheTrace) (b) Intra-class (CacheTrace)

10° % LF-LH # LB-LF = LH-LS 5 * TS-TS & TA-TA + C-C
107" == 0= = = .
— 4 - -
S 10 S 106 - — A A —a .,
3 S A
102 10° \
\
14 : 14 N
0 o0 92 o4 o6 o8 Hi0 0 o0 92 ot 98 o8 o0
Distance Distance

(c) Cross-class (BareTrace) (d) Intra-class (BareTrace)

Figure 6: Distance-based update correlation analysis results for
CacheTrace and BareTrace. The axes are in log scale. Classes in
the legend are abbreviated as: LastFast (LF), LastHeader (LH),
LastBlock (LB), LastStatelD (LS) ,TrieNodeStorage (TS), TrieN-
odeAccount (TA), SnapshotStorage (SS), and Code (C).

exhibits the highest frequencies in both CacheTrace and
BareTrace (i.e., 1 M), while the highest frequency of correlated
updates in TrieNodeStorage is only 10 when the distance is
1024. Also, there is no intra-class correlated update in Code.
This indicates that updates to these classes are more tightly
coupled, consistent with the previous finding.

V. SUMMARY OF FINDINGS

We discuss the implications of our trace analysis results for
blockchain storage design.

KYV storage management. Reducing storage and I/O costs is
critical for blockchain storage. Based on the storage patterns
from Findings 1 and 2, the KV store contains a significantly
high number of small-sized KV pairs. To mitigate storage
overhead, adding further indexes or metadata to the KV store
should be avoided.

(a) Intra-class (CacheTrace),
distance zero

(b) Intra-class (CacheTrace),
distance 1024

6
107 - 115 10° --TsTs
W S _ !
=10t N~ S TATA L MU TATA
=R N -cc 3 < T
S G 3 T T
10 RV 10’ BT
T T
1) = 1)
0 1 10 100 0 1 10 100

Co-updated KV pairs (%)
(c) Intra-class (BareTrace),
distance zero

Co-updated KV pairs (%)
(d) Intra-class (BareTrace),
distance 1024

Figure 7: Frequency distribution of intra-class correlated updates.
The axes are in log scale.

In terms of KV operation distributions, Finding 3 reveals that
most world-state-related KV pairs are rarely or never read over
extended periods. However, the LSM KV store in Ethereum
still incurs high indexing and compaction overhead for these
KV pairs. One possible optimization strategy is that KV pairs
associated with the world state can be initially appended to a
log, and are inserted into the KV store only upon being read.

Finding 4 indicates that scans are rare and limited to snapshot
acceleration (SnapshotAccount and SnapshotStorage) and
block headers (BlockHeader), while Finding 5 shows that
deletions are prevalent. The findings suggest that LSM KV
stores are unsuitable for blockchain storage, as they incur high
deletion overhead due to tombstone writes and unnecessary
compaction overhead for supporting scans. We recommend a
hybrid KV store design, such that it is tailored to data semantics
and access patterns and includes efficient deletion mechanisms

that bypass LSM compaction overhead. Finding 7 shows that
snapshot acceleration incurs high storage overhead, especially
as the number of KV pairs grows. Combined with Finding 3,
this suggests that snapshot acceleration can be refined to target
only active KV pairs (i.e., those being read after insertion).

In terms of read correlations of KV pairs, Findings 8-
9 suggest that read correlations are overlooked in current
blockchain storage. High read correlations exist, particularly
among classes such as accounts, contract storage, and contract
codes. Correlation-aware designs (e.g., co-locating frequently
accessed data) can possibly enhance performance.

Findings 10-11 indicate that update correlations exhibit
patterns similar to read correlations, but are more clustered
within small regions (i.e., smaller distances). Given the batched
writes design of Geth, we observe that Ethereum workloads
show a unique read-modify-write pattern, in which reads
are performed during transaction processing and then writes
(updates) are performed after each block is verified, with strong
correlations among both reads and updates. This suggests that
correlation-aware co-location (as discussed in read correlations
above) can also optimize frequently co-updated KV pairs. For
example, the garbage collection overhead for obsolete KV pairs
can be reduced by limiting the range of data touched during
garbage collection, thereby improving performance.

In summary, the KV store for Ethereum should adopt a
hybrid index structure tailored to each class. Only three classes
require scans, which can be efficiently managed using an
LSM-tree or B+-tree index. The world-state-related data (e.g.,
TrieNodeAccount, TrieNodeStorage, Code) can be initially
stored together in a compact log structure with low write
amplification (compared to LSM-tree), and then transitioned
to a read-optimized structure (e.g., hash-based KV store) only
when being read. Also, deletions are common across Ethereum
workloads, so each data structure should be optimized for
efficient deletion mechanisms.

Cache management. Effective cache management relies on the
understanding of KV pair access distributions and correlations.
Finding 6 reveals that the current caching mechanism is sub-par,
especially for reads to medium-frequency KV pairs. Combined
with Finding 3, which indicates that most KV pairs are not
accessed over extended periods, we suggest that the caching
mechanism should prioritize active KV pairs and exclude KV
pairs that are never read from being admitted to the cache on
the write path. In addition, our trace analysis reveals that read
correlations exist within and across classes. Findings 8 and 9
show that correlated reads tend to be clustered within small
regions and are frequently repeated. These findings suggest
that a correlation-aware cache design can enhance hit rates and
reduce I/O operations.

In summary, Ethereum can benefit from a correlation-
aware cache design that considers both read distributions and
correlations to optimize cache performance.

Design principles. Our findings suggest possible design
principles for blockchain storage: (i) avoiding unnecessary
indexes or metadata that may incur higher storage overhead;

(ii) using hybrid KV store designs with tailored index structures
(e.g., LSM-/B+-tree for BlockHeader, correlation-aware indexes
for TrieNodeAccount and TrieNodeStorage); (iii) optimizing
deletions to reduce background 1/Os; (iv) providing adaptive
indexing with varying granularities based on KV pair access
patterns (e.g., utilizing block-level indexes for never-accessed
KV pairs and individual indexes for accessed ones); (v) refining
snapshot acceleration to target active KV pairs; and (vi)
adopting correlation-aware designs for storage layouts and
cache policies.

We provide a possible conceptual design for hybrid KV
storage and correlation-aware caching as follows.

(i) Hybrid KV storage. For world-state data (e.g., TrieN-
odeAccount, TrieNodeStorage) and snapshot data (e.g., Snap-
shotAccount, SnapshotStorage), which exhibit strong read and
update correlations (Findings 8-11), we can co-locate them in
the same storage region of a log-based structure based on Geth’s
path-based storage model. This reduces 1/Os to retrieve KV
pairs from different regions in LSM-tree storage. For classes
with high deletion rates (e.g., TxLookup) (Finding 5), we can
store their KV pairs in an append-only log to mitigate I/O
overhead, so that we can remove old KV pairs in batches and
eliminate LSM-tree ordering maintenance. For immutable block
data (e.g., BlockHeader, BlockBody, and BlockReceipts), we
can also store them in append-only logs. For other KV classes
with less distinct patterns and a small number of KV pairs,
we keep them in the Pebble KV store as usual. Key design
challenges include designing selective index structures and
maintaining storage consistency across different KV classes.

(ii) Correlation-aware caching. In correlation-aware caching,
we can model temporal access sequences from historical
workloads to identify read and update correlations. We can
further implement smart prefetching and eviction policies based
on the correlation patterns. For example, when a KV pair is
read, we can proactively prefetch its correlated KV pairs into
the cache and evict correlated KV pairs together, so as to
improve cache hits and overall performance.

VI. CONCLUSION

We present a comprehensive analysis of Ethereum’s storage
workloads using real-world KV operation traces collected from
a Geth client over a 140-day span. We highlight 11 key findings
that cover storage overhead, KV operation distribution, read
correlations, and update correlations. Based on the findings,
we provide recommendations for KV storage and caching
optimization to improve Ethereum’s storage management.

ACKNOWLEDGMENTS

This work was supported by National Key R&D Program of
China (2022YFB3103500), National Natural Science Founda-
tion of China (62332004 and 62522204), Sichuan Science and
Technology Program (2024NSFTDO0031 and 2024YFHZ0339),
and Research Grants Council of Hong Kong (GRF 14214622).
The corresponding author is Jingwei Li.

[1]
[2

[3]

[4]
[5]

[6]
[7]

[9
[10]

(11]

[12]

[13]

[14]

[15]

[16]

[29]

REFERENCES

“Ethereum,” https://ethereum.org/, 2025.

“Ethereum full node sync (default) chart,” https://etherscan.io/chartsync/
chaindefault, 2025.

“go-ethereum freezer database,”
fundamentals/databases, 2025.
“go-ethereum (Geth),” https://geth.ethereum.org, 2025.

“go-ethereum’s KV storage schema,” https://github.com/ethereum/go-
ethereum/blob/master/core/rawdb/schema.go, 2025.

“Proof of stake,” https://ethereum.org/en/developers/docs/consensus-
mechanisms/pos/, 2025.

“Proof of work,” https://ethereum.org/en/developers/docs/consensus-
mechanisms/pow/, 2025.

B. Atikoglu, Y. Xu, E. Frachtenberg, S. Jiang, and M. Paleczny,
“Workload analysis of a large-scale key-value store,” in Proc. of ACM
SIGMETRICS, 2012.

Bitcoin.org, “Bitcoin,” https://bitcoin.org/, 2025.

Z. Cao, S. Dong, S. Vemuri, and D. H. Du, “Characterizing, modeling,
and benchmarking RocksDB key-value workloads at Facebook,” in Proc.
of USENIX FAST, 2020.

S. Chen, S. GalOn, C. Delimitrou, S. Manne, and J. F. Martinez,
“Workload characterization of interactive cloud services on big and small
server platforms,” in Proc. of IEEE IISWC, 2017.

Z. Chen, B. Li, X. Cai, Z. Jia, L. Ju, Z. Shao, and Z. Shen, “ChainKV:
A semantics-aware key-value store for ethereum system,” in Proc. of
ACM SIGMOD, 2024.

Z. Chen, B. Li, X. Cai, Z. Jia, Z. Shen, Y. Wang, and Z. Shao, “Block-
LSM: An ether-aware block-ordered Ism-tree based key-value storage
engine,” in Proc. of IEEE ICCD, 2021.

Create4Life, “What’s the number of ethereum archive nodes?”
https://www.reddit.com/r/ethereum/comments/frsffp/whats_the_
number_of_ethereum_archive_nodes/, 2020.

ethernodes.org, “Ethereum mainnet statistics,” https://www.ethernodes.
org/, 2025.

H. Feng, Y. Hu, Y. Kou, R. Li, J. Zhu, L. Wu, and Y. Zhou, “SlimArchive:
A lightweight architecture for ethereum archive nodes,” in Proc. of
USENIX ATC, 2024.

E. Technologies, “Erigon: Ethereum implementation on the efficiency
frontier,” https://github.com/erigontech/erigon, 2025.

https://geth.ethereum.org/docs/

(17]
[18]

(19]
[20]

[21]

[22]

(23]

[24]

[25]

[26]

(271

[28]

(30]

[31]

(32]

hyperledger, “Besu ethereum client,” https://besu.hyperledger.org, 2025.
G. Kadianakis, lightclient, and A. Stokes, “EIP-4444: Bound historical
data in execution clients prune historical data in clients older than one
year,” https://eips.ethereum.org/EIPS/eip-4444, 2021.

C. Labs, “Pebble,” https://github.com/cockroachdb/pebble, 2025.

J. Liang, W. Chen, Z. Hong, H. Zhu, W. Qiu, and Z. Zheng, “MoltDB:
Accelerating blockchain via ancient state segregation,” IEEE Transactions
on Parallel and Distributed Systems, 2024.

B. K. Mohanta, S. S. Panda, and D. Jena, “An overview of smart contract
and use cases in blockchain technology,” in Proc. of IEEE ICCCNT,
2018.

NodeReal, “Geth path-based storage model and newly inline state
prune,” https://nodereal.io/blog/en/geth-path-based-storage-model-and-
newly-inline-state-prune/, 2023.

P. O’Neil, E. Cheng, D. Gawlick, and E. O’Neil, “The log-structured
merge-tree (LSM-tree),” Acta Informatica, vol. 33, pp. 351-385, 1996.
M. M. Queiroz, R. Telles, and S. H. Bonilla, “Blockchain and supply
chain management integration: a systematic review of the literature,”
Supply chain management: An international journal, vol. 25, no. 2, pp.
241-254, 2020.

T. Rabl, M. Sadoghi, H.-A. Jacobsen, S. Gémez-Villamor, V. Muntés-
Mulero, and S. Mankowskii, “Solving big data challenges for enterprise
application performance management,” arXiv preprint arXiv:1208.4167,
2012.

P. Raju, S. Ponnapalli, E. Kaminsky, G. Oved, Z. Keener, V. Chi-
dambaram, and I. Abraham, “mLSM: Making authenticated storage
faster in ethereum,” in Proc. of USENIX HotStorage, 2018.

F. Schir, “Decentralized finance: on blockchain and smart contract-based
financial markets,” Review of the Federal Reserve Bank of St Louis, vol.
103, no. 2, pp. 153-174, 2021.

P. Szilagyi, “Ask about geth: Snapshot acceleration,” https://blog.ethereum.
0rg/2020/07/17/ask-about- geth- snapshot-acceleration, 2020.

G. Wood et al., “Ethereum: A secure decentralised generalised transaction
ledger,” Ethereum project yellow paper, vol. 151, no. 2014, pp. 1-32,
2014.

J. Yang, Y. Yue, and K. Rashmi, “A large scale analysis of hundreds of
in-memory cache clusters at Twitter,” in Proc. of USENIX OSDI, 2020.
C. Zhang, C. Xu, H. Hu, and J. Xu, “COLE: A column-based learned
storage for blockchain systems,” in Proc. of USENIX FAST, 2024.

https://ethereum.org/
https://etherscan.io/chartsync/chaindefault
https://etherscan.io/chartsync/chaindefault
https://geth.ethereum.org/docs/fundamentals/databases
https://geth.ethereum.org/docs/fundamentals/databases
https://geth.ethereum.org
https://github.com/ethereum/go-ethereum/blob/master/core/rawdb/schema.go
https://github.com/ethereum/go-ethereum/blob/master/core/rawdb/schema.go
https://ethereum.org/en/developers/docs/consensus-mechanisms/pos/
https://ethereum.org/en/developers/docs/consensus-mechanisms/pos/
https://ethereum.org/en/developers/docs/consensus-mechanisms/pow/
https://ethereum.org/en/developers/docs/consensus-mechanisms/pow/
https://bitcoin.org/
https://www.reddit.com/r/ethereum/comments/frsffp/whats_the_number_of_ethereum_archive_nodes/
https://www.reddit.com/r/ethereum/comments/frsffp/whats_the_number_of_ethereum_archive_nodes/
https://www.ethernodes.org/
https://www.ethernodes.org/
https://github.com/erigontech/erigon
https://besu.hyperledger.org
https://eips.ethereum.org/EIPS/eip-4444
https://github.com/cockroachdb/pebble
https://nodereal.io/blog/en/geth-path-based-storage-model-and-newly-inline-state-prune/
https://nodereal.io/blog/en/geth-path-based-storage-model-and-newly-inline-state-prune/
https://blog.ethereum.org/2020/07/17/ask-about-geth-snapshot-acceleration
https://blog.ethereum.org/2020/07/17/ask-about-geth-snapshot-acceleration

A. Artifact Appendix
A.1 Abstract

Our artifact provides a modified Ethereum execution client (Geth)
for trace collection and a suite of Go-based tools to analyze these
traces from a key-value (KV) storage perspective. It allows for the
reproduction of the 11 key findings in our paper and provides a
framework for future research in blockchain storage optimization.

A.2 Artifact check-list (meta-information)
* Program: Go programs and shell scripts.

* Compilation: Go compiler (1.23), Make.

* Binary: Geth and custom analysis tools.

* Data set: Ethereum KV operation traces (BareTrace and CacheTrace).
We provide sampled traces with KV operations for the processing of
blocks from 20500000 to 20501000 (i.e., 1,000 blocks).

Run-time environment: Linux (Ubuntu 22.04 or newer recommended)
and Go version 1.23 (or newer).

Hardware: For sampled trace analysis, we recommend a standard PC
with at least 16 GB RAM and 20 GiB of free storage space; for full trace
analysis, we recommend a powerful server with more than 256 GiB of
RAM and 8 TiB SSD storage space.

Output: Text log files with statistical analysis.

Experiments: KV size analysis, access distribution analysis, access
correlation analysis.

How much disk space required (approximately)?: >20GiB for sam-
pled trace analysis, and >8 TiB for full trace collection and analysis.

How much time is needed to prepare workflow (approximately)?:
Less than 30 minutes for initial setup, including Go installation, code
compilation, and sampled trace downloads.

How much time is needed to complete experiments (approximately)?:
Less than 2 hours with our sampled traces. Full trace analysis can take
2 weeks to 1 month, depending on hardware and network conditions.

Publicly available?: Yes.

Code licenses (if publicly available)?: GNU Lesser General Public
License v3.0.

Data licenses (if publicly available)?: No license are applied to the
public blockchain data.

Archived (provide DOI)?: It is archived on Zenodo with DOI:
10.5281/zenodo.16904170. It can be accessed at https://zenodo
.org/records/16904170,

A.3 Description
A.3.1 How to access

The artifact is available at: https://github.com/adslabcuhk/
geth_analysis| There are two folders:

* go—ethereum-1.14.11/, which contains the modified Geth
client for trace collection.

* analysis/, which contains analysis tools and scripts for trace
processing.

The repository also includes README .md with detailed instruc-
tions on how to set up the environment, compile the code, and run
the experiments for artifact evaluation.

A.3.2 Hardware dependencies

To run experiments on our sampled traces (§A.3.4), we recommend
a machine with a multi-core CPU, at least 16 GiB of RAM, and
at least 20 GiB of free storage space. The machine should have
a stable, high-speed Internet connection to download the sampled
traces from public cloud storage.

For full trace collection and analysis, we recommend a powerful
server with at least 256 GiB of RAM and 8 TiB SSD storage space.
The server should have a high-speed Internet connection (without

proxy) to interact with the Ethereum network and download block

data from other peer nodes.

A.3.3 Software dependencies

The software dependencies include:

* Go pebble library for KV storage operations.

* Ethereum rlp library for Ethereum data serialization.

* Sentry SDK for error tracking and monitoring.

* Unix system call interface for low-level OS operations.
* Exp/rand for experimental random number generation.

* xxhash for fast non-cryptographic hash functions.

* Protocol Buffers for structured data serialization.

* Prometheus client model for metrics collection.

* Snappy compression library for fast data compression.

The dependencies are managed using Go modules, and can

be installed using the script ./analysis/build.sh install in the root

directory of the repository. The script will automatically download
and install all required dependencies.

A.3.4 Data sets
We provide sampled BareTrace (3.9GiB) and CacheTrace

(1.2 GiB) for 1,000 Ethereum blocks from 20500000 to 20501000.
The traces can be downloaded from the following SharePoint link:

* https://gocuhk-my.sharepoint.com/:f:/g/persona
1/pclee_cuhk_edu_hk/EsP3NcKY5VFOkY5veTWZPoEBK1sL
16tL1blkuNYhsXe75w?e=HGoEku

We do not provide the full traces that are used in our paper
due to the large sizes (over 1.3 TiB and 4.1 TiB for CacheTrace
and BareTrace, respectively). Nevertheless, the full traces can be
obtained by running our modified Geth client on Ethereum.

Considering the large size of the KV store (around 275 GiB),
we do not provide the full KV store data in our sampled dataset.
Instead, we provide the statistical results for different KV classes,
including the size distribution of all KV pairs in the KV store
after CacheTrace is collected. The size distribution is generated by
the analysis tool countKVSizeDistribution and can be used to

reproduce the KV size distribution results presented in our paper.

The file, called kvSizeDistribution.tar can be downloaded
from the above Sharepoint link.

A.4 Installation

To install the artifact, set up the compilation environment, install
the software dependencies, and build the modified Geth client and
analysis tools. The following steps show the installation process.

We use Ubuntu 22.04 as an example, but the steps are similar for

other Linux distributions.

1. Install Go. Ensure that Go version 1.23 or higher is available.
Install it using the package manager of the Linux distribution. If
an older version of Go is installed, update it to the latest version
to avoid compatibility issues.

sudo apt install golang-go

If the system’s package manager provides an older version,
install it manually.

wget https://go.dev/dl/gol.23.2.1linux-amd64.tar.gz

sudo rm -rf /usr/local/go

https://zenodo.org/records/16904170
https://zenodo.org/records/16904170
https://github.com/adslabcuhk/geth_analysis
https://github.com/adslabcuhk/geth_analysis
https://gocuhk-my.sharepoint.com/:f:/g/personal/pclee_cuhk_edu_hk/EsP3NcKY5VFOkY5veTWZPoEBK1sLl6tL1blkuNYhsXe75w?e=HGoEku
https://gocuhk-my.sharepoint.com/:f:/g/personal/pclee_cuhk_edu_hk/EsP3NcKY5VFOkY5veTWZPoEBK1sLl6tL1blkuNYhsXe75w?e=HGoEku
https://gocuhk-my.sharepoint.com/:f:/g/personal/pclee_cuhk_edu_hk/EsP3NcKY5VFOkY5veTWZPoEBK1sLl6tL1blkuNYhsXe75w?e=HGoEku

sudo tar -C /usr/local -xzf
gol.23.2.1inux-amd64.tar.gz

export PATH=$PATH:/usr/local/go/bin

2. Build the modified Geth client. To collect traces,
build the modified Geth client. The binary is located at
go-ethereum-1.14.11/build/bin/geth.

cd go-ethereum-1.14.11 && make

3. Build the analysis tools. We provide a suite of Go-based tools
for trace analysis. To build these tools, navigate to the analysis
directory in the repository and run the build script. If the depen-
dencies are not yet installed, the script ./build.sh install will in-
stall them automatically. Note that the executables will be placed
in the analysis/bin directory.

cd analysis
./build.sh install # install dependencies
./build.sh build # build the analysis tools

A.5 Experiment workflow

The experiment workflow consists of three main stages: setup, data
collection, and analysis. For a quick start, we recommend using
the provided sampled traces (§A.3.4) to reproduce the key findings
from our paper. In this case, start with Step 3 to run the analysis
tools directly.

Step#1. Setup. Create directories for execution: mkdir -p
ethereum/consensus ethereum/execution. Set the target
block range to collect traces (e.g., from 20500000 to 20501000)
in go—ethereum-1.14.11/common/globalTraceLog.go
by changing the variables targetStartBlockNumber and
targetEndBlockNumber. Then, compile the geth binary and
copy it into ethereum/execution

Step#2. Trace collection. The trace collection process involves
running a consensus client (e.g., Prysm) and an execution client
(e.g., Geth) to sync the Ethereum network and collect KV operation
traces. First, generate an authentication secret (JWT) for commu-
nication between the consensus and execution clients. See instruc-
tions below for generating the JWT secret.

cd ethereum/consensus

curl https://raw.githubusercontent.com/prysmati
clabs/prysm/master/prysm.sh--outputprysm.sh

chmod +x prysm.sh

./prysm.sh beacon-chain generate-auth-secret

cp jwt.hex ../jwt.hex

Then, run the modified Geth client to start syncing the
blockchain and collecting traces. The following commands illus-
trate how to run the Geth client with the appropriate flags for Bare-
Trace (as an example).

cd ethereum/execution

./geth --cache 0 --cache.noprefetch --snapshot
--network --datadir ./data --syncmode full
--http --http.api eth,net,engine,admin
—--authrpc. jwtsecret ../jwt.hex

After Geth starts, run the consensus client in a separate terminal.

cd ethereum/consensus

./prysm.sh beacon-chain --datadir ./data
--network --execution-endpoint=http://localhost:8551
—-jwt-secret=../jwt.hex --checkpoint-sync-url=http
s://beaconstate.info| --genesis-beacon-api-url=http
s://beaconstate.info

Finally, the Geth client will start syncing the Ethereum network
and collecting traces. The traces will be written to the execution
directory (ethereum/execution) named as geth-trace.

Step#3. Trace analysis. Use the scripts in analysis to process
the blockchain data and trace files.

* KV storage management. Download and extract
kvSizeDistribution.tar, which contains the size distri-
bution of all KV pairs in the KV store after CacheTrace is
collected. Note that it contains the KV size distribution for each
class of KV pairs. Each line of a file in the archive includes two
fields: size and count, meaning that there are count KV pairs
with the given size.

* KV operation distribution. Run
./kvOpDistributionAnalysis.sh on asampled trace log file.
The output files will be stored in the mergedKVOpDistribution
foldler and named as <KV class> <KV operation
type>_with key_dis.txt, where <KV class> is the name of
the KV class and <KV operation type> is the type of KV
operation (e.g., read, write, delete, etc.).

Read correlations. Use ./readCorrelationAnalysis.sh
to collect read correlation data from the sampled
trace files. The analysis tool will generate three
types of output files in the readCorrelationOutput
folder: freq-category-<distance>.log,
freq-sorted-<distance>.log, and
Dist-<distance>-<class 1>-<class 2>-freq.log,
which contain the frequency of read operations between two
KV classes at a specific distance, the pairs of correlated reads
sorted by their frequency at a specific distance, and the pairs of
correlated reads sorted by their frequency for a specific pair of
KV classes, respectively.

Update correlations. Use . /updateCorrelationAnalysis.sh
to collect the update correlation data from the sampled trace files.
The results will be stored in the updateCorrelationQOutput
folder, with the same file naming and data structure as the read
correlation files.

A.6 Evaluation and expected results

To reproduce the results in the paper, please refer to the README . md
file and follow the instructions provided in the Evaluation section.

KV storage management (Findings 1 and 2). Expected outcome:
KV storage management analysis produces results in Findings 1
and 2, which show that five dominant classes account for over
99.2% of total KV pairs, with only an average size of 79.1 bytes,
while 15 out of 29 classes have only one KV pair for maintaining
system state. Also, the size distribution of KV pairs for world
state data is skewed. Approximate runtime: Zero, as the results are
included in the downloaded file (§A.3.4).

KV operation distribution (Findings 3 - 7). Expected outcome:
KV operation distribution analysis produces results in Findings 3
to 7, which illustrate that only three classes perform scans, while
deletions are common. The distribution of KV operations is highly
skewed, with a few classes accounting for the majority of opera-
tions. Approximate runtime: 10 compute minutes.

Read correlations (Findings 8 and 9). Expected outcome: Read
correlation analysis produces results in Findings 8 and 9, which
show that read correlations exist within the same class and across
different classes. Approximate runtime: 20 compute minutes.

Update correlations (Findings 10 and 11). Expected outcome:
Update correlation analysis produces results in Findings 10 and 11,
which show that update correlations exist within the same class
and across different classes. The update correlations are weaker
than read correlations since not all read KV pairs will be updated.
Approximate runtime: 20 compute minutes.

https://raw.githubusercontent.com/prysmaticlabs/prysm/master/prysm.sh --output prysm.sh
https://raw.githubusercontent.com/prysmaticlabs/prysm/master/prysm.sh --output prysm.sh
https://beaconstate.info
https://beaconstate.info
https://beaconstate.info
https://beaconstate.info

	Introduction
	Background and Related Work
	Blockchain Basics
	Related Work

	Traces
	Trace Collection
	Basic Statistics

	Findings
	KV Storage Management
	KV Operation Distribution
	Read Correlations
	Update Correlations

	Summary of Findings
	Conclusion
	References
	Artifact Appendix
	Abstract
	Artifact check-list (meta-information)
	Description
	How to access
	Hardware dependencies
	Software dependencies
	Data sets

	Installation
	Experiment workflow
	Evaluation and expected results

