ParaRC: Embracing Sub-Packetization for Repair Parallelization in MSR-Coded Storage

Xiaolu Li†, Keyun Cheng‡, Kaicheng Tang‡, Patrick P. C. Lee‡,
Yuchong Hu†, Dan Feng†, Jie Li*, and Ting-Yi Wu*

†Huazhong University of Science and Technology ‡The Chinese University of Hong Kong *Huawei Technologies Co., Ltd., Hong Kong

Abstract
Minimum-storage regenerating (MSR) codes are provably optimal erasure codes that minimize the repair bandwidth (i.e., the amount of traffic being transferred during a repair operation), with the minimum storage redundancy, in distributed storage systems. However, the practical repair performance of MSR codes still has significant room to improve, as the mathematical structure of MSR codes makes their repair operations difficult to parallelize. We present ParaRC, a parallel repair framework for MSR codes. ParaRC exploits the sub-packetization nature of MSR codes to parallelize the repair of sub-blocks and balance the repair load (i.e., the amount of traffic sent or received by a node) across the available nodes. We show that there exists a trade-off between the repair bandwidth and the maximum repair load, and further propose a fast heuristic that approximately minimizes the maximum repair load with limited search time for large coding parameters. We prototype our heuristic in ParaRC and show that ParaRC reduces the degraded read and full-node recovery times over the conventional centralized repair approach in MSR codes by up to 59.3% and 39.2%, respectively.

1 Introduction
Erasure coding has been widely deployed in practical distributed storage systems for providing fault tolerance against the lost data in failed storage nodes, while incurring significantly lower redundancy overhead than traditional replication [37]. Among many erasure codes, Reed-Solomon (RS) codes are the most popular and reportedly deployed in production, such as Google [11], Facebook [23], Backblaze [9], and CERN [25]. However, RS codes are known to incur high repair bandwidth (i.e., the amount of traffic being transferred during a repair operation) when repairing a failed node. As the repair of any lost block needs to retrieve multiple coded blocks from other available nodes for decoding, thereby leading to bandwidth amplification.

Many repair-friendly erasure codes have been proposed in the literature to reduce the repair bandwidth of RS codes. Examples include regenerating codes [10, 24, 27, 33, 36], locally repairable codes [15, 17, 32], and piggybacking codes [29, 30]. In particular, minimum-storage regenerating (MSR) codes [10] are theoretically proven to be repair-optimal, such that they minimize the repair bandwidth for repairing a single node failure, while preserving the minimum storage redundancy as in RS codes (i.e., the redundancy is minimum among any erasure code that tolerates the same number of node failures). For example, compared with the (14,10) RS code adopted by Facebook [23, 29] (i.e., 10 original uncoded blocks are encoded into 14 RS-coded blocks), MSR codes with the same coding parameters can reduce the repair bandwidth by 67.5%. Given the theoretical guarantees of MSR codes, many follow-up efforts have proposed practical constructions for MSR codes and evaluated their performance in real-world distributed storage systems (e.g., [13, 24, 27, 36]); for example, Clay codes [36] are shown to minimize both repair bandwidth and I/Os (i.e., the amount of disk I/Os to local storage during a repair operation is the same as the minimum repair bandwidth), support general coding parameters, and be deployed and integrated in Ceph [3].

While MSR codes provably minimize the repair bandwidth, we argue that their practical repair performance remains bottlenecked by the node where the lost block is decoded, as the node needs to retrieve an amount of data from other available nodes more than the amount of lost data; in other words, bandwidth amplification still exists, albeit less severe than RS codes. To mitigate the repair bottleneck issue, recent studies [20, 22] have shown how to parallelize and load-balance the repair for RS codes across multiple available nodes, by decomposing the repair operation into partial repair sub-operations that are executed in different nodes in parallel and combining the partially repaired blocks into the final decoded block. Thus, it is natural to ask whether we can also decompose and parallelize the repair for MSR codes like RS codes. Unfortunately, the answer is negative: the repair for RS codes satisfies the additive associativity of linear combinations and the repair operation can be decomposed; in contrast, MSR codes have a different mathematical structure from RS codes, such that the repair of MSR codes needs to solve a system of linear combinations and cannot be directly decomposed (see §2 for details).

This motivates an alternative to parallelize the repair of MSR codes. Our insight is that MSR codes build on sub-packetization, in which a block is partitioned into sub-blocks, and the repair of a lost block in MSR codes is to retrieve a
subset of sub-blocks from other available nodes for decoding. The sub-blocks of a lost block can be represented as different linear combinations, and are finally decoded by solving the system of linear combinations. Based on sub-packetization, our idea is to distribute the repair of sub-blocks across different available nodes and later combine the repaired sub-blocks to reconstruct the lost block. An open question is how to distribute the repair of sub-blocks to balance the repair load (i.e., the amount of traffic sent or received by a node) across the available nodes.

We present ParaRC, a parallel repair framework for MSR codes that aims to balance the repair load across the available nodes and hence accelerate the repair operation. We make the following contributions:

• We observe that there exists a trade-off between the repair bandwidth and the maximum repair load. To formally analyze the trade-off, we model the repair operation of MSR codes as a directed acyclic graph (DAG) [19] and solve the repair parallelization problem as a DAG coloring problem. We identify an extreme point, the min-max repair load (MLP) point, which minimizes the maximum repair load with the smallest possible repair bandwidth.

• We show that finding the MLP is computationally expensive in general, and hence propose a fast heuristic that quickly identifies the approximate MLP point even for large coding parameters.

• We prototype ParaRC atop Hadoop 3.3.4 HDFS [4] and evaluate our prototype on Alibaba Cloud [1]. We show that ParaRC reduces the degraded read and full-node recovery times by up to 59.3% and 39.2%, respectively, compared with the centralized repair for Clay codes. We also show that ParaRC reduces the full-node recovery time of the default repair method in Hadoop-3.3.4 HDFS by 71.4%.

We release the source code of our ParaRC prototype at: http://adslab.cse.cuhk.edu.hk/software/pararc.

2 Background and Motivation

2.1 Basics of Erasure Coding

We review the basics of erasure coding. We consider a large-scale distributed storage system that organizes data and performs reads/writes in fixed-size blocks, such that the block size is large enough (e.g., 128 MiB in Hadoop 3.3.4 HDFS [4] and 256 MiB in Facebook [28]) to mitigate I/O overhead. In this work, we target the distributed storage environments where the network bandwidth and disk I/Os are the bottlenecks, as opposed to the computational overhead for encoding and decoding operations in erasure coding.

There are many approaches to construct erasure codes, among which Reed-Solomon (RS) codes [31] are the most widely deployed (e.g., [9, 11, 23, 25]). Specifically, an \((n, k)\) RS code, configured by two parameters \(k\) and \(n\) (where \(n > k\)), encodes every set of \(k\) original uncoded blocks into \(n\) coded blocks, such that any \(k\) out of \(n\) coded blocks suffice to decode the \(k\) original uncoded blocks. Each set of \(n\) coded blocks is called a stripe. In this work, we focus on a single stripe, while multiple stripes are independently and identically encoded. Each stripe is stored in \(n\) distinct nodes, so as to tolerate any \(n - k\) node (or block) failures. RS codes satisfy three practical properties: (i) generality, where \(n\) and \(k\) can be general parameters (provided that \(n > k\)), (ii) maximum distance separable (MDS), where the redundancy overhead \(n/k\) is the minimum for tolerating any \(n - k\) node failures, and (iii) systematic, where the \(k\) uncoded blocks are kept in the \(n\) coded blocks (i.e., the uncoded blocks remain directly accessible after encoding).

We elaborate on the mathematical properties of RS codes to help motivate our work. In this paper, we treat the uncoded and coded blocks equivalently in a systematic stripe and simply refer to them as “blocks” in our discussion. Let \(B_0, B_1, \cdots, B_{n-1}\) be the \(n\) blocks of a stripe in an \((n, k)\) RS code that are respectively stored in \(n\) nodes, denoted by \(N_0, N_1, \cdots, N_{n-1}\). Each block can be expressed as a linear combination of \(k\) blocks of the same stripe under Galois Field arithmetic. For example, we have \(B_0 = \sum_{i=1}^{k} a_i B_i\) for some coding coefficients \(a_i\’s\) \((1 \leq i \leq k)\).

Despite the popularity, RS codes are known to incur high repair penalty, since repairing a single lost block in RS codes needs to transfer multiple blocks of the same stripe from other available nodes. The repair penalty manifests in two aspects. First, the repair incurs high repair bandwidth, defined as the amount of traffic transferred over the network during a repair operation. In general, an \((n, k)\) RS code incurs a repair bandwidth of \(k\) times the block size when repairing a lost block. Figure 1(a) shows an example of the conventional centralized repair for the \((4, 2)\) RS code. To repair a lost block (say \(B_0\)), the new node (say \(N_0\)) downloads any \(k = 2\) blocks (say \(B_1\) and \(B_2\) from \(N_1\) and \(N_2\), respectively), so as to repair \(B_0\) via the linear combination of the downloaded blocks. The repair bandwidth is 512 MiB for a block size of 256 MiB.

Second, the conventional centralized repair also incurs high maximum repair load, where the repair load of a node is defined as the amount of traffic that the node sends or receives, whichever is larger, during a repair operation, and the maximum repair load is the largest repair load among all nodes. In the centralized repair, the new node has the most traffic among all nodes, as it receives an amount of traffic that is \(k\) times the block size, while each other available node sends one block only. Thus, the performance of the centralized repair is bottlenecked by the new node. For example, from Figure 1(a), the new node \(N_0\) has the most received traffic, and the maximum repair load is also 512 MiB for a block size of 256 MiB.

Thus, the repair performance in RS codes is dominated by both the repair bandwidth and the maximum repair load. We argue that while many studies focus on reducing the repair bandwidth (§2.2) or reducing the maximum repair load (§2.3), there exists a trade-off in minimizing both of the performance metrics (§2.4).
2.2 Reducing Repair Bandwidth

Existing studies on erasure coding reduce the repair bandwidth by proposing new erasure code constructions. Examples include regenerating codes [10, 13, 24, 27, 33, 35, 36], locally repairable codes [15, 32], and piggybacking codes [29, 30]. In this paper, we focus on minimum-storage regenerating (MSR) codes (first proposed in [10]), which theoretically minimize the repair bandwidth for repairing a single lost block, with the minimum redundancy (i.e., MDS property) as RS codes.

MSR codes differ from RS codes by performing sub-packetization, which divides a block into multiple sub-blocks and performs encoding and repair at the sub-block granularity. Specifically, an \((n,k)\) MSR code partitions each block \(B_i\) \((0 \leq i \leq n-1)\) into \(w\) sub-blocks \((w > 1)\), denoted by \(b_{i,0}, b_{i,1}, \ldots, b_{i,w-1}\), such that each sub-block is encoded through a linear combination of \(k \times w\) sub-blocks from \(k\) blocks (under Galois Field arithmetic). To repair any lost block (or \(w\) sub-blocks therein), MSR codes only transfer sub-blocks from other nodes, such that the total amount of traffic of the transferred sub-blocks is minimized.

Classical MSR codes [10] require that the available nodes read all their locally stored sub-blocks, encode them, and transfer the encoded sub-blocks to the new node (with the minimum repair bandwidth) to repair the lost block. In this work, we consider two state-of-the-art MSR codes, namely Clay codes [36] and Butterfly codes [24], both of which have been implemented and empirically evaluated. Our goal is to show the applicability of our work to different MSR codes, using Clay codes and Butterfly codes as two representatives. In particular, Clay codes minimize both repair bandwidth and I/Os (a.k.a. repair-by-transfer [33]) for general coding parameters \(n\) and \(k\), while Butterfly codes minimize both repair bandwidth and I/Os for the \(k\) uncoded blocks in a systematic stripe and support \(n-k=2\) only. Thus, we use Clay codes as our major baseline throughout the paper.

We first provide an overview for Clay codes. At a high level, Clay codes repair a lost block in three steps: (i) pairwise reverse transformation (PRT), which couples sub-blocks in pairs and generates intermediate sub-blocks; (ii) MDS decoding, which performs linear combinations on \(k\) sub-blocks to decode intermediate sub-blocks and a subset of repaired sub-blocks; and (iii) pairwise forward transformation (PFT), which again couples sub-blocks in pairs to generate the remaining repaired sub-blocks, such that the lost block is completely repaired. In Clay codes, the number of sub-blocks \(w\) is given by \(w = (n-k)\lceil n/(n-k)\rceil\).

Let us take the \((4,2)\) Clay code (where \(w = 4\)) as an example, as shown in Figure 1(b). Let \(c_i\) be the \(i^{th}\) intermediate sub-block generated in the repair. Also, let \(\langle \ldots \rangle\) denote some linear combination of sub-blocks within the brackets, where the subscript \(i\) differentiates the linear combinations with different coding coefficients. To repair a lost block, say \(B_0\), the new node \(N_0\) downloads two sub-blocks \(b_{0,0}\) and \(b_{1,1}\) from each \(N_i\), where \(1 \leq i \leq 3\). \(N_0\) repairs the four sub-blocks of \(B_0\) as follows. First, in the PRT step, \(N_0\) generates two intermediate sub-blocks \(c_0\) and \(c_1\) by coupling \(b_{2,1}\) and \(b_{3,0}\):

\[
c_0 = \langle b_{2,1}, b_{3,0} \rangle_{0}, \quad c_1 = \langle b_{2,1}, b_{3,0} \rangle_{1}.
\]

Second, in the MDS decoding step, \(N_0\) performs linear combinations on \(b_{2,0}\) and \(c_0\), and on \(b_{3,1}\) and \(c_1\). It repairs \(b_{0,0}\) and \(b_{0,1}\), and generates two intermediate sub-blocks \(c_2\) and \(c_3\):

\[
b_{0,0} = \langle b_{2,0}, c_0 \rangle_{2}, \quad c_2 = \langle b_{2,0}, c_0 \rangle_{3},
\]

\[
b_{0,1} = \langle b_{3,1}, c_1 \rangle_{4}, \quad c_3 = \langle b_{3,1}, c_1 \rangle_{5}.
\]

Finally, in the PFT step, \(N_0\) repairs \(b_{0,2}\) by coupling \(b_{1,0}\) and \(c_2\), and repairs \(b_{0,3}\) by coupling \(b_{1,1}\) and \(c_3\):

\[
b_{0,2} = \langle b_{1,0}, c_2 \rangle_{6}, \quad b_{0,3} = \langle b_{1,1}, c_3 \rangle_{7}.
\]

The \((4,2)\) Clay code minimizes the repair bandwidth to 384 MiB for a block size of 256 MiB (it downloads six sub-blocks of size 64 MiB each). Compared with the \((4,2)\) RS code, the \((4,2)\) Clay code reduces the repair bandwidth by 25%. Note that the maximum repair load of the Clay code is also 384 MiB (same as the repair bandwidth), which is the amount of traffic downloaded in the new node.

We also consider Butterfly codes [24] in this paper. For an \((n,k)\) Butterfly code \((n-k = 2)\), we focus on the repair of the first \(k\) original uncoded blocks in a systematic stripe (whose repair bandwidth and I/Os are both minimized). An \((n,k)\)
Butterfly code divides each block into \(w = 2^k - 1 \) sub-blocks. When repairing a lost block, a new node first downloads half of the sub-blocks from each available node. It then selects different subsets of sub-blocks among all the received sub-blocks and performs XOR operations to repair the \(w \) sub-blocks of the lost block. For example, to repair a lost block of size 256 MiB for the (4,2) Butterfly code, the new node downloads 128 MiB of sub-blocks from each of the three available nodes, such that the repair bandwidth and the maximum repair load are both 384 MiB.

2.3 Reducing Maximum Repair Load

Some studies reduce the maximum repair load by decomposing and parallelizing a repair operation across the available nodes [20, 22]. In this work, we focus on repair pipelining [20], which reduces the time of repairing a lost block to almost the same as the time of directly reading a block.

Repair pipelining is mainly designed for RS codes [31]. It divides a single-block repair operation into multiple sub-block repair operations and evenly distributes sub-block repair operations across all nodes. For example, suppose that we use repair pipelining to repair a lost block \(B_0 \) for an \((n,k)\) RS code. It first divides each block \(B_i \) (\(0 \leq i \leq n - 1 \)) into multiple sub-blocks, denoted by \(b_{i,0}, b_{i,1}, \cdots \). Recall that each block can be expressed as a linear combination of \(k \) blocks (§2.1), say \(B_0 = \sum_{i=1}^{n} a_i B_i \) for some coding coefficients \(a_i \)’s. Repair pipelining makes two observations. First, each sub-block in \(B_0 \) is also a linear combination of the \(k \) sub-blocks at the same block offset with the same coding coefficients, i.e., \(b_{0,j} = \sum_{i=1}^{k} a_i b_{i,j} \), for the \(j \)-th sub-block. Second, the linear combination is addition associative, meaning that \(b_{0,j} \) can be computed from the linear combinations of partial terms.

To repair \(B_0 \), repair pipelining works as follows. First, \(N_1 \) starts the repair of \(b_{0,0} \) by sending \(a_1 b_{1,0} \) from its local storage to \(N_2 \). Second, \(N_2 \) combines the received \(a_1 b_{1,0} \) with \(a_2 b_{2,0} \) from its local storage to form \(a_1 b_{1,0} + a_2 b_{2,0} \). Third, \(N_2 \) sends \(a_1 b_{1,0} + a_2 b_{2,0} \) to \(N_3 \); meanwhile, \(N_1 \) can start the repair of \(b_{0,1} \) by sending \(a_1 b_{1,1} \) from its local storage to \(N_2 \) without interfering with \(N_2 \)’s transmission. Finally, the last available node \(N_3 \) reconstructs \(b_{0,j} \) for each \(j \)-th sub-block and sends \(b_{0,j} \) to \(N_0 \).

Repair pipelining reduces the maximum repair load to the same as the block size. For example, Figure 1(c) shows an example of repair pipelining for the (4,2) RS code. The maximum repair load is 256 MiB for a block size of 256 MiB since each of the \(k \) available nodes sends or receives one block of data; it is even less than that in Clay codes (Figure 1(b)). Note that the repair bandwidth remains 512 MiB, the same as in the conventional repair for RS codes (Figure 1(a)), since \(k \) available nodes transfer \(k \) blocks of data in total.

2.4 Motivation and Challenges

From §2.3, a natural question to ask is whether we can apply repair pipelining to MSR codes (§2.2) to reduce the maximum repair load. Unfortunately, the answer is negative, mainly because the repair of sub-blocks is not based on the addition associativity as in RS codes; instead, it is done by solving a system of linear combinations (e.g., see Equations (1)-(3) in §2.2 for Clay codes). Thus, we cannot pipeline the repair of individual sub-blocks of MSR codes as in RS codes.

Nevertheless, the sub-packetization nature of MSR codes offers an opportunity for parallelizing a repair operation to reduce the maximum repair load. First, the repair of a sub-block in MSR codes only requires a subset of available sub-blocks; for example, in the (4,2) Clay code, each sub-block is a linear combination of two currently stored or intermediate sub-blocks. Thus, we can distribute the repair operations of sub-blocks across different nodes for load balancing. Second, in erasure coding implementation, each block is further divided into smaller-sized units (called packets), so that the repair of a block can be parallelized at the packet level (see §6 for implementation details).

Figure 2(a) shows a parallel repair example for the (4,2) Clay code. First, in the PRT step, \(N_1 \) generates \(c_0 \) and \(c_1 \) from \(b_{1,0} \) (retrieved from \(N_3 \)) and \(b_{2,1} \) (locally stored in \(N_2 \)). Second, in the MDS decoding step, \(N_2 \) decodes \(c_2 \) and \(b_{0,0} \) from \(b_{2,0} \) (locally stored in \(N_2 \)) and \(c_0 \) (generated in the PRT step), while \(N_0 \) generates \(c_3 \) and \(b_{0,1} \) from \(c_1 \) (retrieved from the PRT step).
We first formulate a generic repair model that characterizes the repair load for different repair solutions, either centralized (e.g., Figures 1(a) and 1(b)) or parallel (e.g., Figures 1(c) and 1(d)). In this example, the repair operation can be parallelized in two aspects: (i) the repair of $b_{0,1}$ and $b_{0,3}$ in N_0, as well as the repair of $b_{0,2}$ in N_1, can be performed in parallel; and (ii) the sub-block repair operations in N_0, N_1, and N_2 can be parallelized at the packet level. Thus, the maximum repair load is 320 MiB (i.e., the five sub-blocks $b_{0,0}, b_{0,2}, b_{1,1}, b_{3,1}$, and c_1 retrieved by N_0) for a block size of 256 MiB.

Such a parallel repair approach may amplify the repair bandwidth, as some sub-blocks are reused more than once by different nodes. For example, the sub-blocks $b_{2,1}$ and $b_{3,0}$ are used to compute c_1, c_2, and $b_{0,0}$. Each of the three sub-blocks will be transmitted over the network. Thus, instead of transmitting each of the sub-blocks $b_{2,1}$ and $b_{3,0}$ only once as in the centralized repair (Figure 1(b)), the parallel repair now includes the sub-blocks $b_{2,1}$ and $b_{3,0}$ in three transmissions. The repair bandwidth increases from the minimum point of 384 MiB to 448 MiB.

How to carefully schedule the parallel repair of different sub-blocks is a critical issue. Figure 2(b) shows another example of the parallel repair of the (4,2) Clay code, where the repair is less efficiently scheduled. In this example, the sub-blocks $b_{2,0}, b_{2,1}$, and $b_{3,0}$ are all transmitted twice. Thus, the repair bandwidth is 832 MiB, while the maximum repair load is 512 MiB.

In summary, the parallel repair of MSR codes can be scheduled to balance the trade-off between the repair bandwidth and the maximum repair load, as shown in Table 1 for the (4,2) Clay code. Our goal in this paper is to design a parallel repair solution that can effectively balance the trade-off for general coding parameters of MSR codes.

<table>
<thead>
<tr>
<th>Repair bandwidth (MiB)</th>
<th>Maximum repair load (MiB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS; centralized</td>
<td>512 (highest)</td>
</tr>
<tr>
<td>Clay; centralized</td>
<td>384 (highest) 384 (lowest)</td>
</tr>
<tr>
<td>RS; parallel</td>
<td>512 (highest)</td>
</tr>
<tr>
<td>Clay; parallel</td>
<td>448 (medium) 320 (medium)</td>
</tr>
</tbody>
</table>

Table 1: Summary of the four repair methods for $(n,k) = (4,2)$.

3 Model and Analysis

Before we design the parallel repair solution for MSR codes, we first formulate a generic repair model that characterizes the trade-offs between the repair bandwidth and the maximum repair load for different repair solutions, either centralized (e.g., Figures 1(a) and 1(b)) or parallel (e.g., Figures 1(c) and 2). In this section, we design our repair model (§3.1) and evaluate the repair bandwidth and the maximum repair load of a repair solution (§3.2). Finally, we analyze the trade-off between the repair bandwidth and the maximum repair load for different repair solutions on RS and MSR codes (§3.3).

3.1 Characterizing Repair Solutions

Design requirements. We first identify three design requirements for our repair model to characterize repair solutions based on our example in Figure 2:

- **R1:** It can describe the linear combination relationships of sub-blocks (e.g., $b_{0,0}$ is the linear combination of $b_{2,0}, b_{2,1},$ and $b_{3,0}$).
- **R2:** It can describe which node is scheduled to execute a repair operation for each sub-block and how the repair operation is executed (e.g., N_2 downloads $b_{3,0}$ from N_3 and generates $b_{0,0}$ with its locally stored $b_{2,0}$ and $b_{2,1}$).
- **R3:** It can describe how the repaired sub-blocks are collected (e.g., $b_{0,0}, b_{0,1}, b_{0,2},$ and $b_{0,3}$ can be repaired in different nodes, but are finally collected by N_0 for reconstructing block B_0).

Our repair model builds on the ECDAG abstraction [19], which characterizes and schedules erasure coding operations in distributed storage systems. Note that an ECDAG can model the linear combination relationships of sub-blocks (i.e., R1 addressed), but cannot directly schedule the repair operations for different sub-blocks in different nodes (i.e., R2 and R3 not addressed). In the following, we first introduce the ECDAG abstraction, and then explain how it can be extended to address all our requirements.

Basics of an ECDAG. We provide an overview of an ECDAG. An ECDAG $G = (V,E)$ is a directed acyclic graph (DAG) that describes an erasure coding operation (including the repair of a block), where V is the set of vertices and E is the set of edges. A vertex $v_i \in V$ (where $\ell \geq 0$) refers to either a sub-block that is stored in a node (i.e., $\ell = \ell_1 \times w + j$ for $b_{i,j}$, where $i, j \geq 0$) or an intermediate sub-block that is generated on-the-fly but will not be finally stored (i.e., $\ell \geq n \times w$). With a slight abuse of notation, we refer to a sub-block with its vertex v_ℓ, where ℓ is the index. An edge $e(\ell_1, \ell_2) \in E$ means that the sub-block v_{ℓ_1} is an input to the linear combination for computing the sub-block v_{ℓ_2}. Note that the repair workloads vary across blocks, so the repair of each block will lead to a different ECDAG instance.

We use Clay codes [36] as an example to show how an ECDAG describes its repair workflow. Figure 3(a) shows the block layout of the (4,2) Clay code (where $w = 4$) in an ECDAG, and Figure 3(b) shows the repair flow for block B_0, which we introduce in §2.2. First, in the PRT step, we couple sub-blocks $v_9 (b_{2,1})$ and $v_{12} (b_{3,0})$ as a pair and perform linear combinations to generate two intermediate sub-blocks $v_{16} (c_0)$ and $v_{17} (c_1)$. Second, in the MDS decoding step, we decode sub-blocks $v_0 (b_{0,0})$ and $v_8 (c_2)$ from sub-blocks $v_5 (b_{2,0})$ and $v_{16} (c_0)$, and we decode sub-blocks $v_1 (b_{0,1})$ and $v_{19} (c_3)$ from sub-blocks $v_{3,1}$ and $v_{17} (c_1)$. Note that the sub-blocks $v_0 (b_{0,0})$ and $v_1 (b_{0,1})$ of B_0 are repaired. Finally, in the PFT
step, we couple sub-blocks \(v_4 (b_{1,0})\) and \(v_{18} (c_2)\) to repair sub-block \(v_2 (b_{0,2})\), and also couple sub-blocks \(v_5 (b_{1,1})\) and \(v_{19} (c_3)\) to repair sub-block \(v_3 (b_{0,3})\). \(B_0\) is now fully repaired.

pECDAG. We extend the ECDAG abstraction into the pECDAG abstraction to support the scheduling of parallel sub-block repair operations, so that we can model the trade-off between the repair bandwidth and the maximum repair load. Specifically, a pECDAG makes two extensions over an ECDAG. First, it associates each vertex with a color that corresponds to a node, such that the node is responsible for generating or storing all sub-blocks associated with the same-colored vertices (i.e., R2 addressed). Second, it connects all repaired sub-blocks, which may reside in different nodes to a vertex \(R\), which represents a data collector (i.e., R3 addressed).

Figure 4(a) shows the pECDAG for the parallel repair in Figure 2. To help our discussion, we refer to the topmost vertices (e.g., \(v_4, v_5, v_8, v_9, v_{12}, \) and \(v_{13}\)) that correspond to the sub-blocks retrieved from the other available nodes as the leaf vertices, and the vertex \(R\) that corresponds to the data collector as the root vertex. Note that the colors of both the leaf vertices and root vertex are fixed, as they depend on where the retrieved sub-blocks and repaired block reside, respectively.

For example, from Figure 4(a), \(N_2\) (i.e., yellow-colored) computes the sub-block \(v_{17} (c_1)\) in Figure 2 and sends it to \(N_0\) (i.e., red-colored), which repairs the sub-blocks \(v_1 (b_{0,1})\) and \(v_3 (i.e., b_{0,3})\). Also, \(N_2\) computes the sub-blocks \(v_0 (b_{0,0})\) and \(v_{18} (c_2)\). It sends \(v_{18}\) to \(N_1\) (i.e., green-colored), which repairs the sub-block \(v_2 (b_{0,2})\). Finally, \(N_0\) collects all the repaired sub-blocks for the reconstruction of \(B_0\).

3.2 Evaluating Repair Solutions

Given \((n, k, w)\) and the block to repair, there are different ways to color the vertices of a pECDAG, so there are multiple possible pECDAG instances. We associate each pECDAG instance with a traffic table, so as to efficiently quantify the repair bandwidth and the maximum repair load of the corresponding repair solution.

Definition of a traffic table. A traffic table maintains the amount of data that each node sends or receives when repairing a block. For each node in the system, the traffic table records the number of incoming sub-blocks received by the node and the number of outgoing sub-blocks sent by the node. The repair bandwidth is the total number of incoming sub-blocks (or equivalently, the total number of outgoing sub-blocks) of all nodes, while the maximum repair load is the largest number of incoming or outgoing sub-blocks of a node across all nodes. For example, Figure 4(b) shows the traffic table for the parallel repair solution shown in Figure 2, in which the repair bandwidth is 7 sub-blocks and the maximum repair load is 5 sub-blocks.

Construction of a traffic table. We show how we generate the traffic table for a given pECDAG instance. We initialize a traffic table \(T\) with two arrays \(T.In\) and \(T.Out\), which record the numbers of incoming and outgoing sub-blocks for each node, respectively. For each vertex \(v_i\), we traverse each edge \(e(v_i, v_j)\). Let \(N'\) and \(N''\) be two nodes with respect to the colors of \(v_i\) and \(v_j\), respectively. If \(v_i\) and \(v_j\) have different colors, we increment \(T.Out[N']\) and \(T.In[N'']\) by one; however, if there exist two edges, say \(e(v_i, v_j)\) and \(e(v_i, v_h)\), such that \(v_j\) and \(v_h\) have the same color that is different from \(v_i\)’s color, we only increment \(T\) once for the corresponding pairs of nodes. The rationale is that the sub-block \(v_i\) only needs to be transmitted once to calculate the sub-blocks \(v_j\) and \(v_h\).

For example, in Figure 4(a), both \(v_{19}\) and \(v_0\) have the same color as \(v_8\), we do not need to update the traffic table. For \(v_{17}\), as \(v_1\) has a different color, we count \(e(v_{17}, v_1)\) as a transmission and increment the traffic table. As \(v_{19}\) and \(v_1\) have the same color, we do not need to increment the traffic table for \(e(v_{17}, v_{19})\).

3.3 Trade-off Analysis

Based on a pECDAG and its traffic table, we study the trade-off between the repair bandwidth and the maximum repair load. Our idea is to enumerate all possible color combinations of a pECDAG and find the corresponding traffic table for each color combination. Note that the colors of the leaf vertices and the root vertex are fixed (§3.1). Thus, for a pECDAG, we only need to enumerate the color combinations for the intermediate sub-blocks and repaired sub-blocks. Currently, we assume that the repair operation of a stripe is scheduled among the nodes (i.e., \(n\) nodes for an \((n, k)\) code) that store the blocks of the stripe, so as to limit the interference across different stripes.

We consider the repair scenarios of two MSR codes: the
We show the spectrum of repair bandwidth and maximum repair load. For example, for the (14,10) Clay code, the number of color combinations is no less than 14^{256}, while for the (12,10) Butterfly code, the number of combinations is no less than 12^{312}, which are not solvable in polynomial time. Thus, for reasonably large (n,k), it is important to reduce the size of the search space, and hence the running time.

4 Heuristic

As the brute-force approach in general is time-consuming to find the MLP, we propose a heuristic to find an approximate point that is close to the MLP. Our goal is to find a parallel repair solution represented in a pECDAG that keeps both the repair bandwidth and the maximum repair load as low as possible.

Design idea. The high-level idea is to search all the color combinations for a pECDAG, while pruning some branches based on the heuristic to reduce the search space. Intuitively, we can view our heuristic as searching for the solution based on Pareto optimality, such that it searches for the MLP on the Pareto frontier and prunes the dominated solutions that have both larger repair bandwidth and larger maximum repair load than a candidate solution.

We first introduce the key definitions. If two pECDAGs, say X and Y, have the same DAG structure except in the color of a single vertex that refers to an intermediate sub-block or a repaired sub-block, we call X and Y the neighbors. We perform the search on a pECDAG by examining all the neighbors of the pECDAG. If we have examined all the neighbors of a pECDAG, we say that the pECDAG is searched; otherwise, the pECDAG is un-searched. Our heuristic is composed of the following three steps.

Step 1: Initialization. We define an un-searched pool, which is used to keep the pECDAGs that will be searched, as well as a candidate pool, which is used to record the candidate pECDAG solutions to be returned. At the beginning, we generate a random pECDAG, in which the color of a vertex that refers to an intermediate sub-block or a repaired sub-block is randomly selected from a set of candidate colors that represent the nodes storing the available blocks and the node storing the repaired block. We add the random pECDAG to the un-searched pool and the candidate pool for initialization.

Step 2: Searching. Each time we retrieve a pECDAG from the un-searched pool. We enumerate all the neighbors of this pECDAG by changing the color of only one vertex (which refers to an intermediate sub-block or a repaired sub-block). If there are α such vertices and β candidate colors, a pECDAG
has \(\alpha \times (\beta - 1)\) neighbors (note that for each vertex, there are \(\beta - 1\) different candidate colors to which we can change). After we examine all the neighbors of the pECDAG (i.e., the pECDAG is searched), we remove the pECDAG from the un-searched pool.

Step 3: Pruning. After Step 2, we generate \(\alpha \times (\beta - 1)\) new neighbors of a pECDAG. However, not all of them are suitable for future search. Here, we consider different cases of how we compare a neighbor pECDAG that we generate in Step 2 with the pECDAGs in the candidate pool to decide whether the neighbor pECDAG is suitable for future search. Suppose that there are two pECDAGs in the candidate pool (say, A and B), and Figure 6 shows the four cases when we compare a neighbor pECDAG with the solutions in the candidate pool:

- **Case 1** (Figure 6(a)): This is an example of a generated neighbor pECDAG that is not suitable for future search. If there exists a pECDAG in the candidate pool that provides less maximum repair load and less repair bandwidth than the neighbor that we generate in Step 2, it means that we already have an existing solution that outperforms the neighbor. Thus, we discard the neighbor. The remaining three cases show the examples of when we can add a neighbor pECDAG to the candidate pool.

- **Case 2** (Figure 6(b)): If the neighbor has the least maximum repair load or the least repair bandwidth compared with all the pECDAGs in the candidate pool, we can add the neighbor to the candidate pool.

- **Case 3** (Figure 6(c)): If the neighbor lies between two solutions in the candidate pool, we can add the neighbor to the candidate pool.

- **Case 4** (Figure 6(d)): If we find that the repair bandwidth and the maximum repair load of the neighbor are both less than those of an existing pECDAG in the candidate pool, we can add the neighbor to the candidate pool and also remove the existing one from the candidate pool.

For the neighbors that have been added to the candidate pool, we also add them to the un-searched pool for our future search. Note that Step 2 and Step 3 are performed iteratively until the un-searched pool is empty. Then, we report the pECDAG that has the least maximum repair load as an approximate MLP from the candidate pool.

Discussion. As our heuristic in general only provides a local optimal solution, we can repeat the process to find an approximate MLP starting from Step 1 by multiple runs, such that we can choose the one with the least maximum repair load from all the runs. We show in §7.2 how the heuristic performs in finding the approximate MLP.

5 Design of Repair Operations

Repair operations in a distributed storage system will be triggered in two scenarios, namely **degraded reads**, where a client reads an unavailable block, and **full-node recovery**, where the distributed storage system repairs the lost blocks of a failed node in a new node. In this section, we design the two repair operations based on our heuristic in §4.

Degraded reads. A client issues a degraded read operation when it requests an unavailable block, in which it needs to repair the requested block through the available blocks of the same stripe stored in other nodes. We generate an approximate MLP from our heuristic. We then associate the approximate MLP with a pECDAG, which describes the repair workflow with the sub-blocks (including the available sub-blocks, repaired sub-blocks, and intermediate sub-blocks) and the nodes (i.e., the nodes that store the available blocks and the node associated with client). Note that a pECDAG varies for different unavailable blocks of a stripe. Also, as the blocks of different stripes are distributed across different sets of nodes in a distributed storage system, a pECDAG varies across different stripes and needs to be generated for each requested unavailable block of a stripe.

Full-node recovery. In a full-node recovery operation, a new node is added to the system, and we repair all the lost blocks of a failed node and store the repaired blocks in the new node. We run our heuristic to generate an approximate MLP for each lost block to be repaired and associate the approximate MLP with a pECDAG. For each block, we associate the colors in the corresponding pECDAG with both the nodes that store the available blocks in the stripe and the new node that is added for full-node recovery.

6 ParaRC

We propose a parallel repair middleware, ParaRC, to balance the repair bandwidth and the maximum repair load for MSR codes. We first introduce the architecture of ParaRC in §6.1. We then elaborate on the implementation details in §6.2.
We have built ParaRC as a repair middleware based on OpenEC [19], an erasure coding framework that supports the deployment of custom erasure coding solutions in existing distributed storage systems. ParaRC leverages OpenEC to deploy the parallel repair of MSR codes on Hadoop HDFS [4]. HDFS stores data in fixed-size blocks. It comprises a NameNode and multiple DataNodes: the NameNode manages the storage of all DataNodes and maintains the metadata of all stored blocks, while the DataNodes provide the storage for the blocks. ParaRC performs encoding across HDFS blocks: for an \((n,k)\) code, it encodes every \(k\) uncoded HDFS blocks (i.e., data blocks) into \(n - k\) coded HDFS blocks (i.e., parity blocks) to form a stripe, and stores the stripe in \(n\) DataNodes.

Figure 7 shows the architecture of ParaRC when it is integrated with HDFS. ParaRC includes a parallel repair solution generator, called the **PRS generator**. It also deploys a **controller** that runs within the NameNode, and multiple **agents**, each of which runs within a DataNode. We also deploy a **client** that is co-located with an agent in a DataNode to issue repair requests to ParaRC (note that the client can also run in a standalone machine outside of the DataNodes). We now elaborate on each component in detail.

PRS generator. The PRS generator pre-computes the parallel repair solution for each single-block repair scenario offline and stores the results before the system starts [16]; this offline approach is suitable since the number of repair scenarios is limited for moderate ranges of \((n,k)\) that are commonly used in practice [26]. The PRS generator runs the heuristic in §4 for an MSR code to generate a parallel repair solution that operates at an approximate MLP. It constructs a pECDAG based on the parallel repair solution. It stores the solution in the controller, which coordinates the actual repair operation.

Controller. The controller coordinates the parallel repair operation for the lost blocks that are encoded with MSR codes. Upon receiving a repair request for a block, the controller first reads the metadata of the block from HDFS to determine the location of other blocks in the same stripe. Then, the controller constructs a pECDAG to repair the block with the parallel repair solution returned from the PRS generator. Finally, it translates the pECDAG into a set of **basic tasks** defined in OpenEC [19], including (i) reading sub-blocks from disk, (ii) fetching sub-blocks from other nodes, (iii) computing intermediate sub-blocks and repaired sub-blocks, and (iv) persisting the repaired sub-blocks as the final repaired block. Then, the controller sends the basic tasks to the agents to perform sub-block repair operations to repair a lost block.

Agent. Each agent performs the basic tasks assigned by the controller. For a reading task, an agent directly reads the sub-blocks of a block stored in the local file system. For a fetching task, an agent downloads the sub-blocks from another agent. For a computing task, an agent generates the intermediate sub-blocks or repaired sub-blocks. For a persisting task, an agent stores the repaired sub-blocks as the final repaired block.

Client. A client sends repair requests to ParaRC. It can send a degraded read request or a full-node recovery request to ParaRC (§5). For a degraded read request, ParaRC coordinates the parallel repair for an unavailable block requested by the client; for a full-node recovery request, ParaRC repairs all lost blocks of a failed DataNode in parallel in a new DataNode.

6.2 Implementation

We implement ParaRC in C++ with around 9.4 K LoC and integrate ParaRC with Hadoop-3.3.4 HDFS [4] (HDFS-3 for short). ParaRC uses Redis [7] for internal communications among the controller, agents, and clients. It uses Intel’s Intelligent Storage Acceleration Library (ISA-L) [6] to perform encoding and decoding operations for erasure codes. It supports both the centralized repair and parallel repair for MSR codes. In the following, we elaborate on the deployment details of ParaRC and how ParaRC is integrated with HDFS-3.

Deployment. To generate basic tasks for parallel repair, we need to carefully co-locate sub-block repair operations to avoid redundant data transmissions. For example, when we deploy the pECDAG in Figure 4(a), we need to co-locate the repair of sub-blocks \(v_8\) and \(v_9\), to make sure that the sub-blocks \(v_8\) and \(v_9\) are only downloaded once in \(N_2\) in the sub-block repair operation. To achieve this goal, we first divide vertices into groups based on topological sorting, in which we can co-locate the sub-block repair operations for the vertices of the same color in the same group.

For example, the vertices in Figure 4(a) can be divided into the following five groups according to topological sorting: (i) \(v_4, v_5, v_8, v_9, v_{12}\), and \(v_{13}\); (ii) \(v_{16}\) and \(v_{17}\); (iii) \(v_0, v_1, v_{18}\), and \(v_{19}\); (iv) \(v_2\) and \(v_3\); and (v) \(R\). In group (ii), as \(v_{16}\) and \(v_{17}\) have the same color, we can co-locate the two sub-block repair operations, such that \(N_2\) can only download sub-block \(v_{12}\) from \(N_3\) only once to compute the two sub-blocks. Similarly, we can co-locate the sub-block repair operations specified by \(v_0\) and \(v_{18}\) in \(N_2\), and the sub-block repair operations specified by \(v_1\) and \(v_{19}\) in \(N_0\).

HDFS-3 integration. To improve parallelism, in ParaRC, the encoding of a stripe of blocks is divided into the encoding of multiple small sub-stripes, where the data unit in each node within a sub-stripe is called a **packet**. In MSR codes, each
We conduct experiments for ParaRC on Alibaba Cloud [1]. We rely on ParaRC to generate MSR-coded blocks and store them in HDFS-3. To enable the parallel repair for MSR codes in HDFS-3, we run the ParaRC controller with the NameNode and run each ParaRC agent with a DataNode. The controller maintains a stripe store for MSR-coded stripes, which records the metadata of each stripe, including the blocks of the same stripe, and the location of each block in the same stripe. We store the metadata of HDFS-3 blocks in the stripe store of ParaRC, such that when repairing a block, the controller can retrieve metadata from the stripe store.

Support for RS codes. ParaRC also supports RS codes. It now implements both the conventional centralized repair approach and the parallel repair approach based on repair pipelining [20]. In repair pipelining, we divide a packet into sub-packets and pipeline the repair of different sub-packets across a repair path (i.e., each sub-packet is viewed as a slice in repair pipelining [20]). The corresponding parallel repair solutions are stored in the PRS generator. Note that RS codes have no sub-packetization and a sub-stripe encodes k packets into n RS-coded packets.

7 Evaluation

We conduct experiments for ParaRC on Alibaba Cloud [1]. We aim to answer the following questions:

- What is the performance of our heuristic in §4 in finding the approximate MLP? (§7.2)
- How does the performance of ParaRC vary across different system configurations? (§7.3 and §7.4)
- What is the performance overhead of ParaRC to HDFS-3 and how is the repair performance improved by the parallel repair from ParaRC? (§7.5)

7.1 Setup

Testbed. We provision 23 memory-optimized instances on Alibaba Cloud [1] for ParaRC, which includes the PRS generator, the controller, 20 agents, and a node that serves as the client for degraded reads or the new node for full-node recovery. The PRS generator runs on an ecs.r7.2xlarge instance with 8 vCPUs and 64 GiB RAM, while other components are deployed in ecs.r7.xlarge instances with 4 vCPUs and 16 GiB RAM. Each instance is also equipped with a 40 GiB enhanced SSD with performance level PL0 [2] and is installed with Ubuntu 18.04. All instances are connected via a 10 Gbps network.

Default settings. We configure the default block size as 256 MiB and the default sub-packet size as 64 KiB; for example, the packet size for the $(14, 10)$ Clay code is 256×64 KiB = 16 MiB, so a stripe can be divided into 16 sub-strips. In our evaluation, we compare four repair approaches: (i) the centralized repair for RS codes (RS); (ii) repair pipelining for RS codes (RP); (iii) the centralized repair for Clay/Butterfly codes (Clay/Butterfly); and (iv) the parallel repair for Clay/Butterfly codes (ParaRC). If we consider an (n, k) Clay/Butterfly code, we also use the same (n, k) for RS and RP.

For degraded reads, we evaluate the average degraded read time for the first k uncoded blocks. For full-node recovery, we measure the total time of repairing 20 lost blocks of a failed storage node from 20 stripes (whose available blocks are randomly distributed across the non-failed storage nodes). We plot the average results over 5 runs, including the error bars showing the maximum and minimum of the 5 runs.

7.2 Finding the Approximate MLP

E1: Performance of finding the approximate MLP. We evaluate our heuristic in §4 in finding the approximate MLP. We focus on repairing B_0 for Clay codes [36] and Butterfly codes [24]. We evaluate the algorithm running times of our heuristic and the brute-force approach. We also compare the maximum repair load and repair bandwidth of the approximate MLP returned by our heuristic with those of RP and the centralized repair for Clay/Butterfly codes.

We first compare the running time of our heuristic with that of the brute-force approach. We only consider the $(4, 2)$ Clay code ($w=4$) and the $(6, 4)$ Butterfly code ($w=8$), as the brute-force approach for large (n,k) cannot be solved within reasonable time. As shown in Table 2, for the $(4, 2)$ Clay code, the heuristic reduces the running time from 264.1 s to 1.8 s, while for the $(6, 4)$ Butterfly code, the heuristic reduces the running time from 34.2 s to 0.3 s. We also examine the number of pECDAGs being examined by the heuristic. For example, for the $(14, 10)$ Clay code, the heuristic examines about 14 million pECDAGs only; the number is much less than the lower bound of the number of pECDAGs (i.e., $14^{5}5^{56}$) that need to be examined by the brute-force approach (§3.3). Thus, the heuristic significantly reduces the search space.

We note that the heuristic can find the solution whose maximum repair load has the same size as the block size, but sometimes cannot. For example, the solution for the $(6, 4)$ Butterfly code ($w=8$) achieves the maximum repair load of 256 MiB (which is also the minimum), while the maximum repair load of the solution for the $(4, 2)$ Clay code ($w=4$) is larger than the block size 256 MiB. The reason is that the heuristic may return a local optimal solution.

We then compare the maximum repair load and repair bandwidth of different repair approaches. The maximum repair load of our heuristic is significantly less than that of the centralized repair for Clay/Butterfly codes. For example, for the $(14, 10)$ Clay code ($w=256$) the maximum repair load of the MLP decreases to 271 MiB, which is 67.4% less than that of the centralized repair for Clay codes (i.e., 832 MiB). We also...
Table 2: E1: Performance of finding the approximate MLP to repair B_0 for Clay codes and Butterfly codes. We show the (maximum repair load, repair bandwidth) for each repair approach. We also show the running time for the heuristic. For the brute-force approach, we only show the running time for the (4, 2, 4) Clay code and (6, 4, 8) Butterfly code, as the other configurations cannot be completed within reasonable time.

<table>
<thead>
<tr>
<th>(n, k, w)</th>
<th>RP</th>
<th>Clay</th>
<th>Approximate MLP</th>
<th>Heuristic</th>
<th>Brute-force</th>
</tr>
</thead>
<tbody>
<tr>
<td>(4, 2, 4)</td>
<td>(256,512)</td>
<td>(384,384)</td>
<td>(320,448)</td>
<td>1.8 s</td>
<td>264.1 s</td>
</tr>
<tr>
<td>(12, 8, 64)</td>
<td>(256,2048)</td>
<td>(704,704)</td>
<td>(264,1224)</td>
<td>425.9 s</td>
<td>-</td>
</tr>
<tr>
<td>(14, 10, 256)</td>
<td>(256,2560)</td>
<td>(832,832)</td>
<td>(271,1609)</td>
<td>57.2 h</td>
<td>-</td>
</tr>
<tr>
<td>(16, 12, 256)</td>
<td>(256,3072)</td>
<td>(960,960)</td>
<td>(281,1774)</td>
<td>61.9 h</td>
<td>-</td>
</tr>
</tbody>
</table>

(a) Clay codes

<table>
<thead>
<tr>
<th>(n, k, w)</th>
<th>RP</th>
<th>Butterfly</th>
<th>Approximate MLP</th>
<th>Heuristic</th>
<th>Brute-force</th>
</tr>
</thead>
<tbody>
<tr>
<td>(6, 4, 8)</td>
<td>(256,1024)</td>
<td>(640,640)</td>
<td>(256,896)</td>
<td>0.3 s</td>
<td>34.2 s</td>
</tr>
<tr>
<td>(12, 10, 512)</td>
<td>(256,2560)</td>
<td>(1408,1408)</td>
<td>(297,2216)</td>
<td>31.64 h</td>
<td>-</td>
</tr>
</tbody>
</table>

(b) Butterfly codes

Figure 8: E2: Varying MSR codes.

- We observe that when the maximum repair load decreases, the repair bandwidth of our heuristic is higher than that of the centralized repair, while it is still much less than the repair bandwidth of RP (by 37.1%). We also observe similar trends in Butterfly codes.

7.3 ParaRC Performance

We evaluate the performance of ParaRC in degraded reads and full-node recovery under different settings.

E2: Varying MSR codes. We evaluate the performance of ParaRC for different MSR code configurations, including the (12, 8) Clay code, the (14, 10) Clay code, the (16, 12) Clay code, and the (12, 10) Butterfly code. Figure 8 shows the evaluation results.

We first analyze the performance of the degraded reads, as shown in Figure 8(a). Overall, ParaRC has the smallest degraded read time compared with other baseline repair approaches. For example, for the (16, 12) Clay code, ParaRC reduces the degraded read time by 76.4%, 51.9%, and 59.3%, compared with RS, RP, and Clay, respectively. Although RP minimizes the maximum repair load, its degraded read time is not necessarily minimized, as RP still has high repair bandwidth and needs to read the whole block from each available node in degraded reads. For the (12, 10) Butterfly code, ParaRC reduces the degraded read time by 43.8%, 3.7%, and 24.8% compared with RS, RP, and Butterfly, respectively.

We next analyze the performance of full-node recovery, as shown in Figure 8(b). Like degraded reads, ParaRC also has the smallest full-node recovery time compared with other baseline repair approaches. For example, for the (16, 12) Clay code, ParaRC reduces the full-node recovery time by 76.9%, 70.2%, and 39.2% compared with RS, RP, and Clay, respectively. For the (12, 10) Butterfly code, ParaRC reduces the full-node recovery time by 37.2% and 24.2% compared with RS and RP, respectively. We observe that the network bandwidth usages of the centralized repair for the (12, 8) Clay code, the (14, 10) Clay code, the (16, 12) Clay code, and the (12, 10) Butterfly code are 1,126 MiB/s, 973 MiB/s, 984 MiB/s, and 1,046 MiB/s, respectively, implying that it is bottlenecked by the high maximum repair load at the new node where the lost blocks are reconstructed. As ParaRC reduces the maximum repair load, we observe that it significantly improves the repair performance for Clay codes. However, we also observe that the performance improvement of ParaRC is marginal for Butterfly codes. The reason is that while the maximum repair load reduces for Butterfly codes, the repair bandwidth also increases (i.e., from 1,408 MiB to 2,216 MiB), thereby limiting the performance improvements.

7.4 Micro-benchmarks

We study how the performance of ParaRC varies for different sub-packet sizes and block sizes. We focus on the (14, 10) Clay code and the (12, 10) Butterfly code.

E3: Varying sub-packet size for degraded reads. We evaluate ParaRC under different sub-packet sizes. We vary the sub-packet size from 16 KiB to 256 KiB, and fix the block size at 256 MiB (note that the packet size is the sub-packet size multiplied by w, where w depends on the erasure code).
When the sub-packet size decreases from 64 KiB to 16 KiB, ParaRC for the (14,10) Clay code reduces the degraded read time by 67.3%, 60.9%, and 33.4% compared with RS, RP, and Butterfly, respectively. For example, when the sub-packet size is 128 KiB, a stripe is only divided into 4 sub-stripes that are repaired in parallel for the (14,10) Clay code, so the degree of parallelism is low. In contrast, RP can pipeline the repair of 1,024 sub-stripes in parallel (§6.2) and outperform ParaRC for small block sizes.

7.5 Performance in HDFS-3

E5: HDFS-3 integration. We evaluate the integration of ParaRC into HDFS-3. Recall that we have shown the benefits of ParaRC over other repair approaches (E2-E4). In this experiment, we only focus on the performance overhead and performance gain of ParaRC in HDFS-3 deployment. We focus on the (14,10) Clay code with the default block size of 256 MiB.

Currently, HDFS-3 does not support Clay codes in its codebase, so we mainly compare ParaRC with the RS code implementation in HDFS-3. We focus on evaluating the overhead of encoding data by Clay codes in ParaRC and the full-node recovery performance gain of ParaRC. We omit the results for degraded reads to a lost block. The reason is that in HDFS-3, a degraded read is triggered when reading a file, where all blocks of the original file are returned to the client anyway. In this case, the centralized repair of the lost block is sufficient.

We evaluate the performance of encoding 20 stripes and repairing 20 lost blocks of a failed node in full-node recovery (the full-node recovery procedure is described in §7.1). We consider four approaches: (i) encoding by the default RS codes and performing the default recovery approach in HDFS (denoted by HDFS-RS); (ii) encoding by RS codes and performing the centralized repair for RS codes in ParaRC (denoted by ParaRC-RS); (iii) encoding by RS codes and performing repair pipelining [20] in ParaRC (denoted by ParaRC-RP); and (iv) encoding by Clay codes and performing the parallel repair in ParaRC (denoted by ParaRC-Clay).

Figure 11 shows the results. For encoding, we observe that ParaRC for the (12,10) Butterfly code reduces the degraded read time by 40.3%, 28.4%, and 12.3% compared with RS, RP, and Butterfly, respectively.

When the block size is small, RP outperforms ParaRC. For example, when the block size is 64 MiB, ParaRC for the (14,10) Clay code has 22.1% higher degraded read time than RP. The reason is that ParaRC fails to benefit from the parallel repair for small block sizes due to high sub-packetization. For example, when the block size is 64 MiB, a stripe is only divided into 4 sub-stripes that are repaired in parallel for the (14,10) Clay code, so the degree of parallelism is low. In contrast, RP can pipeline the repair of 1,024 sub-stripes in parallel (§6.2) and outperform ParaRC for small block sizes.
of RS codes in HDFS-3 have similar overhead. For example, HDFS-RS takes 131.1 s, while ParaRC-Clay takes 129.7 s for encoding 20 stripes. For full-node recovery, ParaRC-Clay reduces the full-node recovery time by 71.4% compared with HDFS-RS; note that the total repair bandwidth for the full-node recovery of 20 lost blocks in ParaRC-Clay is 16.25 GiB, while that in HDFS-RS is 50 GiB (where \((n,k) = (14,10))

8 Related Work
RS codes [31] are popularly deployed in distributed storage systems [3, 5, 9, 11, 23, 25], but incur high repair bandwidth (§2.1). Thus, research efforts are made to improve the repair performance of RS codes. One direction is to design fast repair algorithms over RS codes, while another direction is to design regenerating codes to minimize the repair bandwidth.

Repair algorithms for RS codes. PPR [22] divides the repair of a block into partial operations and parallelizes them for improved repair performance. Repair pipelining [18, 20] divides the repair of a block into the repair of small slices, organizes the available nodes that participate in the repair operation into a repair path, and pipelines the repair of slices along the repair path to reduce the degraded read time to be almost the same as the time of reading a block. PPT [8], SFRRepair [39], and PivotRepair [38] propose different parallel repair strategies for RS codes in heterogeneous bandwidth environments. However, the above repair algorithms do not reduce the repair bandwidth of RS codes. Our work focuses on designing parallel repair algorithms for regenerating codes, which have much lower repair bandwidth than RS codes.

Regenerating codes. Regenerating codes [10] are a family of erasure codes that minimize the repair bandwidth. Minimum-storage regenerating (MSR) codes not only minimize the repair bandwidth, but also achieve the MDS property. Many research studies propose new designs of MSR codes, including F-MSR codes [13], PM-RBT codes [27], Butterfly codes [24], and Clay codes [36]. Such MSR codes operate in different parameter regimes, such as \(n-k=2\) for F-MSR codes [13] and Butterfly codes [24], and \(n \geq 2k-1\) for PM-RBT codes [27]. In particular, Clay codes [36] are state-of-the-art MSR codes that support general parameters of \(n\) and \(k\) and are proven to minimize both repair bandwidth and I/Os (§1). Geometric partitioning [34] builds on Clay codes and divides an object into variable-sized blocks to trade between the performance of degraded reads and full-node recovery. However, the repair strategy for existing MSR codes is still based on the centralized repair approach, in which a node downloads the required data from all available nodes to repair a failed block. Even though the repair bandwidth is still the minimum, the maximum repair load is high. ParaRC addresses this trade-off by proposing a parallel repair strategy for MSR codes.

DAG-based erasure coding. OpenEC [19] proposes an ECDAG abstraction to model and configure erasure coding operations as a directed acyclic graph (DAG) without modifying the I/O workflows of the underlying distributed storage system. RepairBoost [21] proposes a DAG abstraction to load-balance the full-node recovery workflow. Our work extends ECDAG [19] to support the parallel repair for MSR codes.

9 Conclusions and Future Work
We present ParaRC, a parallel repair framework that improves the repair performance of MSR-coded distributed storage systems by exploiting the sub-packetization nature of MSR codes. We show that there is a trade-off between the repair bandwidth and the maximum repair load. ParaRC builds on a fast heuristic that aims to minimize the maximum repair load, while maintaining the low repair bandwidth. We implement ParaRC as a middleware that runs atop HDFS. Our evaluation results on Alibaba Cloud demonstrate that ParaRC improves the repair performance of degraded reads and full-node recovery compared with the conventional centralized repair approach for Clay codes and Butterfly codes as well as the repair pipelining approach for RS codes.

We discuss the limitations of our work and pose the following open issues for future work.

- Currently, we only empirically show the performance gain of ParaRC, but the theoretical analysis of the ParaRC design remains unexplored. Some open theoretical issues include: (i) the formulation of a multi-objective optimization problem that minimizes both the repair bandwidth and the maximum repair load; (ii) the difference between the returned solution of the heuristic in §4 and the MLP; (iii) the convergence of the heuristic in §4 to the MLP; and (iv) faster and more efficient heuristics.

- ParaRC now focuses on the repair parallelism within a single stripe (i.e., intra-stripe parallelism). One optimization is to extend ParaRC with the repair parallelism across multiple stripes (i.e., inter-stripe parallelism) for further performance gains, particularly in declustered settings where the stripes span across a large number of nodes [12]. Also, the full-node recovery of ParaRC currently stores all reconstructed blocks in a new node that replaces the failed node. We can extend it to distribute the reconstructed blocks across different nodes to avoid bottlenecking the new node.

- ParaRC is currently designed for large blocks and the moderate parameters \(n\) and \(k\). In future work, we consider small blocks and wide stripes [14] (wide stripes encode data with large parameters \(n\) and \(k\) for ultra-low redundancy).

Acknowledgments. We thank our shepherd, Gala Yadgar, and the anonymous reviewers for their comments. This work was supported in part by the National Key Research and Development Program of China for Young Scholars (No. 2021YFB0301400), Key Laboratory of Information Storage System Ministry of Education of China, the National Natural Science Foundation of China (No. 61821003 and No. 61832007), and Research Grants Council of HKSAR (AoE/P-404/18). The corresponding author is Yuchong Hu.
References

