ARTIFACT
EVALUATED
zusenix

»

ARTIFACT
EVALUATED
yusenix

ARTIFACT
EVALUATED
susenix

AAAAAAAAAAA

AVAILABLE

REPRODUCED

LESS is More for I/O-Efficient Repairs in Erasure-Coded Storage

Keyun Cheng!*, Guodong Li**, Xiaolu Li?, Sihuang Hu?, and Patrick P. C. Lee!

YThe Chinese University of Hong Kong *Shandong University
3Huazhong University of Science and Technology

Abstract

I/O efficiency is critical for erasure-coded repair performance
in modern distributed storage. We propose LESS, a family of
repair-friendly erasure code constructions that reduces both
the amount of data accessed and the number of I/O seeks
in single-block repairs, while ensuring balanced reductions
across blocks. LESS layers multiple extended sub-stripes
formed by widely deployed Reed-Solomon coding, and is
configurable to balance the trade-off between the amount of
data accessed and I/O seeks. Evaluation shows that LESS on
HDFS reduces both single-block repair and full-node recovery
times compared to state-of-the-art I/O-optimal erasure codes.

1 Introduction

Erasure coding is widely adopted in modern distributed stor-
age systems (e.g., [3,5, 10,21]) to ensure fault tolerance with
significantly lower storage overhead than traditional replica-
tion [37]. However, erasure coding incurs high repair costs.
Reconstructing a single failed block needs to access and trans-
fer much more data than the block size, leading to amplified
bandwidth and I/O costs. Recent surveys [1,33] highlight ex-
tensive studies, from both coding theory and systems commu-
nities, that aim to improve repair efficiency in erasure-coded
storage. These studies focus on improving access perfor-
mance (e.g., optimizing degraded reads [6, 13]) and storage
reliability (e.g., reducing mean-time-to-data-loss [9, 10]). In
particular, extensive research has proposed repair-friendly era-
sure code constructions to mitigate bandwidth and I/O costs
(see §2.2 for related work).

In modern distributed storage systems, I/O efficiency has
become an increasingly critical design factor compared to
bandwidth efficiency due to rapid advancements in network
technologies (e.g., InfiniBand, RDMA, and CXL) that sup-
port high-speed interconnects. However, I/O performance
cannot match such network improvements, especially under
random-access workloads. This motivates us to construct
repair-friendly erasure codes that make I/O efficiency a “first-
class citizen” for high repair performance.

Existing repair-friendly erasure codes often have sub-
optimal I/O performance in repairs (§2.2). For example, Clay
codes [36] are state-of-the-art minimum-storage regenerat-
ing (MSR) codes that provably minimize the amount of data
accessed from local storage in single-block repairs, while

*The first two authors contributed equally to this work.

minimizing storage redundancy for fault tolerance. Their core
idea is sub-packetization, which divides an erasure-coded
stripe (i.e., a set of blocks encoded together) into smaller
sub-stripes composed of sub-blocks at the same block off-
set. During a single-block repair, Clay codes retrieve a mini-
mum number of sub-blocks across sub-stripes for reconstruc-
tion. Despite minimizing data access, Clay codes require
exponential sub-packetization for optimality, and issue nu-
merous non-contiguous I/O seeks to retrieve sub-blocks in
a repair. This significantly degrades repair performance in
I/O-constrained environments due to amplified I/O requests.
Locally repairable codes (e.g., Azure’s LRC [10]) achieve I/O-
efficient repairs, but incur higher storage redundancy. Other
erasure codes support small sub-packetization with minimum
storage redundancy [15, 16,29, 35], yet they have various lim-
itations in code constructions that lead to repair inefficiency.

We present LESS, a family of erasure code constructions
designed for I/O-efficient repairs, aiming to (i) reduce both
the amount of data accessed and the number of I/O seeks
with small sub-packetization (as low as two sub-stripes per
stripe) and (ii) maintain balanced reductions across all blocks
within a stripe (i.e., all blocks have similar data access and I/O
seek costs). LESS builds on the notion of layering extended
sub-stripes, by strategically stacking multiple extended sub-
stripes (each with a longer stripe length) atop a regular stripe,
such that a single-block repair (and some cases of multi-block
repairs) can be done within an extended sub-stripe. LESS is
designed with practicality in mind. It builds on the widely
used Reed-Solomon (RS) codes [30] (§2.1) for a readily un-
derstandable design, and preserves the practical properties of
RS codes. It further allows configurable sub-packetization to
balance the trade-off between data access and I/O seeks.

We implement and evaluate LESS on HDFS [34] in a local
cluster. LESS reduces the single-block repair and full-node
recovery times of Clay codes by up to 83.3% and 36.6%,
respectively. We release the source code of LESS at: https:
//github.com/adslabcuhk/less.

2 Background

2.1 Basics of Erasure Coding

We consider distributed storage systems that organize data
in large fixed-size blocks (e.g., 128 MiB in HDFS [34] and
256 MiB in Facebook’s f4 [21]) to mitigate I/O overhead.
Such systems are typically I/O-bound, where network band-


https://github.com/adslabcuhk/less
https://github.com/adslabcuhk/less

width and disk I/Os (on the order of MiB/s) are primary perfor-
mance bottlenecks, rather than the computation overhead of
encoding and decoding, as observed in prior work [6,9,18,19].
Erasure coding ensures fault tolerance against block failures,
which is essential for maintaining high data persistence in
applications such as archival storage. We focus on RS codes
[30], which are widely deployed in production [3,5,21,23].
RS codes are configured by two parameters n and k (where
n > k). An (n,k) RS code encodes k uncoded data blocks
into n — k coded parity blocks, forming a stripe of n blocks,
and ensures that any k out of n blocks can reconstruct all k
data blocks (i.e., any n — k failed blocks are tolerable). In dis-
tributed storage systems, multiple stripes are independently
encoded, with each stripe distributed across n nodes for toler-
ating any n — k node failures.

RS codes satisfy three practical properties: (i) maximum
distance separable (MDS), i.e., the redundancy (} times the
data size) is minimized for tolerating any n — k failed blocks;
(i1) general, i.e., any n and k (where n > k) can construct RS
codes for a sufficiently large field size; and (iii) systematic,
i.e., each stripe keeps k data blocks for direct access.

RS encoding and decoding use linear combinations over a
Galois Field GF(2") with w-bit words, where n < 2" +1 [25].
Each block can be expressed as a linear combination of any k
blocks under Galois Field arithmetic (see §3.1 for details).

RS codes incur high repair bandwidth, defined as the
amount of data transferred across nodes during a repair. Re-
pairing a single failed block needs to retrieve k blocks of the
same stripe from other nodes; we call this process conven-
tional repair, which applies to all (n,k) MDS codes. It also
incurs high repair I/0, defined as the amount of data accessed
from local storage during a repair. In high-speed networks,
repair I/O becomes the dominant bottleneck (§1).

2.2 Related Work on Repair Optimization

Prior surveys [1,33] review extensive research on optimizing
single-block repair performance in erasure-coded storage. We
review several representative repair-friendly erasure codes
and their limitations.

Minimum-storage regenerating (MSR) codes. MSR codes
[4] minimize repair bandwidth for single-block repairs, while
preserving the MDS property (i.e., minimum redundancy).
They build on sub-packetization, which divides each block
into @ > 1 sub-blocks and forms o sub-stripes of n sub-
blocks at the same offset across blocks. Each sub-block is a
linear combination of other na — 1 sub-blocks in the stripe
over GF(2"). A single-block repair transfers a fraction of
sub-blocks, with the minimum repair bandwidth.
Traditional MSR codes [4] require nodes to read and en-
code all local sub-blocks, leading to high repair I/O. I/O-
optimal MSR codes minimize repair I/O, by allowing accessed
data to be sent directly without encoding. For example, Func-
tional MSR (F-MSR) codes [6, 8] require n —k = 2 [8] or
n—k =3 [6], with a linear o« = n — k, but are non-systematic.

PM-RBT codes [27] are systematic but require n > 2k — 1,
while Butterfly codes [22] are also systematic but require
n—k =2 and incur an exponential o = 25~

Clay codes [36] are state-of-the-art [/O-optimal MSR codes
that are systematic, support general (n,k), and are deployed
in Ceph [38]. However, Clay codes impose an exponential
o = (n—k)!"/ (=91 (note that exponential sub-packetization
is necessary for I/O-optimal MSR codes [2]). Even though
Clay codes minimize repair I/O, they access numerous non-
contiguous sub-blocks and incur substantial I/O seeks, defined
as the number of non-contiguous reads to local storage in a
repair. This leads to sub-optimal repair performance due to
the overhead of handling extensive I/O requests [35].

Locally repairable codes (LRCs). LRCs [10, 12, 14,31] re-
duce repair I/O for single-block repairs. For example, Azure-
LRC [10] partitions data blocks into local groups and adds a
local parity block per local group. Repairing a failed data or
local parity block accesses only the blocks of its local group.
However, Azure-LRC encodes all data blocks of a stripe into
global parity blocks, whose repairs still rely on conventional
repair. Some LRC variants support local repairs for global
parity blocks [14], but LRCs are non-MDS and have higher
redundancy than RS codes.

MDS codes with small sub-packetization. To limit I/O
seeks, some MDS codes allow a small a with reduced repair
I/0. Hitchhiker codes [29] use o = 2 sub-stripes of RS codes
by combining sub-blocks across sub-stripes via piggybacking
functions, and reduce repair I/O for data blocks by 25-45%
compared to RS codes; however, parity-block repairs still
follow conventional repair. HashTag codes [16] reduce repair
/O for data blocks with general (n,k) and o > 2; their ex-
tended codes [15] reduce repair I/O for both data and parity
blocks, but require & > 4 and o as a multiple of n — k.

Elastic Transformation (ET) [35] converts an RS code into
a repair-friendly code with a configurable o > 2. However,
the transformation restricts flexibility in code construction
and limits further repair improvements.

Repair-efficient algorithms. Our study focuses on erasure
code construction, while some studies design repair-efficient
algorithms, such as search of minimum-I/O recovery for XOR-
based erasure codes [13,39] or repair parallelization [17, 18,
20,32]. They do not minimize repair I/O due to constraints
from underlying erasure codes.

2.3 Goals

Table 1 summarizes the repair-friendly codes and their limita-
tions, including: non-MDS (e.g., Azure-LRC [10]), restric-
tive parameters (e.g., F-MSR [6, 8], PM-RBT [27], Butter-
fly [22]), non-systematic forms (e.g., F-MSR), exponential
sub-packetization (e.g., Butterfly, Clay [36]), and data-block-
only improvements (e.g., Hitchhiker [29], HashTag [16]).
The limitations inspire LESS, a family of repair-friendly
erasure codes with I/O efficiency in mind. We observe that



Codes MDS | Parameters | Systematic Sub-packetization Ref(i :c(::t;fg:gt:f/o
F-MSR [6, 8] Yes n—k<3 No oa=n—k Yes
PM-RBT [27] Yes n>2k—1 Yes k—1<a<n—k Yes
Butterfly [22] Yes n—k=2 Yes o =2k Yes

Clay [36] Yes | general (n,k) Yes o= (n—k) [%] Yes
Azure-LRCs [10] | No | general (n,k) Yes o=1 No
Hitchhiker [29] Yes general (n,k) Yes a=2 No
HashTag [16] Yes | general (n,k) Yes 2<a<(n—k) [ ] No
HashTag+ [15] Yes | general (n,k) Yes 4<a<(n—k) = Yes
ET [35] Yes | general (n,k) Yes 2<o<(n—k) [ Yes
LESS Yes | general (n,k) Yes 2<a<n—k Yes
Table 1: Comparisons of repair-efficient erasure codes.

repair performance depends on both repair I/O and I/O seeks.
Minimizing repair I/O introduces an exponential ¢ [2,36]
(and hence high I/O seeks) and can negate repair performance
gains. LESS targets near-minimum repair I/O with a small
and configurable ¢ to limit I/O seeks. Its design goals include:

* Preserving RS code properties: LESS is MDS, supports
general (n,k), and remains systematic, as in RS codes.

* I/O-efficient repair: LESS achieves I/O-efficient repairs in
three aspects: (i) reduced repair I/0, (ii) reduced I/O seeks
(e.g., ¢ = 2, 3, or 4); and (iii) balanced reductions (i.e.,
similar reductions in repair I/O and I/O seeks across data
and parity blocks). LESS also allows & to be configurable.

¢ Single- and multi-block repair efficiency: Earlier studies
focus on optimizing single-block repairs, which dominate
in practice (e.g., 98% of failures in (14, 10)-coded stripes
[28]). However, wide-stripe codes (i.e., n and k are large)
emerge and make multi-block repairs more common [12].
LESS addresses both scenarios.

3 LESS Design

LESS is constructed with configurable parameters (n,k, c),
where k < nand 2 < a < n—k. Its key idea is to layer multi-
ple extended sub-stripes, each constructed from sub-blocks
and encoded using Vandermonde-based RS codes, such that
a single-block repair always retrieves the sub-blocks from a
single extended sub-stripe. LESS also enables I/O-efficient
multi-block repairs if the failed blocks share the same ex-
tended sub-stripe.

3.1 Vandermonde-Based RS Codes

LESS builds on Vandermonde-based RS codes. An (n,k)
Vandermonde-based RS code uses a parity-check matrix [24]
to define the relationships between k data blocks By, B», -- -,
By and n — k parity blocks By, - -, B, in GF(2") based on
the parity-check equation:

, Vn]-[B], By, -

[V17 Vo, +- 5 Bn]T = Z?lel‘Vi = Oa (1)

where v; = [1,v;,v?,--- ,vlf’*kfl}T is a column vector of length
n—k, and v; is a distinct coding coefficient in GF(2") asso-
ciated with block B;, for 1 <i < n. In GF(2"), an addition
is equivalent to a bitwise-XOR operation. The (n—k) x n
parity-check matrix [v;, va, -+, v,] ensures that any n —k
out of n columns are linearly independent, so as to allow re-
construction of any n — k blocks from the remaining k blocks.

The encoding computes the n — k parity blocks from the k
data blocks based on Equation (1):

I
(2)
The decoding of any n — k blocks multiplies: (i) the inverted
sub-matrix of their associated column vectors, (ii) the sub-

matrix of the column vectors associated with the k remaining
blocks, and (iii) the k remaining blocks, from Equation (1).

Beit, BT = [Vt - ,Vn]_l[VI,"' Vil[B1,-- By

3.2 Motivating Example

We consider LESS via an example. Figure | depicts an
(n,k,o0) = (6,4,2) LESS stripe, where each block B; (1 <
i < 6) has two sub-blocks b; 1 and b;>. LESS organizes the
12 sub-blocks into three (8,6) RS-coded extended sub-stripes,
X1, Xo, and X3. Each extended sub-stripe can tolerate any two
sub-block failures, and the entire stripe can tolerate any two
block failures due to the MDS property.

Construction. First, we partition the 12 sub-blocks, such that
each sub-block belongs to exactly two extended sub-stripes.
This overlapping structure ensures that each extended sub-
stripe can be derived from the other two extended sub-stripes.
For example, X3 comprises four data sub-blocks and four
parity sub-blocks, each of which also belongs to either X; or
X, but not both, so X3 can be derived from X; and X>.

Next, we choose coding coefficients for the extended sub-
stripes based on Vandermonde-based RS codes. We select
12 distinct coding coefficients v; ;’s for b; ;’s from GF(28)
(1<i<6and1<j<2).

Finally, we compute the parity blocks Bs and Bg by en-
coding the first two extended sub-stripes X; and X,. We
compute bs 1 and bg 1 with the six data blocks from Xj, and



G, G, G,
—

b1,1 b2,1 b3,1 b4,1 b5,1 b6,1

Step 1: Partition n = 6 blocks
into a + 1 = 3 groups
b1,2 b2,2 b3,2 b4,2 b5,2 b6,2

Step 2: Organize na = 12 sub- B, B, B, B, B; B
blocks into a + 1 = 3 extended
sub-stripes X,

X

Step 3: Build MDS extended 2
sub-stripes via Vandermonde-

based RS codes X3

Data Blocks Parity Blocks

Figure 1: Code design of an (n,k, @) = (6,4,2) LESS stripe.

bs > and bg » with the other six data blocks from X, via (8,6)
Vandermonde-based RS encoding (based on Equation (1)) as:

6
(Zi:, bi1vi1) +biavip+b22va2 =0,

6
(Y. biavia) +b31V3,1 +ba Va1 =0,

where v; ; = [1, v; ;]7. This completes the encoding process.
Our coding coefficients are carefully chosen to ensure that
X3 inherently forms an (8,6) Vandermonde-based RS stripe
without being explicitly encoded. The reason is that X3 also
satisfies the parity-check equation (Equation (1)), which is
exactly the sum of the parity-check equations of X and X>:

b1V +b21V2 1 +b32V324+baovan
+b5.1V5,1 +b52V52+be 1 Ve 1 +bg2ver = 0.

Single-block repair. Suppose B; fails. LESS repairs b ; and
by, from X by retrieving six sub-blocks by 1, b2, b3 1, b4 1,
bs 1, and bg 1, with 25% less 1/O than the conventional repair
for the (6,4) RS code (four full blocks). Note that LESS’s
repair I/O reductions apply to all data and parity blocks. For
any block, its sub-blocks must reside in one of the extended
sub-stripes. Thus, a single-block repair always retrieves six
sub-blocks.

3.3 Construction

We now elaborate on how to construct a LESS stripe for the
configurable parameters (n,k, &), where k <nand 2 < a < n.
An (n,k,a) LESS stripe comprises n blocks B;’s (1 <i <
n), each with & sub-blocks b; ;’s (1 < j < o) (i.e., o sub-
stripes). LESS organizes the sub-blocks into & + 1 extended
sub-stripes, each tolerating any n — k sub-block failures. Its
construction process proceeds as follows.

Step 1 (Grouping blocks). We partition n blocks into o + 1
block groups G;’s (1 < z < oe+ 1), whose numbers of blocks
differ by at most one. The number of blocks in G; (|G;]) is:

|GZ|{H“] ifz<nmod (a-+1) 3)

otherwise.

oc+1J

In Figure 1, we divide the six blocks into three block
groups: G| = {B1,B>}, G2 = {B3,B4}, and G3 = {Bs,Bs}.

Step 2 (Layering extended sub-stripes). We organize no.
sub-blocks into o + 1 extended sub-stripes X;’s (1 <z <
o+ 1). Let g; be the index of the block group containing
block B; (i.e., if B; € G, then g; = z). Each of the first &
X.’s (for 1 < z < @) includes all sub-blocks in G, plus all
sub-blocks in the z-th sub-stripe, while X1 includes all sub-
blocks in G 1 and all sub-blocks b; ;’s where g; = j. The
number of sub-blocks in X, (|X;]) is:

X =n+(a—1)|G], C)

where n accounts for the sub-blocks in a sub-stripe, and (o —
1)|G,| accounts for the remaining sub-blocks in G, that do
not belong to the same sub-stripe. Each sub-block belongs to
exactly two extended sub-stripes. In particular, Xy includes
the sub-blocks from the first o extended sub-stripes, where
each sub-block appears in exactly one of the first ¢ extended
sub-stripes. In Figure 1, we organize the sub-blocks into three
extended sub-stripes (X7, X» and X3), each of which contains
eight sub-blocks.

Step 3 (Building MDS extended sub-stripes). Our goal is
to make each extended sub-stripe X; (1 <z < a+ 1) form
an (|X;|,|X;| — n+ k) Vandermonde-based RS stripe that can
tolerate any n — k sub-block failures. The encoding process
proceeds as follows. First, we select na distinct coding co-
efficients v; ;’s (1 <i<nand 1< j < a) from GF(2"), such
that X, must satisfy the parity-check equation:

Zb,-vjexz bijvi,j =0, ®)
where v;j = [1 vij vi; - vfjkil]T is a Vandermonde
column vector of length n — k. The linear independence of
any n — k Vandermonde column vectors ensures that X; is an
RS-coded stripe. Next, we compute the parity blocks B;’s
(k+1 < i < n) by encoding the first ¢ extended sub-stripes
X.’s in sequence (i.e., from Xj to Xy ). Specifically, for each
X, (1 £z < o), we compute the n — k parity sub-blocks b, ;
(k+1 <i<n)using RS encoding (based on Equations (2) and
(5)). Xo+1 does not require explicit encoding, as it automati-
cally forms an Vandermonde-based RS stripe after the first o
extended sub-stripes are encoded. In Figure 1, we compute
Bs and Bg with X and X, based on Vandermonde-based RS
encoding, after which X3 also forms an (8,6) Vandermonde-
based RS stripe.

MDS property. For a LESS stripe to tolerate any n — k
block failures, we must carefully select n distinct coding
coefficients v; ;’s from a Galois Field. Theorem 1 shows that
such coefficients can always be found in a sufficiently large
field size. The detailed proof is in the Appendix.

Theorem 1. For (n,k, o) LESS, we can always find na. dis-
tinct coding coefficients v; j’s (1 <i<nand 1 < j< a)in
GF(2") for MDS when 2" > nat+ (n—k—1)(", ).



Theorem 1 provides a sufficient condition for the Galois
Field size. In practice, for typical coding parameters, the
required coefficients can be found in smaller fields (GF(2%)
or GF(2'%)). In our implementation, we can generate the
na coding coefficients using a primitive element p with a
multiplicative approach:

v j=plil@tD+e)oti | <j<pand1<j<a, (6)

where h; (1 <i<|G,]) is the position of B; in its block group
G, (i.e., B; is the h;-th block in G;). For example, in Fig-
ure 1, B; is the second block in Gy, so g = 1 and hy = 2.
The primitive element is p = 2 for (6,4,2) LESS, while v
and v; > are 215 and 216 in GF(28), respectively. We can find
the feasible primitive elements based on brute-force search
(i.e., checking linear independence by enumerating any pos-
sible sub-matrices of the parity-check matrix). Note that the
search of feasible primitive elements is done only once for
construction. In the Appendix, we show how the parity-check
matrix is formed and provide the feasible primitive elements
for common (n,k,a) (n—k <4 and2 < o < 4).

3.4 Repair

LESS supports efficient repair of single-block failures within
an extended sub-stripe and certain multi-block failures when
the failed blocks reside in the same extended sub-stripe.

Single-block repair. For a failed block B; (1 < i < n)
in G; (1 <z < ), we repair B; using sub-blocks within
X., which contains all sub-blocks of G,. Since X, is an
(1X;l,|X;| — n+ k) RS-coded stripe, it tolerates any n — k > o
sub-block failures. The o failed sub-blocks can be re-
constructed using the parity-check equation (Equation (5))
for X,. To reduce accessed blocks, we prioritize transfer-
ring |G;|(a — 1) available sub-blocks from G, followed by
|X;| —n+k — |G;|(oc — 1) available sub-blocks from other
block groups.

Multi-block repair. LESS is also beneficial for a multi-block
repair, where we simultaneously repair multiple failed blocks
on a single stripe. When L"T—]‘J > 2, LESS can repair any
| =k block failures within one extended sub-stripe if all
failed blocks reside in the same block group, say G, (1 <z <
o+ 1). With all failed sub-blocks in X, since o | £ | <n—k,
the failed sub-blocks can be repaired within X;. For other
multi-block failure cases, LESS resorts to conventional repair
(which retrieves k blocks). For example, in a (14,10,2) LESS
stripe (Figure 2), repairing two failed blocks By and B; in
G (i.e., the sub-blocks by 1, b1, b1, and by are in X)
can leverage X;’s (19,15) RS coding. This requires 15 sub-
blocks, with 25% less repair I/O than the conventional repair
of the (14, 10) RS code.

3.5 I/O-Efficient Repairs in LESS

LESS achieves I/O-efficient repairs in three aspects: (i) repair
I/0, (ii) I/O seeks, and (iii) balanced I/O reductions.

G, G, G;

Data Blocks Parity Blocks

Figure 2: Two-block repair in (n,k, o) = (14,10,2) LESS.

Repair 1/0. For block B; (1 <i < n) in G, (recall z = g;), We
retrieve |X,| —n+ k sub-blocks, as we repair the block with
the (|X;|, |X;| —n+k) RS code. From Equations (3) and (4),
the repair I/O (in sub-blocks) of B; is:

10; — {k+(0¢—1) (] ifgi<nmod (a+1)

7
k+(a—1)| 44| otherwise. M

This is strictly less than the I/O for the conventional repair
of an (n,k) RS code when k > [4] (common in practice), as
10; <k+(a—1) [ ] <k+(a—1)[4] <ka.

I/0 seeks. For a single-block failure, LESS limits I/O seeks
to k+ o — 1. Repairing B; in G, requires |X;| —n+ k sub-
blocks from X, including: (i) the (|G, — 1) contiguous
sub-blocks from G, which can be retrieved with |G,| — 1
seeks, and (i) |X;| —n+k — a(|G;| — 1) sub-blocks from
other blocks, each requiring one seek. The total number of
O seeksis (|G| —1)+|X;| —n+k—a(|G,|—1)=k+a—1,
from Equations (3) and (4).

Balanced I/O reductions. The repair I/O is similar for the
repair of any data or parity block in a stripe, and differs by at
most & — 1 sub-blocks from Equation (7). Also, the repair in-
curs exactly one 1/0 seek from each of the k+ o — 1 available
blocks. Thus, LESS balances I/0O reductions.

4 Evaluation

We evaluate LESS via numerical analysis and testbed experi-
ments, and address two questions: (i) Does LESS’s empirical
repair performance conform to its theoretical improvements?
(i1) How do system configurations affect repair performance?

4.1 Numerical Analysis

Exp#A1 (Single-block repair). We compare LESS against
systematic MDS codes (RS, Clay, Hitchhiker, HashTag, and
ET) in a single-block repair. We vary o from 2 to n — k for
HashTag, ET, and LESS. We measure the average, minimum,
and maximum repair I/O (in blocks) and total number of
I/0 seeks when repairing each of the n blocks. We focus on
(n,k) = (14,10), a default configuration in Facebook’s f4 [21].
Table 2 shows that for oc > 3, LESS has less repair I/0 than
other codes (except Clay, which minimizes repair I/O) with
limited I/O seeks. For oo = 4, LESS reduces the average repair
I/O of RS, Hitchhiker, HashTag (@ = 4), and ET (a = 4) by
53.6%, 38.1%, 23.1%, and 20.7%, respectively, and reduces
the average number of I/O seeks of Clay by 95.5%.



Codes o Repair I/0 #1/0 seeks

Avg Min/Max Avg Min/Max

RS 1 10.00 | 10.00/10.00 | 10.000 10/10
Clay 256 | 3.25 3.25/3.25 286.00 13/832

Hitchhiker 2 7.50 6.50/10.00 10.86 10/13

2 7.07 5.50/10.00 10.71 10/11

HashTag 3 6.67 4.34/10.00 12.64 10/20

4 6.04 4.00/10.00 12.14 10/13

2 7.50 7.50/7.50 11.00 11/11

ET 3 7.14 6.67/7.67 13.43 12/ 14

4 5.86 5.50/6.25 14.29 13/15

2 7.36 7.00/7.50 11.00 11/11

LESS 3 5.71 5.33/6.00 12.00 12/12

4 4.64 4.00/4.75 13.00 13/13

Table 2: Analysis for a single-block repair for (14,10).

Avg. Repair I/O / Avg. # of 1/O seeks
Codes / (n,k
odes/ (mk) —2076) T (100,06) | (124,120
RS 76/76 96 /96 120/ 120
LESS (o =4) | 31/79 39/99 48.6/123

Table 3: Analysis for a single-block repair for wide-stripe codes.

2150 ERS[LESS 2150 RSTILESS
120 8120 RSO
= 90 2 90
£ 60 = 60

30 S 30
Q *
5 N ARSIC QI DS PPN
AN N \\a}'\ NN ‘y}
& (k) (n.k)

(a) Repair I/O (b) Number of I/0O seeks

Figure 3: Analysis for two-block repairs for different (n, k).

LESS also improves wide-stripe repairs. Table 3 shows the
results (some parameters are studied in [9, 12]). For example,
for (124,120), LESS (o = 4) reduces the repair I/0 of RS by
59.5% with limited extra I/O seeks.

Exp#A2 (Multi-block repair). We study two-block repair
I/0 and I/O seeks for LESS and RS codes (conventional re-
pair) for different (n,k)’s. We average the results over all (;’)
block failure combinations, with minimum/maximum error
bars. Figure 3 shows the results. LESS reduces repair 1/O for
27.3-32.8% of two-block failure cases, with limited I/O seek
overhead. For example, for (14, 10), LESS (o = 2) reduces
the average repair I/O of RS by 7.4% and improves repairs
for 28.6% of cases. For wide stripes, say (124,120), LESS
(a = 2) reduces the average repair I/O of RS by 10.8% and
improves repairs for 32.8% of cases.

4.2 Testbed Experiments

Implementation. We implement LESS on OpenEC (an era-
sure coding middleware) [19] atop Hadoop 3.3.4 HDFS [7]
and use Jerasure [26] for coding operations. We also include
RS, Clay, Hitchhiker, HashTag, and ET in our comparisons.
Our prototype adds 8.7 K LoC to OpenEC in C++.

HDFS uses a NameNode for storage management and mul-

tiple DataNodes for storage. HDFS organizes data in fixed-
size blocks, each further partitioned into multiple packets.
The packets at the same block offset are encoded together,
allowing pipelined coding operations across packets. Our
prototype follows this packet-level pipelined implementation.

Methodology. We conduct testbed experiments in a 15-
machine local cluster connected via a 10 Gbps Ethernet switch.
Each machine is equipped with a quad-core 3.4 GHz Intel i5-
7500 CPU, 16 GiB RAM, a 7200 RPM 1 TB SATA HDD, and
Ubuntu 22.04. We use Wondershaper [11] to configure the
network bandwidth of each machine. We use one machine for
the NameNode and 14 machines for DataNodes. By default,
we set (n,k) = (14, 10), 64 MiB blocks, 256 KiB packets, and
1 Gbps network bandwidth as in prior work [19,31,35].

We evaluate the (i) single-block repair time (i.e., the aver-
age time from issuing a repair request to a failed block until
the failed block is repaired, averaged over n blocks) and (ii)
full-node recovery time (i.e., the total time to repair all blocks
in a single failed DataNode). In full-node recovery, we repair
20 blocks from different stripes (one block per stripe) [18],
where node IDs are randomly assigned in the cluster across
stripes, so that the lost blocks of a failed node correspond to
different block positions across stripes. We average results
over 10 runs, with 95% confidence intervals based on the
Student’s t-distribution.

Exp#B1 (Single-block repair). Figure 4(a) shows that LESS
effectively reduces the single-block repair time due to the
reductions in repair I/O and I/O seeks. For example, LESS
(a = 4) reduces the single-block repair times of RS, Hitch-
hiker, HashTag (¢ = 4), ET (a = 4), and Clay by 50.8%,
35.9%, 21.5%, 21.5%, and 33.9%, respectively.

Exp#B2 (Full-node recovery). Figure 4(b) shows that LESS
also reduces the full-node recovery time. For example, the
reductions of LESS (o = 4) compared with RS, Hitchhiker,
HashTag (o = 4), ET (o =4), and Clay are 48.3%, 34.3%,
17.8%, 19.4%, and 36.6%, respectively.

Exp#B3 (Encoding throughput). We measure the encoding
throughput (i.e., the amount of data encoded per second) on
a single machine. We construct a (14, 10) stripe in memory
and put random bytes in the stripe for encoding. Figure 4(c)
shows the results for packet sizes from 128 KiB to 1024 KiB.
For 256 KiB packets, RS achieves 2.8 GiB/s, while LESS
(a = 4) achieves 1.6 GiB/s. For wide stripes, say (124, 120)
and 256 KiB packets, RS and LESS (a = 4) achieve 2.6 GiB/s
and 1.1 GiB/s, respectively (not shown in the figure). The
encoding throughput for both codes decreases with larger
packet sizes, as more data needs to be fit into the CPU cache
for encoding. LESS has lower encoding throughput than RS
due to sub-packetization, yet its encoding throughput exceeds
1 GiB/s and its computational overhead remains limited com-
pared to bandwidth and I/O bottlenecks (§2). Our evaluation
measures single-threaded performance; the encoding through-
put can be further improved via multi-threading across stripes.



Z6] Z150( 3
= - N o 2 = % |eRS 4 LESS-2 + LESS-3 » LESS-4
o g TN d - o [} ~
S ¥ 2 ¥ ¢ o < < S 120 ; v I v 0o © /M
24 hd > o 29 2 825835 oo ° 33
o) P IR &, D 29 S 2 Q\@\e\-@
Y ~ [ 90 X K v =
E = E ° g2 fooos 4 A
;2 : 60 = oo s
g & 30 g1
O Q S
7 ~ 4

SV VYV DD X > X o SV VNV Y D dd XX X o 12 2 i2 1024

T EFF S I F S 4?(7 T T F T Qﬁj * peie: sizeS(KiB)
> VS VS VA > VLS VS VA
RS > > O e > * (@)
& s s R & R R R
(a) Single-block repair time (b) Full-node recovery time (c) Encoding throughput
Figure 4: Repair performance for (14, 10). In figures (a) and (b), we put & next to each code (e.g., LESS-4 has o = 4).
sRS LESS-2 + LESS-3 &RS LESS-2 + LESS-3

» LESS-4 < Clay » LESS-4 © Clay

=

e Aseconds)

U

o
ReR:;nr Tgne (sgcomgcs)

Repair Tim

2 5 10 128 1024

Bandwidth (Gbps)

256 512

1
Network Packet Size (KiB)

(a) Impact of network bandwidth  (b) Impact of packet size

Figure 5: Impact of configurations on (14,10) single-block repair.

Exp#B4 (Impact of network bandwidth). We study the im-
pact of network bandwidth, varied from 1 Gbps to 10 Gbps via
Wondershaper, on the single-block repair time. Figure 5(a)
shows that as the network bandwidth increases, Clay suf-
fers from significant I/O seek overhead, while LESS effec-
tively reduces the single-block repair time due to small sub-
packetization. For example, for 10 Gbps bandwidth, LESS
(¢ = 4) reduces the single-block repair times of RS and Clay
by 28.6% and 83.3%, respectively. Overall, LESS maintains a
low single-block repair time for varying network bandwidth.

Exp#B5 (Impact of packet size). We study the impact of
packet size, varied from 128 KiB to 1024 KiB. Figure 5(b)
shows that for small packet sizes, Clay incurs significant I/O
overhead for processing a large number of sub-blocks, while
LESS keeps stable repair performance. For example, for
128 KiB packets, LESS (o = 4) reduces the single-block re-
pair times of RS and Clay by 59.1% and 50.4%, respectively.

5 Conclusion

LESS is a family of erasure codes designed for I/O-efficient
repairs by layering extended sub-stripes, so as to reduce both
repair I/O and I/O seeks and ensure balanced reductions across
blocks. It has several practical properties: MDS, general
parameters, systematic, and configurable sub-packetization.
Numerical analysis and testbed experiments show LESS’s
repair benefits over state-of-the-art repair-friendly codes.

Acknowledgments

We thank our shepherd, Ramnatthan Alagappan, and the
anonymous reviewers for their comments. This work was

supported in part by the National Key R&D Program of China
(2021YFA1001000), the National Natural Science Founda-
tion of China (12231014 and 62302175), the Postdoctoral
Fellowship Program and China Postdoctoral Science Founda-
tion (BX20250065), Research Grants Council of Hong Kong
(AoE/P-404/18), and Research Matching Grant Scheme. The
corresponding author is Xiaolu Li.

References

[1] S. B. Balaji, M. Nikhil Krishnan, Myna Vajha,
Vinayak Ramkumar, Birenjith Sasidharan, and P. Vi-
jay Kumar. Erasure coding for distributed storage:
an overview. Science China Information Sciences,

61(100301):100301:1-100301:45, 2018.

[2] S.B. Balaji, Myna Vajha, and P. Vijay Kumar. Lower
bounds on the sub-packetization level of MSR codes
and characterizing optimal-access MSR codes achiev-
ing the bound. [EEE Trans. on Information Theory,

68(10):6452-6471, 2022.

[3] Brian Beach. Backblaze Vaults: Zettabyte-scale cloud
storage architecture. https://www.backblaze.co
m/blog/vault-cloud-storage-architecture/,

2019.

[4] Alexandros G. Dimakis, P. Brighten Godfrey, Yunnan
Wu, Martin J. Wainwright, and Kannan Ramchandran.
Network coding for distributed storage systems. IEEE

Trans. on Information Theory, 56(9):4539-4551, 2010.
(5]

Daniel Ford, Francois Labelle, Florentina I. Popovici,
Murray Stokely, Van-Anh Truong, Luiz Barroso, Carrie
Grimes, and Sean Quinlan. Availability in globally
distributed storage systems. In Proc. of USENIX OSDI,

2010.

Chuang Gan, Yuchong Hu, Leyan Zhao, Xin Zhao,
Pengyu Gong, and Dan Feng. Revisiting network cod-
ing for warm blob storage. In Proc. of USENIX FAST,
2025.

[7] Hadoop 3.3.4. https://hadoop.apache.org/docs
/r3.3.4/,2022.


https://www.backblaze.com/blog/vault-cloud-storage-architecture/
https://www.backblaze.com/blog/vault-cloud-storage-architecture/
https://hadoop.apache.org/docs/r3.3.4/
https://hadoop.apache.org/docs/r3.3.4/

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

Yuchong Hu, Henry CH Chen, Patrick PC Lee, and
Yang Tang. NCCloud: Applying network coding for the
storage repair in a cloud-of-clouds. In Proc. of USENIX
FAST, 2012.

Yuchong Hu, Liangfeng Cheng, Qiaori Yao, Patrick
P. C. Lee, Weichun Wang, and Wei Chen. Exploiting
combined locality for Wide-Stripe erasure coding in
distributed storage. In Proc. of USENIX FAST, 2021.

Cheng Huang, Huseyin Simitci, Yikang Xu, Aaron
Ogus, Brad Calder, Parikshit Gopalan, Jin Li, and
Sergey Yekhanin. Erasure coding in Windows Azure
storage. In Proc. of USENIX ATC, 2012.

Bert Hubert, Jacco Geul, and Simon Séhier. Wonder
Shaper. https://github.com/magnific0/wonde
rshaper, 2012.

Saurabh Kadekodi, Shashwat Silas, David Clausen, and
Arif Merchant. Practical design considerations for wide
locally recoverable codes (LRCs). In Proc. of USENIX
FAST, 2023.

Osama Khan, Randal Burns, James Plank, and William
Pierce. Rethinking erasure codes for cloud file systems:
Minimizing I/O for recovery and degraded reads. In
Proc. of USENIX FAST, 2012.

Oleg Kolosov, Gala Yadgar, Matan Liram, Itzhak Tamo,
and Alexander Barg. On fault tolerance, locality, and
optimality in locally repairable codes. In Proc. of
USENIX ATC, 2018.

Katina Kralevska and Danilo Gligoroski. An explicit
construction of systematic MDS codes with small sub-
packetization for all-node repair. In Proc. of IEEE
DASC/PiCom/DataCom/CyberScilech, 2018.

Katina Kralevska, Danilo Gligoroski, Rune E. Jensen,
and Harald @verby. HashTag erasure codes: From
theory to practice. IEEE Trans. on Big Data, 4(4):516—
529, 2018.

Runhui Li, Xiaolu Li, Patrick P. C. Lee, and Qun Huang.
Repair pipelining for erasure-coded storage. In Proc. of
USENIX ATC, 2017.

Xiaolu Li, Keyun Cheng, Kaicheng Tang, Patrick P. C.
Lee, Yuchong Hu, Dan Feng, Jie Li, and Ting-Yi Wu.
ParaRC: Embracing sub-packetization for repair paral-
lelization in MSR-coded storage. In Proc. of USENIX
FAST, 2023.

Xiaolu Li, Runhui Li, Patrick P. C. Lee, and Yuchong
Hu. OpenEC: Toward unified and configurable erasure
coding management in distributed storage systems. In
Proc. of USENIX FAST, 2019.

Subrata Mitra, Rajesh Panta, Moo-Ryong Ra, and
Saurabh Bagchi. Partial-parallel-repair (PPR): A dis-

tributed technique for repairing erasure coded storage.
In Proc. of ACM EuroSys, 2016.

(21]

(22]

(23]

[24]

(25]

(26]

(27]

(28]

[29]

(30]

(31]

(32]

Subramanian Muralidhar, Wyatt Lloyd, Sabyasachi Roy,
Cory Hill, Ernest Lin, Weiwen Liu, Satadru Pan, Shiva
Shankar, Viswanath Sivakumar, Linpeng Tang, and San-
jeev Kumar. f4: Facebook’s warm BLOB storage sys-
tem. In Proc. of USENIX OSDI, 2014.

Lluis Pamies-Juarez, Filip Blagojevi¢, Robert Mateescu,
Cyril Gyuot, Eyal En Gad, and Zvonimir Bandi¢. Open-
ing the chrysalis: On the real repair performance of
MSR codes. In Proc. of USENIX FAST, 2016.

Andreas-Joachim Peters, Michal Kamil Simon, and
Elvin Alin Sindrilaru. Erasure coding for production in
the EOS open storage system. In Proc. of CHEP, 2019.

James S. Plank and Cheng Huang. Tutorial: Erasure
coding for storage applications. http://web.eecs.u
tk.edu/~jplank/plank/papers/FAST-2013-Tu
torial.html, 2013.

James S. Plank, Jianqgiang Luo, Catherine D. Schuman,
Lihao Xu, and Zooko Wilcox-O’Hearn. A performance
evaluation and examination of open-source erasure cod-
ing libraries for storage. In Proc. of USENIX FAST,
2009.

James S. Plank, Scott Simmerman, and Catherine D.
Schuman. Jerasure: A library in C/C++ facilitating
erasure coding for storage applications - version 2.0.
Technical Report CS-08-627, 2014.

K. V. Rashmi, Preetum Nakkiran, Jingyan Wang, Ni-
har B. Shah, and Kannan Ramchandran. Having your
cake and eating it too: Jointly optimal erasure codes
for I/O, storage, and network-bandwidth. In Proc. of
USENIX FAST, 2015.

K. V. Rashmi, Nihar B. Shah, Dikang Gu, Hairong
Kuang, Dhruba Borthakur, and Kannan Ramchandran.
A solution to the network challenges of data recovery in
erasure-coded distributed storage systems: A study on
the facebook warehouse cluster. In Proc. of USENIX
HotStorage, 2013.

K. V. Rashmi, Nihar B. Shah, Dikang Gu, Hairong
Kuang, Dhruba Borthakur, and Kannan Ramchandran.
A "hitchhiker’s" guide to fast and efficient data recon-
struction in erasure-coded data centers. In Proc. of
ACM SIGCOMM, 2014.

Irving S Reed and Gustave Solomon. Polynomial codes
over certain finite fields. Journal of the Society for In-
dustrial and Applied Mathematics, 8(2):300-304, 1960.

Maheswaran Sathiamoorthy, Megasthenis Asteris, Dim-
itris Papailiopoulos, Alexandros G Dimakis, Ramkumar
Vadali, Scott Chen, and Dhruba Borthakur. XORing
elephants: novel erasure codes for big data. In Proc. of
VLDB Endowment, 2013.

Yingdi Shan, Kang Chen, Tuoyu Gong, Lidong Zhou,
Tai Zhou, and Yongwei Wu. Geometric partitioning:


https://github.com/magnific0/wondershaper
https://github.com/magnific0/wondershaper
http://web.eecs.utk.edu/~jplank/plank/papers/FAST-2013-Tutorial.html
http://web.eecs.utk.edu/~jplank/plank/papers/FAST-2013-Tutorial.html
http://web.eecs.utk.edu/~jplank/plank/papers/FAST-2013-Tutorial.html

(n—Kaxa

Block row parity-check sub-matrix
H, H, - H, - 7 A <+ H, —
A =
1 : H 1 X1 |
\ 1 1
Bk EEETEE EEEEEEE i EEEL R S EE R e e e e a  eEa e pEa e |
1 : X2
H= : HE . X
: ! R
Y L x g
-------- 7]
H,(22) = vip = [1' Vi’z,viz'z_ ---_Vir"z—k_l T n X o columns |:| Vandermonde column vector of length n - k
|:| Zero column vector of length n - k
Figure 6: Parity-check matrix of an (n,k, &) LESS stripe.
Explore the boundary of optimal erasure code repair. In H, H, H, H, Hs Hg ’7?
Proc. of ACM SOSP, 2021. =
. L. . Vi1 V1,2|Vz,1 V2,2|V3,1 0 ’V4,1 0 ‘V5,1 0 ‘Vsn 0 X X
[33] Zhirong Shen, Yuhui Cai, Keyun Cheng, Patrick P. C. H= )
Lee, Xiaolu Li, Yuchong Hu, and Jiwu Shu. A survey 0 Va2 ?/@ Va1 Vaz|Vaa Vaz| 0 Vsz| 0 Vg |Xp |
of the past, present, and future of erasure coding for [Viz] n x a = 12 columns %
storage systems. ACM Trans. on Storage, 21(1):1-39, '
2025. Figure 7: Parity-check matrix of a (6,4,2) LESS stripe.
[34] Konstantin Shvachko, Hairong Kuang, Sanjay Radia,
and Robert Chansler. The hadoop distributed file system. Parity-check matrix of LESS. The parity-check matrix (H)
In Proc. of IEEE MSST, 2010. of an (n,k, &) LESS stripe is an (n — k)0t X no matrix. We
[35] Kaicheng Tang, Keyun Cheng, Helen H. W. Chan, Xi- view H as an a x na block matrix, where each entry is a
aolu Li Patricl’< P C. Lee Yilchong Hu. Jie Li ’and column vector of length n — k. We partition H into n parity-
Ting-Yi Wu. Balancing repair bandwidth and sub- check sub-matr. lees as H=[H,, Hy, -, Hfl]’ where each
packetization in erasure-coded storage via elastic trans- H; (where 1 <i<n) .1s ap 0 % a block matrix. We define a
formation. In Proc. of IEEE INFOCOM, 2023. block row as no entries in a row of H. The entry of H; on
. ) ’ ) the z-th block row and the j-th column (where 1 < z < o and
[36] Myna Vajha, Vinayak Ramkumar, Bhagyashree Puranik, 1< j < a)is given by
Ganesh Kini, Elita Lobo, Birenjith Sasidharan, P. Vijay U
Kumar, Alexandar Barg, Min Ye, Srinivasan Narayana- ) vi; ifb;€X,
murthy, Syed Hussain, and Siddhartha Nandi. Clay Hi(z, j) = 0  otherwise ®)
codes: Moulding MDS codes to yield an MSR code. In
Proc. of USENIX FAST, 2018. Figure 6 shows the parity-check matrix of LESS. We write
[37] Hakim Weatherspoon and John D. Kubiatowicz. Era- block B; = [b;1,bi2, " ;bia]" asa cqlumn vector Qf the sub-
sure coding vs. replication: A quantitative comparison. blocks. From the parity-check matrix, the o parity-check
In Proc. of IPTPS, 2002. equations of the first & extended sub-stripes can be written as
[38] Sage A. Weil, Scott A. Brandt, Ethan L. Miller, Darrell — - L
D. E. Long, and Carlos Maltzahn. Ceph: A scalable, [Hy,Hy, - Ha][By,B,--+,B,]" = ;HiBi =0, 9
high-performance distributed file system. In Proc. of =
USENIX OSDI, 2006. Based on Equations (5) and (9), the z-th block row can be
[39] Yunfeng Zhu, Patrick P. C. Lee, Yinlong Xu, Yuchong written as the parity-check equation of the extended sub-stripe

Hu, and Liping Xiang. On the speedup of recovery in
large-scale erasure-coded storage systems. IEEE Trans.
on Parallel and Distributed Systems, 25(7):1830-1840,
2014.

A Appendix: Proof of MDS Property

We prove Theorem 1 that LESS is MDS for a sufficiently
large field size. Our proof is based on the parity-check matrix
of LESS.

X, as follows:

[H,’(Z, 1),H,‘(Z,2), T 7Hi(Z7 OC)]B,'

I

N

= = Z bi,jvi,j :0
hi"jEXz

y <Hi<z,j>bi,.,->]
=1

i=1

Figure 7 shows the parity-check matrix of (6,4,2) LESS.
The 4 x 12 parity-check matrix H comprises two block rows



n—k | o n Galois Fields p

2 |2 | n<127 GF(2%) 2
, | =4 GF(2%) 50

3 n<127 | GF(2'%) 2
3 | 1S40 GF(2%) 14

n<127 | GF(2'%) 2

, | n<23 GF(2%)

n<127 | GF(2'%) 46

4 |3 Lns GF(28) 2
n<127 | GF(2'9) 1362

4, =16 GF(28) 14
n<127 | GF(2'%) 635

Table 4: Feasible primitive elements for commonly used coding
parameters.

and six parity-check sub-matrices. The first and second block
rows can be derived from the parity-check equations of X
and X,, respectively.

Proof of Theorem 1. To ensure LESS is MDS, we can verify
the parity-check matrix of LESS, such that any n — k out of n
parity sub-matrices can form an (n — k)& x (n — k)0 square
invertible matrix. Recall that any invertible square matrix has
a non-zero determinant. To ensure that all possible square
matrices from the parity-check matrix are invertible, we can
multiply the determinants of the square matrices and ensure
that the product is non-zero.

There are (nf k) cases for selecting n — k matrices out of
the n parity-check sub-matrices to form a square matrix. The
determinant of each square matrix can be viewed as a polyno-
mial over the coding coefficients v; ;’s (where 1 <7 <n and
1 < j < ). Each v; ; appears in only one parity-check sub-
matrix (i.e., H;), and there are (” ;1) possible square matrices
that contain H;. Thus, the degree of v; ; in the determinant
of such a square matrix is n —k — 1. By multiplying the de-
terminants of all square matrices, the degree of each v; ; is
(n—k—1)(","). We can choose not distinct coding coef-
ficients in GF(2") to ensure the product of determinants is
non-zero when 2" > not + (n — k — 1)(";1), which can be
proven from Noga Alon’s Combinatorial Nullstellensatz. [

Table 4 shows the feasible primitive elements for com-
monly used coding parameters n < 127 and n —k < 4 in
GF(2%) and GF(2!%) based on brute-force search.

B Artifact Appendix
Abstract

LESS is a family of erasure codes designed to improve repair
I/O efficiency by layering extended sub-stripes, aiming to
reduce both repair I/O and I/O seeks and maintain balanced
reductions across all blocks. We implement LESS on OpenEC
(an erasure coding middleware) atop Hadoop 3.3.4 HDFS.

Scope

The artifact is a research-driven prototype that can be used to
validate the concepts, designs, and evaluation results of LESS
presented in the paper.

Contents
The artifact has the following contents:

* src/, which includes the implementation of LESS as a
patch to the OpenEC codebase.

* scripts/, which includes the evaluation scripts and
configuration files to reproduce our evaluation results.

* README.md, which overviews the implementation and
provides essential information to run the prototype.

e AE_INSTRUCTION.md, which includes detailed instruc-
tions for artifact evaluation.

Hosting

The artifact is hosted in GitHub at https://github.com
/adslabcuhk/less. We use version v1.0.0 for artifact
evaluation.

Requirements

Hardware Dependencies

We recommend 15 machines to run the experiments with
our prototype and evaluation scripts. These machines need
to be connected via a 10 Gbps network, such that they are
reachable from each other. For each machine, we recommend
a quad-core CPU, 16 GiB of memory, a 7200 RPM SATA
HDD and above. We need a minimum of 15 machines to form
a storage cluster for the default erasure coding parameters
(n,k) = (14,10). In particular, we use one machine to run the
HDFS NameNode and the other machines to run the HDFS
DataNodes.

Software Dependencies
The artifact is developed and tested on Ubuntu 22.04 LTS
with the following software dependencies:

¢ OpenEC: g++, cmake, redis, hiredis, ISA-L,
gf-complete

* Hadoop HDFS: openjdk-8-jdk, maven

* scripts: expect, python3, wondershaper

Testbed Setup
Please set up the testbed with the following steps:

* Prepare the hardware dependencies as described.

¢ Download the artifact (version v1.0.0) from URL: ht
tps://github.com/adslabcuhk/less/releases.

e Extract the files with tar -zxvf less.tar.gz; run
cd less to navigate to the project directory.

* Follow AE_INSTRUCTION.md to set up the testbed and
run experiments with our provided evaluation scripts.
The testbed setup takes around 5 hours, depending on
the hardware specifications.


https://github.com/adslabcuhk/less
https://github.com/adslabcuhk/less
https://github.com/adslabcuhk/less/releases
https://github.com/adslabcuhk/less/releases

Evaluation
Artifact Claims

Our goal is to demonstrate LESS’s effectiveness in improving
repair performance. For numerical analysis (i.e., Exp#A1 and
Exp#A2), we expect the results to match those in our paper.
For testbed experiments (i.e., Exp#B1 to Exp#BS5), we expect
that LESS reduces the single-block repair and full-node recov-
ery times compared to the baseline erasure codes. However,
the testbed experiment results may vary from those in our
paper due to different factors, such as cluster sizes, machine
specifications, operating systems, and software packages.

Experiments

Exp#A1 (Single-block repair). Expected outcome: Exp#Al
produces the results as shown in Tables 2 and 3, which demon-
strate that LESS reduces the average repair I/Os of RS, Hitch-
hiker, HashTag, and ET, and reduces the average number of
I/O seeks of Clay. Approximate runtime: 2 compute minutes.

Exp#A2 (Multi-block repair). Expected outcome: Exp#A2
produces the results as shown in Figure 3, which demonstrate
that LESS reduces the average repair I/O of RS, and achieves
similar average numbers of I/O seeks as RS. Approximate
runtime: 1 compute minute.

Exp#B1 (Single-block repair). Expected outcome: Exp#B1
produces the results as shown in Figure 4(a), which demon-
strate that LESS reduces the single-block repair times of RS,
Hitchhiker, HashTag, ET, and Clay. Approximate runtime: 2
compute hours.

Exp#B2 (Full-node recovery). Expected outcome: Exp#B2
produces the results as shown in Figure 4(b), which demon-
strate that LESS reduces the full-node recovery times of RS,
Hitchhiker, HashTag, ET, and Clay. Approximate runtime: 2
compute hours.

Exp#B3 (Encoding throughput). Expected outcome:
Exp#B3 produces the results as shown in Figure 4(c), which
demonstrate that LESS has lower single-stripe encoding
throughput than RS, yet the coding computation overhead
is limited compared to bandwidth and I/O operations. Approx-
imate runtime: 5 compute minutes.

Exp#B4 (Impact of network bandwidth). Expected out-
come: Exp#B4 produces the results as shown in Figure 5(a).
It shows that when the network bandwidth increases, while
Clay suffers from significant I/O seek overhead, LESS still
effectively reduces the single-block repair time due to small
sub-packetization. Approximate runtime: 2 compute hours.

Exp#B5 (Impact of packet size). Expected outcome: It
shows that for small packet sizes, while Clay incurs significant
I/0O overhead for processing a large number of sub-blocks,
LESS maintains stable repair performance due to small sub-
packetization. Approximate runtime: 2 compute hours.



	Introduction
	Background
	Basics of Erasure Coding
	Related Work on Repair Optimization
	Goals

	LESS Design
	Vandermonde-Based RS Codes
	Motivating Example
	Construction
	Repair
	I/O-Efficient Repairs in LESS

	Evaluation
	Numerical Analysis
	Testbed Experiments

	Conclusion
	Appendix: Proof of MDS Property
	Artifact Appendix

