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Abstract

Storage savings and data confidentiality are two primary yet
conflicting goals in outsourced backup management. While
deduplication-aware encryption has been extensively stud-
ied to make deduplication viable for encrypted data, it is
incompatible with fine-grained delta and local compression
for further storage savings. We present ShieldReduce, a se-
cure outsourced storage system that aims for fine-grained
shielded data reduction by applying deduplication, delta com-
pression, and local compression to data in a trusted execution
environment based on Intel SGX, so as to achieve high stor-
age savings with security guarantees. To mitigate the I/Os of
accessing base chunks for delta compression in SGX, Shield-
Reduce adopts bi-directional delta compression via a novel
hybrid inline and offline compression design to maintain
the physical locality of base chunks. Evaluation on various
backup workloads shows that ShieldReduce achieves signifi-
cant speedups over a shielded baseline without bi-directional
delta compression, while maintaining comparable storage
savings to fine-grained data reduction for plain data.

1 Introduction
Outsourced storage in third-party clouds provides a cost-
effective solution for organizations to manage backups for
multiple clients. Practical outsourced storage systems should
be designed with two major goals in mind: (i) storage sav-
ings, which reduce the storage footprints of outsourced data
to save management costs; and (ii) data confidentiality, which
protects outsourced data against unauthorized access by ma-
licious users and even cloud operators. The goals, however,
are inherently conflicting: clients should encrypt their data
to ensure confidentiality, but conventional symmetric-key
encryption, which uses unique user-specific keys, makes re-
dundant data from different clients incompressible, thereby
prohibiting storage savings through compression.

To resolve this conflict, one class of work in the literature
focuses on encrypted deduplication (e.g., convergent encryp-
tion [20] and message-locked encryption [10, 11]), which
relaxes conventional symmetric-key encryption by encrypt-
ing each data chunk with a deterministic key derived from the
chunk content, so as to allow duplicate data chunks from dif-
ferent clients to be mapped into duplicate encrypted chunks
that can be removed via cross-client deduplication. However,
encrypted data has high entropy, making encrypted deduplica-
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tion incompatible with delta and local compression for further
storage savings (see §2.2 for details).

We explore fine-grained shielded data reduction, which
performs deduplication, delta compression, and local com-
pression in sequence for high storage savings, and uses
shielded execution to realize the whole data reduction work-
flow with conventional symmetric-key encryption for data
confidentiality. We leverage Intel’s Software Guard Exten-
sions (SGX) [6] to provide a trusted execution environment
called the enclave for shielded execution. Client-side orga-
nizations can host an enclave-enabled virtual machine in the
cloud, ensuring that even cloud operators cannot access any
content inside the enclave. The virtual machine can perform
fine-grained shielded data reduction for the data chunks origi-
nating from multiple clients inside the enclave, encrypt the
reduced outputs, and persistently store the encrypted chunks
in the cloud. Fine-grained shielded data reduction is com-
pliant with conventional symmetric-key encryption by re-
moving content redundancies before encryption inside the
enclave [60], so as to maintain the confidentiality guarantees
of conventional symmetric-key encryption.

Realizing fine-grained data reduction in an enclave is non-
trivial, since the enclave incurs high context-switch overhead
to interact with untrusted host applications outside of the en-
clave [18, 28]. Delta compression, in particular, works by
encoding the content difference between a new data chunk
and a previously stored base chunk identified as similar to
the new data chunk [45, 52, 53, 62]. This challenges the man-
agement of base chunks for a large number of data chunks:
even though the latest SGX generation [9] allows hundreds
of gigabytes in enclave memory, the machine hosting the en-
clave may not have sufficient memory to support a large-size
enclave for buffering all base chunks. Storing base chunks
in persistent storage and loading them into the enclave on
demand incurs significant overhead in both disk I/Os and
context switches.

We present ShieldReduce, an outsourced backup storage
system based on fine-grained shielded data reduction. In-
spired by the locality of backup workloads [38, 66], Shiel-
dReduce operates on data chunks on a per-batch basis and
loads the base chunks in batches from persistent storage into
the enclave for fine-grained data reduction, as the base chunks
are likely to be physically stored together due to locality. This
mitigates I/O overhead compared to reading individual base
chunks. However, as more versions of backups are stored, the
base chunks become more scattered across different versions
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of backups. Thus, ShieldReduce maintains physical locality
across different versions of backups via bi-directional delta
compression by examining the physical distribution of base
chunks: if the base chunks are stored together (i.e., strong
locality), ShieldReduce delta-compresses new data chunks
with respect to the corresponding base chunks (i.e., forward);
otherwise, if the base chunks are physically scattered (i.e.,
weak locality), ShieldReduce treats the new data chunks as
base chunks and delta-compresses the old base chunks with
respect to the new data chunks (i.e., backward). Since the
new data chunks are likely to be logically adjacent, making
them base chunks can reconstruct physical locality for future
backups with low I/O overhead. ShieldReduce adopts a hy-
brid inline and offline compression approach (i.e., on and off
the write path, respectively) to limit the I/O interference of bi-
directional delta compression with normal backup operations.
We emphasize that ShieldReduce differs from a recent work
LoopDelta [61], which applies backward delta compression
only to mitigate chunk fragmentation. In contrast, Shield-
Reduce adaptively switches between forward and backward
delta compression to balance the trade-off between I/O per-
formance and storage savings based on a single configurable
parameter (see §6 for detailed comparisons).

We extend ShieldReduce based on DEBE [60], and com-
pare ShieldReduce in a networked environment with several
baselines using various backup workloads (e.g., source code
versions, binary snapshots, websites, and operating system
images). ShieldReduce achieves an upload throughput gain
of up to 3.5× over a baseline without bi-directional delta
compression and maintains comparable storage savings as in
fine-grained data reduction for plain data (i.e., without data
confidentiality). Compared with an existing performance-
oriented approach [67] that we adapt to shielded execution,
ShieldReduce achieves a comparable upload speed inline,
while achieving additional storage savings of up to 3.6× via
offline compression. The source code of our ShieldReduce
prototype is at: https://github.com/YangJingyuan99/
shieldreduce.

2 Background and Problem
2.1 Plain Data Reduction

Overview of data reduction. We explore three data re-
duction approaches for plain data (without encryption):
deduplication, delta compression, and local compression.
Deduplication has been widely adopted in backup systems
[12, 37, 38, 55, 57, 66] and achieves storage savings of around
10× in production backup workloads [55]. It partitions file
data into chunks (e.g., 4 KiB or 8 KiB each [66]), and iden-
tifies each chunk by a fingerprint, generated by the crypto-
graphic hash of the chunk content. Assuming that fingerprint
collisions for non-duplicate chunks are highly unlikely [14],
two chunks are said to be duplicate if they have the same
fingerprint. Only unique copies (called physical chunks) are
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Figure 1: Fine-grained data reduction for plain data.

stored, while duplicate chunks refer to the same physical
chunk via small-size references. The fingerprint of each phys-
ical chunk and its chunk location are kept in a key-value store
called the fingerprint index.

Delta compression removes duplicate content among non-
duplicate but similar chunks, which contain large fractions of
duplicate content with differences in only a few chunk regions.
It can achieve extra storage savings of around 2× on average
beyond deduplication and local compression in production
backup workloads [53]. One approach of finding similar
chunks is to derive features from the chunk content [16, 22,
47,53,62]; for example, a feature can be the maximum Rabin
fingerprint over all sliding windows of the chunk content
[22, 40, 47, 53, 62]. Two chunks are considered similar if
they share one or more common features. Delta compression
stores one of the data chunks (called the base chunk) and
the content differences from the base chunk to the remaining
similar chunks (called delta chunks), with each delta chunk
typically being smaller than the original chunk. Each feature
and its associated base chunk (identified by its fingerprint)
are kept in a key-value store called the feature index.

Local compression encodes the content of a data chunk into
fewer bits in a lossless manner for persistent storage, such
that the encoded bits can be decoded without information
loss. We do not perform local compression on delta chunks,
since they are already encoded and local compression only
achieves marginal storage savings [53].

Fine-grained data reduction. We apply deduplication, delta
compression, and local compression in sequence to achieve
fine-grained data reduction for high storage savings [45, 47,
53], as shown in Figure 1. Suppose that a chunk of a file
is written to a storage system. The system first queries the
fingerprint index to check if the chunk is a duplicate; if so,
the chunk is discarded.

If the chunk is new, the system updates the fingerprint
index to track the new chunk. It extracts features from the
chunk and queries the feature index to check for any similar
chunks with common features. If no common feature is found,
the chunk is treated as a base chunk. The system locally
compresses the base chunk and stores it in persistent storage,
as well as adds the feature mappings of the base chunk to the
feature index.

If at least one feature of the new chunk is found, the system
retrieves the base chunk with the first matching feature from
persistent storage and delta-compresses the new chunk with
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respect to the base chunk into a delta chunk, which is then
stored in persistent storage.

For file reconstruction, the system keeps a file recipe in
persistent storage to track the fingerprints of delta chunks and
corresponding base chunks of each file. All chunks (of several
KiB each) in persistent storage are packed and managed in
large fixed-size units called containers [37] of several MiB
each (e.g., 4 MiB). All I/O operations are performed in units
of containers. This mitigates the I/O overhead of accessing
many small-size chunks.

2.2 Encrypted Deduplication and Its Limitations
Encrypted deduplication. To support data reduction on en-
crypted data, one extensively studied approach is encrypted
deduplication [10,11,35,39], in which a client symmetrically
encrypts each data chunk to be outsourced to the cloud via
a key derived from the chunk content (e.g., via the crypto-
graphic hash of the data chunk [20], or via a server-aided
approach where a dedicated key manager returns the same
key for the same fingerprint [10]). This ensures that duplicate
data chunks, even from different clients, are deterministically
mapped to duplicate encrypted chunks that can be removed
by deduplication. The client uploads encrypted chunks to
the cloud, which cannot access the original data chunks but
can still perform cross-client deduplication on the encrypted
chunks for storage savings.

Limitations. Encrypted deduplication has two major lim-
itations. First, it must use a deterministic encryption ap-
proach [10, 11, 20] to preserve the identical contents even
after encryption. This inevitably leaks the number of occur-
rences of each data chunk in the original plain data, allow-
ing an adversary to launch frequency analysis to infer the
plain data chunks based on the frequency distribution of en-
crypted chunks [33]. From a cryptography perspective, no
cryptographic primitive for data reduction can achieve the
confidentiality guarantees of conventional symmetric-key en-
cryption [11]. Second, since encryption inherently generates
high-entropy encrypted data, it is infeasible to further reduce
the sizes of encrypted chunks via delta and local compression
for additional storage savings.

One may argue for a simple approach in which clients
first perform data reduction on their own data, encrypt the
reduced data via conventional symmetric-key encryption, and
upload the encrypted reduced data to the cloud. However,
this approach prohibits cross-client data reduction for further
storage savings in some workloads; for example, multiple
clients may perform regular backups on their virtual machine
images in cloud environments, while the virtual machine im-
ages from different clients commonly share identical content
in operating system files [29, 36] that cannot be removed.

2.3 Fine-grained Shielded Data Reduction
Instead of designing new cryptographic solutions, we lever-
age shielded execution to design fine-grained shielded data
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Figure 2: ShieldReduce architecture.

reduction. We focus on Intel’s Software Guard Extensions
(SGX) [6] for shielded execution due to its widespread use
[19,30,42,46,49,50,60] and long-term support for Intel Xeon
platforms [48]. SGX creates a secure running context, called
an enclave, for code and data processing with confidentiality
and integrity guarantees. This contrasts with AMD SEV [2]
and Intel TDX [5], which protect the execution of the en-
tire virtual machine (i.e., more coarse-grained) and rely on a
sizable trusted computing base [17].

Architecture. We consider an organization that leverages an
untrusted cloud to deliver secure backup services to its users.
The organization can deploy an enclave-enabled virtual ma-
chine instance in the cloud and allow multiple clients to send
plain data chunks via secure channels to the enclave [60]. The
enclave performs the complete data reduction workflow (i.e.,
deduplication, delta compression, and local compression) on
all received data chunks, encrypts the reduced outputs, and
persistently stores the encrypted chunks in the cloud. It elim-
inates the need for deterministic encryption on data chunks
as in encrypted deduplication to mitigate frequency leakage,
since fine-grained data reduction is now performed before the
reduced outputs are encrypted. It further supports delta and
local compression, which can now be done before encryp-
tion. Note that DEBE [60] also makes a similar observation
and supports deduplication-before-encryption, but it does not
address delta compression.

We design ShieldReduce to realize fine-grained shielded
data reduction for secure and space-efficient backup storage
(Figure 2). To upload a backup, a client first sets up a random
one-time session key with the enclave via the Diffie-Hellman
key exchange protocol and establishes a secure session with
the enclave, so that any adversary cannot feasibly infer the
transferred chunks [60]. The client then partitions the backup
file into data chunks, encrypts each data chunk with the ran-
dom one-time session key, and sends the encrypted chunks
to the enclave. Since client-enclave communications are pro-
tected by random one-time session keys, they do not leak
the frequency information of each data chunk [34]. The en-
clave decrypts received data chunks with the session key and
performs fine-grained shielded data reduction (§2.2). Such
target-based data reduction [36] prevents a malicious client
from inferring the deduplication pattern and launching side-
channel attacks [26, 27]. The enclave also maintains a data
key to encrypt the reduced output data, which is then stored
in the cloud for persistence. Note that ShieldReduce does not
require a dedicated key manager on the critical I/O path as in



server-aided encrypted deduplication [10] (§2.2).
Threat model. We aim to provide confidentiality guarantees
for outsourced backups, which may contain sensitive data.
Our threat model considers an adversary that aims to infer the
original plain backup data. The adversary can compromise
the cloud to access the encrypted contents stored in both
untrusted memory and persistent storage, as well as monitor
the enclave’s interactions with the untrusted memory outside
the enclave. It can also compromise some clients to access
their private information, so as to infer the backup data of
other non-compromised clients.

We assume that the adversary and even cloud operators
cannot access the contents inside the enclave, even though the
enclave is hosted in the cloud. Also, the enclave is securely
initialized, and any application code running inside it is au-
thenticated. Enclave authentication is achievable with the aid
of a third party (e.g., the organization that provides backup
services) [49, 60]. Specifically, the organization compiles
the application code into a shared object. It distributes the
shared object and its signature to the cloud, which bootstraps
the enclave by loading the shared object. The enclave can
be publicly verified by remote attestation [6]. Note that the
organization cannot access any plain data, since the enclave
is initialized with the necessary code only without any client
data. After attesting the enclave, the organization can go
offline, and clients can send backups via secure channels.

The enclave runs the deployed application and verifies the
authenticity of the client for each connection via SSL mutual
authentication to prevent unauthorized data access. We as-
sume that current countermeasures [15, 24, 44] can be used
to protect against attacks for extracting secret information
from the enclave [13,43], and we do not further consider such
attacks in this work. Finally, the source code of the enclave’s
binaries can be publicly verified to ensure that it does not
include any backdoors. Note that backdoor-free enclaves are
commonly assumed in state-of-the-art shielded deduplicated
storage [25, 42, 49, 60].

2.4 Challenges
Although previous studies explore SGX-based secure dedu-
plication [25, 42, 49, 60], implementing the complete data
reduction process in SGX remains non-trivial.
Resource constraints of SGXv2. In this work, we focus
on SGXv2 [9], the latest SGX generation that supports up to
512 GiB of enclave page cache (EPC) (an isolated memory
region for an enclave) per CPU socket [23]. SGXv2 signif-
icantly mitigates the limited EPC space of its predecessor
SGXv1 (which supports up to 128 MiB), yet it still has re-
source constraints. First, the maximum physical size of an
EPC is subject to the available memory size of the hosting
machine. In practical cloud environments, an EPC uses only
50% of the overall memory of a virtual machine instance [4].
When an enclave reaches the EPC size limit, it swaps en-
crypted EPC pages with untrusted memory, leading to ex-

pensive paging overhead [18, 23, 28]. Also, SGX provides
interfaces for the enclave to securely interact with untrusted
memory: ECalls for outside applications to securely access
in-enclave contents, and OCalls for the enclave to access
unprotected memory. However, these interfaces incur high
overhead, approximately 8,000 CPU cycles per invocation
(compared to 150 CPU cycles for a standard system call) [56],
due to (i) context switching in the CPU, (ii) operations for
preserving the confidentiality of trusted application data, and
(iii) flushing of CPU and address translation cache [18, 28].

Expensive base chunk management of delta compression.
Fine-grained shielded data reduction should support delta
compression (§2.1), yet efficiently managing base chunks is
non-trivial, especially when delta compression is applied to
numerous data chunks [53, 67]. One option is to keep base
chunks inside the enclave. However, the GiB-level mem-
ory available in commodity machines for hosting the EPC
remains insufficient to buffer all base chunks. Another option
is to store base chunks in persistent storage and load them
into the enclave on demand. This relieves EPC usage, but
incurs significant overhead both in disk I/Os for retrieving the
required base chunks from persistent storage and in context
switches for loading base chunks from unprotected memory
into the enclave.

3 ShieldReduce Design
ShieldReduce is an outsourced backup storage system that
aims for the following goals: (i) storage savings via dedupli-
cation, delta compression, and local compression, (ii) data
confidentiality via shielded data reduction, and (iii) high per-
formance in enclave usage. It builds on DEBE [60] to apply
deduplication to data chunks and extend DEBE with delta
compression. DEBE mitigates the enclave resource over-
head via frequency-based deduplication, which performs first-
phase deduplication on the chunks with high duplicate counts
using a small fingerprint index inside the enclave, followed
by second-phase deduplication on the remaining chunks us-
ing a full fingerprint index outside of the enclave. We do
not claim novelty in the deduplication design. Instead, our
focus is on designing lightweight delta compression and lo-
cal compression for post-deduplicated chunks (all of which
are non-duplicate) inside the enclave and mitigating the base
chunk management overhead in delta compression (§2.4).

3.1 Main Idea
To achieve high performance against the challenges in
§2.4, ShieldReduce leverages locality in backup workloads
[32, 41, 53], in which modifications to a backup are often
clustered in a few regions. If a data chunk (say M′) in the
latest backup is modified from a data chunk (say M) in the
previous backup, then M is likely to be the base chunk of M′,
and the neighboring chunks of M are also likely to be the base
chunks of the neighboring modified chunks of M′. Our ratio-
nale is that small changes are unlikely to alter the features of



data chunks, so the modified data chunks are likely to follow
the same sequence as the corresponding base chunks in the
previous backup. Specifically, ShieldReduce operates on data
chunks on a per-batch basis. It loads the base chunks for a
batch of data chunks from persistent storage into the enclave
and performs delta compression on the data chunks. Due to
locality, the base chunks for a batch of data chunks are likely
to be stored in only a few containers, thereby mitigating the
I/Os of accessing persistent storage.

However, the locality across two backups in persistent
storage (i.e., physical locality) gradually decreases as they are
separated by an increasing number of backups. Existing fine-
grained data reduction techniques [53, 62] often choose the
first data chunk with new features as the base chunk, so earlier
backups typically include many base chunks. Thus, a data
chunk M′ in a recent backup tends to refer to a base chunk M
in an older backup. As changes accumulate across backups,
the neighboring physical chunks of M may be heavily updated
and no longer be the base chunks of neighboring chunks of
M′. This causes ShieldReduce to issue more I/Os to load base
chunks from persistent storage into the enclave as the number
of backups increases.

To preserve physical locality, we propose bi-directional
delta compression. Our insight is that chunk similarity is sym-
metric, meaning that if a new data chunk M′ is similar to a
base chunk M, then M is also similar to M′. This allows delta
compression to be performed in two directions: (i) forward
delta compression, which delta-compresses M′ with respect
to M, and (ii) backward delta compression, which makes M′

a new base chunk and delta-compresses M with respect to
M′. For a batch of data chunks, ShieldReduce performs either
forward or backward delta compression based on the physical
distribution of the corresponding base chunks. If the base
chunks are stored in a limited number of containers (i.e., phys-
ical locality exists), ShieldReduce loads these base chunks
from persistent storage to the enclave and performs forward
delta compression on the batch of data chunks. Otherwise,
if the base chunks are scattered across many containers (i.e.,
physical locality drops), ShieldReduce performs backward
delta compression to delta-compress old base chunks with
respect to new data chunks. Since the new data chunks are
likely to be logically adjacent prior to data reduction, letting
them be base chunks can reconstruct physical locality.

ShieldReduce’s bi-directional delta compression differs
from LoopDelta’s backward delta compression [61], which
focuses on mitigating chunk fragmentation and does not con-
sider the storage-performance trade-off and security guaran-
tees (§6). We choose Finesse [62] as the major similarity
matching technique for ShieldReduce to pair base chunks
with their similar chunks due to its high performance and
delta-compression savings, and extend Finesse to preserve
physical locality. There are possibly other similarity matching
techniques, and we pose the analysis as future work.

Example. Figure 3 motivates via an example the need for
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Figure 3: Comparison of forward delta compression only and bi-
directional delta compression. The relation X → Y for two data
chunks X and Y means: (i) both X and Y are similar, (ii) Y is the
base chunk of X , and (iii) X is delta-compressed with respect to Y .

bi-directional delta compression. Suppose that we store a
sequence of backups denoted by V0, V1, V2, and V3, each of
which has a single batch of data chunks. V0 is already stored.

Figure 3(a) shows an example of using forward delta com-
pression only. Suppose that V1 is to be stored, in which A1,
B1, and D1 are slightly updated from (and hence are similar
to) A0, B0, and D0 in V0, respectively. Forward delta com-
pression identifies A0, B0, and D0 in V0 as the base chunks
of A1, B1, and D1 in V1, respectively. Such base chunks are
close in persistent storage and are also likely stored in the
same container. Suppose that V2 is to be stored, in which A2
and C2 are slightly updated from A1 and C1 in V1. Forward
delta compression chooses A0 in V0 as the base chunk of A2,
and C1 as the base chunk of C2. Now, the base chunks are in
both backups V0 and V1. When V3 is stored, we see that the
base chunks are scattered in all backups V0, V1, and V2. In
other words, physical locality drops.

Figure 3(b) shows an example of bi-directional delta com-
pression. When V1 is stored, bi-directional delta compression
selects the same base chunks in V0 as in forward delta com-
pression only. When V2 is stored, it can apply backward delta
compression to treat the data chunks A2 and C2 in V2 as the
base chunks for A1 and C1 in V1, respectively. Also, it treats
A2 as the new base chunk for the old base chunk A0, which
will be retrieved from persistent storage for delta compression.
When V3 is stored, it can apply forward delta compression
again and select A2, C2, and D2 from V2 as the base chunks
for A3, C3, and D3, respectively. The base chunks are still
from the same backup and can be readily retrieved.

Design roadmap. Figure 4 presents the design roadmap for
ShieldReduce. ShieldReduce adopts a hybrid inline (i.e., on
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the write path) and offline (i.e., off the write path) approach.
After deduplication, if physical locality exists, the enclave
performs locality-based inline compression, which includes
both forward delta compression and local compression, and
encrypts and stores the compressed chunks in persistent stor-
age. Locality-based inline compression aims to achieve high
performance on the write path.

If physical locality drops, the enclave performs tunable
offline compression, which reconstructs physical locality via
backward delta compression and also provides a tunable
mechanism to balance the storage-performance trade-off. As
backward delta compression delta-compresses an old base
chunk (say M) with respect to a new data chunk (say M′),
it should also reapply delta compression on the data chunks
that are originally delta-compressed with respect to M; oth-
erwise, any subsequent reconstruction of such data chunks
needs to first retrieve and decrypt M′ from persistent stor-
age to delta-decompress M, thereby triggering multiple I/Os.
ShieldReduce exports a single user-configurable parameter
to balance the trade-off between the performance overhead
and storage savings from backward delta compression.

ShieldReduce ensures that the enclave always receives
data chunks from multiple clients via secure sessions (§2.3)
and only stores encrypted data in persistent storage, so as to
achieve end-to-end security for the data path.

3.2 Locality-based Inline Compression
Overview. Figure 5 presents the workflow of locality-based
inline compression in ShieldReduce. It processes a batch of n
data chunks before deduplication (n = 128 by default). After
deduplication, it extracts three features [62] from each data
chunk, queries the feature index for the base chunk (§2.1),
and retrieves the container IDs of these base chunks from the
fingerprint index. It then detects the physical locality of the
base chunks for the batch of data chunks. If physical local-
ity exists, it performs forward delta compression and local
compression; otherwise, it prepares for offline compression.

Locality detection. ShieldReduce detects the physical local-
ity of the base chunks of a batch of data chunks based on
how they are physically stored in containers. Given n data
chunks of a batch, let p be the number of data chunks that
have the base chunks and q be the number of containers that
contain the base chunks, where q ≤ p ≤ n. ShieldReduce
quantifies physical locality as q/n; a small q/n implies strong
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Figure 5: Locality-based inline compression in ShieldReduce.

locality as the base chunks are clustered in a small number of
containers. If q/n is no more than some pre-defined locality
threshold t, we say that physical locality exists. We evaluate
the sensitivity of t in §5.3.

Forward delta compression and local compression. If
physical locality exists, ShieldReduce performs forward delta
compression and local compression in two cases.

• For the p data chunks that have base chunks, it loads the cor-
responding encrypted base chunks from persistent storage
into the enclave. The enclave decrypts the encrypted base
chunks, locally decompresses them, and delta-compresses
the data chunks with respect to the base chunks into delta
chunks. It encrypts and stores the delta chunks in persistent
storage. It also updates the file recipe to track the base
chunks of such data chunks.

• For the remaining data chunks that do not have base chunks
(at most n− p such data chunks due to deduplication), Shiel-
dReduce treats them as new base chunks. The enclave lo-
cally compresses, encrypts, and stores the new base chunks
in persistent storage. It updates the file recipe and feature
index to track the features of the new base chunks.

ShieldReduce maintains a key-value store called the delta
index in untrusted memory to track the delta relationships,
which are later needed by backward delta compression (§3.3)
to reapply delta compression on the data chunks originally
delta-compressed with respect to old base chunks. Each entry
in the delta index maps the encrypted fingerprint of a base
chunk to a set of encrypted fingerprints of the corresponding
delta chunks. After forward delta compression, ShieldReduce
updates the delta index to track the data chunks that have
been delta-compressed with respect to the base chunks.

Preparation for offline compression. If physical locality
does not exist (i.e., q/n > t), ShieldReduce defers the com-
pression for the batch of data chunks offline and performs
the following preparation steps. It locally compresses each
data chunk and stores the encrypted compressed chunks in
persistent storage. It also maintains a key-value store called
the backward index in untrusted memory to track the chunks
for backward delta compression. Each entry in the backward
index maps the encrypted fingerprint of a base chunk to a set
of encrypted fingerprints of corresponding data chunks that
will be delta-compressed offline.

The backward index keeps the mappings until backward
delta compression is performed, and the mappings can be
cleared afterwards. Thus, ShieldReduce bounds the maxi-
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Figure 6: Tunable offline compression in ShieldReduce. The dot-
ted line means that ShieldReduce retrieves chunks from persistent
storage based on the backward index and delta index.

mum size of the backward index to limit resource overhead.
For example, suppose that each encrypted fingerprint has
32 bytes (from SHA-256) and each data chunk has an average
size of 8 KiB. If we configure the backward index with a
maximum size of 256 MiB, it can keep the mappings for at
least 256 MiB / (32 + 32) bytes × 8 KiB ≈ 32 GiB of data
chunks (assuming that each data chunk has a distinct base
chunk). If the backward index is full, ShieldReduce performs
forward delta compression on the remaining data chunks.

3.3 Tunable Offline Compression
Overview. Figure 6 depicts the workflow of tunable offline
compression in ShieldReduce. Based on the mappings in the
delta index and backward index, ShieldReduce retrieves from
persistent storage the (encrypted) physical copies of (i) the
old base chunks, (ii) the data chunks deferred to be delta-
compressed, and (iii) the delta chunks already compressed
with respect to the old base chunks. It performs backward
delta compression based on a user-configurable parameter to
balance the storage-performance trade-off. It also replaces
the existing physical copies of the above chunks in persistent
storage with the new ones that are delta-compressed with
respect to new base chunks in offline compression.
Backward delta compression. Recall that each entry of
the backward index maps an encrypted fingerprint of a base
chunk (say M) to a set of encrypted fingerprints of the data
chunks (§3.2). ShieldReduce selects the most recent data
chunk (say M′) in the backward index as the new base chunk.
It delta-compresses M, as well as any other data chunk (say
M̂) that is also mapped by M in the backward index, with
respect to M′. Our rationale is that future data chunks are
likely to be modified from the most recent data chunks with
minimum content differences [61], so choosing the most
recent data chunks as new base chunks likely brings more
storage savings in delta compression. Note that M′ and M̂
may not have any common feature, yet we expect that delta-
compressing M̂ with respect to M′ shows storage savings
(Exp#1 in §5.2), as they are similar to the same old base
chunk M.

We elaborate on the details of backward delta compression.
For each old base chunk M, the enclave chooses the most
recent data chunk that is mapped by M as the new base chunk
M′, delta-compresses M with respect to M′, and encrypts and

stores the delta chunk in persistent storage. It reapplies delta
compression on the affected data chunks in two cases. First,
for the remaining data chunks that are also mapped by M and
deferred to be delta-compressed as tracked by the backward
index, the enclave decrypts and recovers such data chunks via
local decompression. Second, for the others that are already
delta-compressed with respect to M as tracked by the delta
index, the enclave recovers them via delta decompression.
Then, for both cases, the enclave delta-compresses the data
chunks with respect to M′, and encrypts and stores the delta
chunks in persistent storage. It updates (i) the feature index
to track the new base chunk M′, (ii) the delta index to track
the delta compression relationships, (iii) the fingerprint index
to track the new physical copies of the related chunks that are
delta-compressed with respect to M′, and (iv) the file recipe
to change the corresponding base chunks to M′.
Tunable performance-storage trade-off. Since backward
delta compression incurs extra I/O and computational over-
head (§3.1), ShieldReduce skips the backward delta compres-
sion of some old base chunks (i.e., the old base chunks are
now directly stored without delta compression). The trade-off
is that the physical copies of the skipped base chunks are no
longer delta-compressed and the storage size increases. To
make the trade-off readily tunable, ShieldReduce introduces
a configurable parameter called the offline reduction target
α (where 0 ≤ α ≤ 1) based on the data reduction ratio that
is expected to be achieved by offline compression: a smaller
(larger) α means that ShieldReduce will remove more (less)
data in offline compression.

When processing a backup, ShieldReduce monitors the
current storage space occupied by the backup, and tracks the
current reduction ratio of offline compression as αcurrent =
Scurrent/Sinline, where Sinline is the actual storage space oc-
cupied by the backup after inline compression and Scurrent
is the currently occupied storage space during offline com-
pression. It collects the old base chunks from the backward
index, and sorts them based on the number of data chunks
delta-compressed with respect to each old base chunk. It
prefers to choose the old base chunk with the least number
of data chunks for backward delta compression, and keeps
processing the old base chunks until either αcurrent < α or all
old base chunks have been processed.

For any remaining old base chunks, ShieldReduce skips
their backward delta compression and directly updates the
feature index based on the new base chunks. Also, it removes
their delta relationships from the delta index to mitigate index
overhead. The rationale is that such skipped old base chunks
are no longer used for delta compression.
Chunk replacement. After offline compression, Shield-
Reduce performs the mark-and-sweep approach [21] to re-
claim the storage space of the old physical copies of the
chunks that are delta-compressed by offline compression (e.g.,
after the old base chunk is delta-compressed with respect to
the new data chunk, its physical copy still exists in physical



storage); note that it does not compromise data integrity, as
the new delta-compressed copies have been stored in persis-
tent storage. ShieldReduce maintains a temporary deletion
map in unprotected memory to track the chunks whose old
copies need to be deleted. Each entry in the deletion map
maps a container ID to a list of deleted chunks, each of which
is identified by its offset and length within the container. The
deletion map only marks the chunks for logical deletion. Once
all chunks have been processed in offline compression, Shiel-
dReduce re-writes the marked containers to reclaim storage
space and clears the deletion map.

3.4 Storage Management

Container organization by semantics. ShieldReduce sets
each container (§2.1) with a fixed size of 4 MiB, and decou-
ples the management of chunks into two types of containers:
(i) the base chunk container, which stores encrypted and com-
pressed base chunks, and (ii) the delta chunk container, which
stores encrypted delta chunks. Our rationale is to improve the
I/O efficiency of inline compression (§3.2), since only base
chunks are retrieved for delta compression.

Metadata management. ShieldReduce manages the finger-
print index and feature index in unprotected memory, and
protects sensitive data fields in both indexes via encryption.
In addition to the data key that protects chunk data (§2.3), the
enclave persistently manages a meta key to encrypt finger-
prints. Each entry of the fingerprint index maps an encrypted
fingerprint of a data chunk to a container ID where the cor-
responding chunk data are stored, while that of the feature
index maps a feature to the encrypted fingerprint of the cor-
responding base chunk. Each feature is derived from the
original chunk content using a collision-allowed hash func-
tion [53, 62], so different chunks can have the same features,
yet an adversary cannot readily identify the original base
chunks based on features only.

ShieldReduce maintains a file recipe (§2.1) for each backup
file, so as to track all data chunks of the file. Each entry in
the file recipe stores the fingerprint of an encrypted chunk.
If the chunk is delta-compressed, the entry also stores the
fingerprint of the corresponding base chunk. ShieldReduce
encrypts and stores the file recipe in persistent storage.

Download. To restore a backup, a client submits a down-
load request to the cloud. The enclave verifies the client’s
authenticity (§4). It decrypts the file recipe and restores
each data chunk. If the data chunk is a base chunk (i.e.,
not delta-compressed), the enclave reads the encrypted data
chunk, decrypts it, and performs local decompression to re-
cover the original data chunk; otherwise, if the data chunk
is delta-compressed, the enclave restores the corresponding
base chunk and decompresses the data chunk based on the
base chunk. Finally, the enclave sends all data chunks back
to the client via a secure channel.

3.5 Security Discussion
We discuss the security guarantees of ShieldReduce against
the threat model in §2.3.

Eavesdropping on untrusted memory and cloud storage.
An adversary can access the fingerprint index, feature index,
delta index, and backward index in untrusted memory of the
cloud. Nevertheless, ShieldReduce encrypts fingerprints and
generates features via collision-allowed hash functions, so it
prevents the adversary from identifying the data chunks from
the indexes (§3.4). Note that the adversary may learn from
both the delta index and backward index which data chunks
are similar to a base chunk, yet it still cannot identify original
data chunks, so the practical damage remains an open ques-
tion. We can still fully encrypt the delta index and backward
index to prevent such leakage, yet this adds the overhead
of decrypting the indexes inside the enclave for updates and
queries. The adversary can access the chunks and file recipes
in persistent storage of the cloud, yet ShieldReduce ensures
that they are fully encrypted to prevent unauthorized access.

Monitoring interface calls. An adversary can monitor the
enclave’s boundary on three types of cross-boundary function
calls: (i) index queries, which query the fingerprint index and
feature index based on the encrypted fingerprints and features
of data chunks, respectively; (ii) index updates, which up-
date the backward index and delta index based on encrypted
fingerprints; and (iii) data transfers, which move encrypted
data via the enclave. The adversary can learn (i) from index
queries which encrypted fingerprints and features correspond
to a batch of data chunks, (ii) from index updates which
chunks will be offloaded to offline compression, and (iii)
from data transfers how much data is reduced for each batch
of data chunks. Such learned knowledge, however, cannot
help the adversary infer original data. For (i), the underly-
ing frequency-based deduplication mitigates the leakage of
querying the fingerprint index [60] and ShieldReduce maps
distinct chunks to the same feature (§3.4). For (ii), the chunks
and fingerprints are encrypted. For (iii), while such leakage
is inevitable to support data reduction, an adversary only sees
encrypted data without useful information.

Collusion between the cloud and clients. An adversary can
compromise both the cloud and a client to additionally access
the compromised client’s session key and its data chunks.
Nevertheless, since the session key is random and used only
once, it does not leak other clients’ uploaded data that are
protected by different session keys.

However, a powerful adversary may now exploit the leak-
age of how much data is reduced (see above). It can proac-
tively upload artificial chunks via the compromised client and
monitor the cloud to see how much data is actually stored.
It can learn whether the artificial chunks have been stored
by other clients (due to deduplication) and how similar they
are to the chunks of other clients (due to delta compression).
To defend, we can use selective deduplication [27] to obfus-



cate deduplication patterns and pad delta chunks with random
dummy bytes to mitigate compression leakage, at the expense
of increasing storage overhead. Alternatively, we can also
rate-limit clients’ queries to slow down the attack [10].

4 Implementation
We prototyped ShieldReduce based on Intel SGX SDK
Linux 2.15. It implements in-memory index structures with
std::unordered map and encrypts fingerprints (computed
via SHA-256) in each index structure via AES-256 in CBC
mode with a fixed zero initialization vector [60], so that
identical plain fingerprints are mapped to identical encrypted
fingerprints for duplicate detection. It uses multi-threading to
parallelize internal operations, and the cloud maintains an in-
memory 256-MiB cache to hold recently accessed containers.
Our prototype includes 10.5 K lines of C++ code.

Chunking and deduplication. Each client uses FastCDC
[59] for content-defined chunking with minimum, average,
and maximum chunk sizes of 4 KiB, 8 KiB, and 16 KiB, re-
spectively. It uses the Diffie-Hellman key exchange (§2.3)
based on the NIST P-256 elliptic curve. Each client is as-
sociated with a per-client master key, which is sent to the
enclave during uploads through a secure channel. The en-
clave encrypts file recipes with the master key to ensure
backup integrity. The enclave implements frequency-based
deduplication as in DEBE [60] by keeping a small fingerprint
index of the 256 K most frequent chunks inside the enclave
and a full fingerprint index in untrusted memory.

Compression and storage. The enclave processes batches
of 128 data chunks and uses Finesse [62] to extract three
features (32 bytes each) from each non-duplicate chunk after
deduplication. It uses Edelta [58] for delta compression and
LZ4 [8] for local compression. It encrypts each compressed
chunk via AES-256 in GCM mode with a random 16-byte
initialization vector. It batches the encrypted fingerprints
from each batch of chunks to update the delta index, and from
all chunks in the entire backup to update the backward index.
It stores the encrypted compressed chunks and corresponding
initialization vectors in 4 MiB containers.

5 Evaluation
5.1 Methodology
Testbed. We deploy ShieldReduce on Alibaba Cloud [1],
using ecs.r7t.xlarge virtual machine instances to host cloud
storage and multiple clients. Each instance has 32 GiB RAM
and a 4-core 2.7 GHz Intel Xeon CPU to support SGXv2, and
is installed with Ubuntu 20.04. All instances are connected
with a 3 GbE network. The cloud storage instance is attached
with a 1 TiB Aliyun SSD (PL0) offering up to 10 K IOPS for
persistent storage, except for Exp#4, where we use the Aliyun
SSD (PL3) with a maximum of 1 M IOPS to boost aggregate
download performance.

Datasets. Our evaluation needs access to data contents, yet no
public backup datasets with sensitive contents are available.
Thus, we consider three public real-world datasets to mimic
sensitive backup workloads: (i) Linux [7], which includes
209 versions (from v2.6.11 to v6.4-rc7) of Linux source code
with a total of 185.7 GiB of logical data; (ii) Web [61, 62, 68],
which includes 78 versions (from June 13 to September 1
in 2016) of website backups of news.sina.com with a to-
tal of 210.8 GiB of logical data; and (iii) Docker [3], which
includes 95 versions (from v2.1.14 to v4.1) of Docker im-
age snapshots of Cassandra from Docker Hub with a total of
32.2 GiB of logical data. These datasets simulate the develop-
ment of copyrighted software (Linux) and the maintenance
of sensitive services (Web) and environments (Docker). We
also consider a synthetic dataset, SimOS, where we apply
controlled modifications [38] to an operating system image
to simulate a user’s private activities. We create an initial
snapshot from the CentOS 7 virtual disk image (containing
1.25 GiB of data) with a total of 8 GiB of space. We generate
a sequence of 30 SimOS snapshots, with a total of 240 GiB of
logical data, from the initial image, such that each snapshot
is created from the previous one by randomly picking 30% of
files, modifying 30% of their contents, and adding 10 MiB of
new data.
Baselines. We compare ShieldReduce with three baselines:
DEBE [60], ForwardDelta, and SecureMeGA. DEBE per-
forms frequency-based deduplication and local compression
in an enclave, but without delta compression (§3). Both
ForwardDelta and SecureMeGA extend DEBE with delta
compression on a per-batch basis. ForwardDelta loads the
base chunks (in containers) from persistent storage into the
enclave for forward delta compression (§3.1), but does not
perform backward delta compression. SecureMeGA imple-
ments MeGA [67] for delta compression in the enclave. It
loads the containers with at least three base chunks [67] into
the enclave for delta compression and skips the delta com-
pression of data chunks whose base chunks are not in such
containers. We use the open-sourced DEBE prototype [60]
to implement ForwardDelta and SecureMeGA in C++.
Default configurations. We configure ShieldReduce and all
baselines to track the fingerprints of up to 256 K chunks in
the enclave for frequency-based deduplication. For Forward-
Delta, SecureMeGA, and ShieldReduce, we fix the batch size
as 128 data chunks and use three threads to extract features
in parallel (except Exp#2, which runs in a single thread to
study performance breakdown). We set the locality threshold
t = 0.03 and the offline reduction target α = 0; we study the
sensitivity of the parameters in Exp#5.

5.2 Storage Efficiency
Exp#1 (Analysis of data reduction). We compare the data
reduction ratios of different approaches. We do not consider
metadata overhead, but will study the index overhead of
ShieldReduce in Exp#6. Note that ForwardDelta implements
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Datasets DEBE ShieldReduce Secure Forward
α=0 α=0.5 α=0.7 α=1 MeGA Delta

Linux 5.8 25.8 12.2 8.9 6.3 12.1 25.1
Web 13.1 58.6 27.9 19.9 14.0 16.1 60.6

Docker 8.6 14.9 14.4 12.9 10.3 14.0 15.0
SimOS 59.3 63.6 63.6 63.6 61.0 60.2 63.3

Table 1: (Exp#1) Analysis of data reduction ratio. For α = 0, Shiel-
dReduce aims for the highest possible storage savings via backward
delta compression, while for α = 1, ShieldReduce only updates
indexes and skips backward delta compression (§3.3).

fine-grained data reduction (Figure 1) in the enclave and
achieves the same data reduction ratio as fine-grained data
reduction for plain data.

Table 1 shows the results. ShieldReduce, ForwardDelta,
and SecureMeGA achieve higher storage savings than DEBE
due to delta compression. When α = 0, ShieldReduce has
a data reduction ratio comparable to ForwardDelta, with a
minor difference attributed to the variation in base chunks
used in backward delta compression. ShieldReduce achieves
up to a 3.6× data reduction ratio in Web compared with
SecureMeGA, since Web includes a large fraction of similar
chunks, yet SecureMeGA skips the delta compression of most
similar chunks for high performance. Also, the data reduction
ratio of ShieldReduce generally decreases with α , since a
larger α implies that fewer chunks are compressed offline
(§3.3). ShieldReduce keeps almost the same data reduction
ratio (63.6×) in SimOS for 0 ≤ α ≤ 0.7, as SimOS has very
few similar chunks and ShieldReduce’s offline compression
has limited extra storage savings. In Exp#5 (§5.3), we study
the inline and offline time durations to achieve the presented
data reduction ratios for different t and α .

5.3 Performance
Exp#2 (Microbenchmarks). We study the performance
breakdown of ShieldReduce in uploading backups. We con-
figure ShieldReduce to run with a single thread. We let a
client upload the first 20 backups of each dataset and measure
the average computational time of different steps on the write
path. Table 2 presents a breakdown of the computational
time per 1 MiB of logical data processed. ShieldReduce’s
bi-directional delta compression, including locality detection
and delta compression, takes only 2.8-8.8% of the overall
computational time. Notably, feature generation takes 55.9%
and 52.6% of the overall computational time in Linux and
Docker, respectively, and throttles the performance of Shiel-
dReduce, while it only takes 41.3% in Web and 15.2% in
SimOS. The discrepancy is due to the relatively small data
reduction ratios from deduplication in Linux and Docker (see
the data reduction ratio of DEBE in Table 1), so ShieldReduce
needs feature generation from more non-duplicate chunks.

Exp#3 (Inline performance). We compare the inline perfor-
mance of different approaches. We consider a single client
that loads a backup into its memory (to remove client-side

Steps Linux Web Docker SimOS
Chunking 0.930 0.756 0.841 0.877

Secure session setup 0.208 0.205 0.202 0.190
Deduplication 1.647 1.186 1.499 0.898

Feature generation 6.541 1.978 4.705 0.375
Locality detection 0.138 0.061 0.094 0.011
Delta compression 0.749 0.168 0.688 0.059
Local compression 1.282 0.364 0.750 0.043

Encryption 0.201 0.067 0.168 0.012

Table 2: (Exp#2) The computational time (unit: ms) per processing
1 MiB of logical data in each step on the write path. The results are
averaged from the uploads of 20 backups, and the variances are less
than 10.5% of the corresponding average values.

DEBEShieldReduce
ForwardDelta SecureMeGA
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(c) Docker (d) SimOS

Figure 7: (Exp#3) Upload speed in long-term backups.

disk I/Os) and uploads each backup one by one. We measure
the upload speed by dividing the logical backup size by the
total time of writing backup data into persistent storage.

Figure 7 shows the upload speeds. DEBE achieves a 1.5-
2.2× speedup over ShieldReduce since it does not perform
delta compression. Compared with ForwardDelta, Shield-
Reduce achieves an upload throughput gain of 1.1-3.5× since
it preserves physical locality to limit the I/Os of loading base
chunks from persistent storage, and further moves delta com-
pression offline if physical locality drops. Notably, Secure-
MeGA trades storage savings for performance (Exp#1), yet
ShieldReduce still accelerates SecureMeGA by up to 7.3%.

We also measure the CPU utilization of the cloud machine
as the ratio of the actual CPU time to the total processing
time on the write path (not shown in figures). ShieldReduce
has the highest CPU utilization (50.4%) in Linux among
all datasets, since Linux has the most non-duplicate chunks
that need encryption. Compared with DEBE, ShieldReduce
adds an absolute CPU utilization of 1.1-11.6% for feature
extraction and delta compression.

Exp#4 (Multi-client performance). We evaluate Shield-
Reduce when multiple clients concurrently upload and down-
load backups. We configure ten virtual machines to simulta-
neously upload (download) data files to (from) the cloud for
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Figure 8: (Exp#4) Multi-client uploads and downloads.

stress testing. We consider two cases: (i) Unique, where each
client has a 2-GiB data file with globally unique content (i.e.,
no redundancies) and (ii) Redundant, where each client’s data
is generated based on controlled modifications like SimOS
from the same CentOS 7 virtual disk image.

We measure the aggregate upload speed as the ratio of the
uploaded data size to the total time taken for the cloud to write
all clients’ data into persistent storage (in the inline stage).
Figure 8(a) shows that the aggregate upload speed of Redun-
dant first increases with the number of clients and achieves
826.7 MiB/s for four clients, and then drops to 578.1 MiB/s
for ten clients due to resource contention in the cloud-side
enclave. Enhancing the parallelization of SGX is beyond
the scope of this paper. However, ShieldReduce can be ex-
tended using frameworks like Occulum [51], which supports
multi-process execution within a single enclave. Similarly,
the aggregate upload speed of Unique gradually increases
from 76.3 MiB/s to 211.2 MiB/s for four clients, and is then
bounded by disk I/Os in persistent storage.

We also measure the aggregate download speed as
the ratio of the downloaded data size to the total time
taken for all clients to reconstruct files (client-side disk
I/Os are not considered). Figure 8(b) shows that the ag-
gregate download speed of Redundant (Unique) first in-
creases to 1024.6 MiB/s (738.1 MiB/s), and then decreases
to 862.7 MiB/s (698.0 MiB/s) due to read contention among
multiple clients. ShieldReduce in Redundant has a 1.2-1.4×
speedup compared with that in Unique, since the container
cache (§4) mitigates the disk I/Os of retrieving duplicate data
from persistent storage.

Exp#5 (Sensitivity of configurable parameters). We study
the impact of the locality threshold t (§3.2) and offline re-
duction target α (§3.3) on ShieldReduce’s performance. We
upload each backup by a client, followed by offline compres-
sion. We measure the time durations of the data reduction
process on and off the write path.

Figure 9 shows the results averaged across all backups
when we fix α = 0 and vary t. Note that t = 0 implies that
ShieldReduce locally compresses all data chunks on the write
path and defers delta compression off the write path. As t
increases, ShieldReduce needs more time to process uploads
on the write path, since it loads many containers from per-
sistent storage into the enclave for delta compression. The
increase of t only slightly increases inline duration (i.e., the

Off the write pathOn the write path

(a) Linux (b) Web

(c) Docker (d) SimOS

Figure 9: (Exp#5) Impact of t on inline (referred to the left Y-axis)
and offline (referred to the right Y-axis) durations.

Figure 10: (Exp#5) Impact of α on offline duration.

left Y-axis), but dramatically reduces offline duration (i.e.,
the right Y-axis), as it avoids reapplying delta compression
to many chunks that are already compressed with respect to
old base chunks. For example, when t increases from 0.05
to 0.1, the inline (offline) time duration increases (decreases)
from 12.4s (389.3s) to 25.5s (155.7s) in Web. Compared
to Linux, the write path performance in Docker and SimOS
is less affected by t, as they contain fewer similar chunks
(Exp#1 in §5.2) and increasing t adds only a small number of
chunks for inline delta compression. As future work, we plan
to adaptively configure t based on workload characteristics.

Figure 10 shows the average time duration (across all back-
ups) off the write path when we fix t = 0.03 and vary α .
When α = 1, ShieldReduce updates metadata without per-
forming backward delta compression on old base chunks.
Clearly, with the increase of α , we can effectively reduce
the time duration of offline compression, with the cost of
additional storage overhead (Exp#1). Due to the limited num-
ber of similar chunks in Docker and SimOS, varying α only
slightly affects the number of delta compression operations,
leading to a modest impact on the time duration.

5.4 Resource Overhead
Exp#6 (Index overhead). We evaluate the size overhead
of index structures in ShieldReduce, including the full fin-
gerprint index outside the enclave, feature index, and delta
index. We do not consider the small fingerprint index (based
on DEBE) inside the enclave, as it only stores up to 256 K
fingerprints (§4) and has a limited size of 8 MiB (assuming
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Figure 11: (Exp#6) Analysis of index overhead.

32-byte fingerprints). We also do not consider the backward
index and deletion map, as both of them will be cleared after
offline compression (§3.3). We report the index overhead
as the fraction of the size of each index after the last backup
over the total amount of logical data.

Figure 11(a) shows that the major index overhead gen-
erally comes from the fingerprint index and feature index,
which reach up to 0.39% in Linux and 0.24% in Docker. We
can mitigate the memory overhead of the fingerprint index
and feature index via locality-preserved caching [66] and the
stream-informed approach [52], respectively, without intro-
ducing extra storage overhead. The delta index incurs 0.14%
overhead in Linux. We can increase α to skip the backward
delta compression of some old base chunks being used to
delta-compress many data chunks (§3.3) to reduce the size
of the delta index, at the expense of extra storage overhead
(Exp#1 in §5.2). For example, increasing α to 0.5 reduces the
overhead of the delta index to 0.09% in Linux (Figure 11(b)).
Exp#7 (Enclave overhead). We evaluate the enclave over-
head of ShieldReduce in interface calls. We follow Exp#3 to
upload each backup and count ECalls and OCalls on and off
(for ShieldReduce only) the write path. We focus on three
types of OCalls (§3.5) on the write path: index queries, index
updates (for ShieldReduce only), and data transfers.

Table 3 shows the numbers of ECalls and OCalls. On the
write path, all approaches issue the same number of ECalls
to batch data chunks into the enclave. Compared with DEBE
(which issues OCalls to query the full fingerprint index out-
side the enclave for deduplication), ShieldReduce adds up
to 2.4× OCalls (Docker) for two reasons: (i) querying the
feature index and loading base chunks into the enclave for
delta compression, and (ii) updating the backward index and
delta index to offload delta compression off the write path.
ShieldReduce reduces the total number of OCalls for For-
wardDelta by up to 83.3% (Linux) by preserving physical
locality and offloading delta compression from the write path.

To justify the significance of preserving physical locality in
ShieldReduce, we disable the offloading of delta compression
to offline compression by manually clearing the backward in-
dex (i.e., no reconstruction of physical locality). We measure
the average amount of data reduced by delta compression per
OCall for data transfers and index updates with and without
offloading (we exclude index queries as the same number of
OCalls are issued in both cases). Table 4 shows that Shield-
Reduce (with offloading) has up to 4.6× data reduction per

Datasets DEBE ForwardDelta ShieldReduce
Inline Offline

L
in

ux

#ECall 0.2 M 209

#OCall

Index queries 0.2 M 0.4 M

963.6 MIndex updates - - 0.04 M
Data transfers 0.03 M 2.6 M 0.06 M

Total 0.23 M 3.0 M 0.5 M

W
eb

#ECall 0.2 M 78

#OCall

Index queries 0.2 M 0.4 M

250.4 MIndex updates - - 0.02 M
Data transfers 0.03 M 1.4 M 0.05 M

Total 0.23 M 1.8 M 0.47 M

D
oc

ke
r

#ECall 0.03 M 95

#OCall

Index queries 0.02 M 0.04 M

19.5 MIndex updates - - 0.01 M
Data transfers 0.005 M 0.03 M 0.01 M

Total 0.025 M 0.07 M 0.06 M

Si
m

O
S

#ECall 0.1 M 30

#OCall

Index queries 0.03 M 0.05 M

8.8 MIndex updates - - 0.01 M
Data transfers 0.02 M 0.05 M 0.03 M

Total 0.05 M 0.10 M 0.09 M

Table 3: (Exp#7) Enclave overhead. We measure the overhead by
the number of interface function calls.

Approaches Linux Web Docker SimOS
Without offloading 14.3 16.8 42.4 8.1

With offloading 65.9 29.9 47.5 10.9

Table 4: (Exp#7) Average amount of data reduced by delta compres-
sion per OCall for data transfers and index updates (KiB) with and
without offloading (i.e., performing delta compression offline on
similar chunks whose base chunks exhibit weak physical locality).

OCall (Linux) compared to without offloading. The reason is
that preserving physical locality allows ShieldReduce to keep
more base chunks in the same containers and issues fewer
OCalls to load containers in data reduction.

Off the write path, ShieldReduce issues ECalls to start
offline compression after each backup upload, and many
OCalls to load chunks into the enclave and update the delta
index after backward delta compression. We argue that the
latter only incurs up to a few hundred seconds for the offline
compression of each backup (Figure 9 in Exp#5). We can tune
α to reduce the duration of offline compression (Figure 10 in
Exp#5) by trading storage savings (Table 1 in Exp#1).

6 Related Work
Performance improvements for delta compression. Earlier
studies [22,40,47,53] generate features based on Rabin finger-
prints. Finesse [62] mitigates the computational overhead of
calculating Rabin fingerprints via fine-grained locality within
similar chunks. DeepSketch [45] improves the accuracy of
base chunk search based on deep learning with specialized
hardware. ShieldReduce builds on Finesse [62] to search for
base chunks without specialized hardware.

Recent studies explore fast delta compression that trades
storage savings for performance. MeGA [67] uses selective
delta compression to avoid loading containers with only a



few base chunks, but it significantly degrades storage savings
(Exp#1 in §5.2). LoopDelta [61] proposes inverse delta com-
pression similar to ShieldReduce by treating new data chunks
as base chunks and delta-compressing old base chunks with
respect to the new data chunks, so as to be compatible with
rewriting techniques for the mitigation of chunk fragmen-
tation [37, 61]. However, LoopDelta does not address the
I/O overhead especially when reconstructing the data chunks
that are originally delta-compressed with respect to old base
chunks. ShieldReduce maintains I/O efficiency by perform-
ing forward or backward delta compression based on physical
locality and proposing tunable offline compression to balance
the storage-performance trade-off when applying backward
delta compression. Also, LoopDelta only considers plain
data reduction, while ShieldReduce realizes shielded data
reduction and addresses the enclave resource overhead.

Confidentiality for data reduction. Several studies propose
encryption mechanisms to allow the reduction of encrypted
data via deduplication [10, 11, 20, 35, 54], local compres-
sion [31, 65], or a combination of both along with delta com-
pression [64]. However, they necessitate weaker encryption
to preserve content redundancies after encryption, and incur
information leakage [33]. Shielded execution has been used
for secure data reduction. SeGShare [25] and S2Dedup [42]
use an enclave to mitigate the key management overhead of
deduplication on encrypted data. SGXDedup [49] leverages
SGX to speed up secure deduplication. DEBE [60] mitigates
the key management overhead by performing deduplication
and local compression before encryption inside an enclave.
SeedSync [63] builds on SGX to securely reduce transferred
data during cross-cloud synchronization. All the above stud-
ies do not consider delta compression.

7 Conclusion

We present ShieldReduce, which leverages SGX to realize
fine-grained shielded data reduction for outsourced storage.
The main novelty of ShieldReduce is bi-directional delta
compression, which performs either forward or backward
delta compression based on the physical distribution of base
chunks, so as to preserve physical locality and mitigate I/O
overhead. Experiments show that ShieldReduce achieves
high performance and high storage savings.
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A Artifact Appendix
Abstract

Our artifact includes the ShieldReduce prototype, which si-
multaneously supports all baseline approaches, along with
scripts for downloading the datasets used in our evaluation
and scripts for running all our experiments in §5. The Shiel-
dReduce prototype is a secure outsourced storage system
designed to enhance storage efficiency via fine-grained data
reduction, while ensuring data confidentiality via shielded
execution. It supports upload and download operations and
allows multiple clients to securely outsource their backup
storage to the cloud. It implements bi-directional delta com-
pression to improve performance and incorporates the hy-
brid inline and offline designs described in §3. It builds on
DEBE [60] to support frequency-based deduplication.

Scope

The artifact can be used to validate all results shown in the
figures and tables in §5, especially for our main claims.

• ShieldReduce achieves a similar data reduction ratio to
ForwardDelta and higher data reduction ratios than Secure-
MeGA and DEBE (Exp#1).

• ShieldReduce achieves a similar upload throughput to Se-
cureMeGA and higher upload throughputs than Forward-
Delta and DEBE (Exp#3).

• ShieldReduce with offloading reduces more data per OCall
compared to without offloading (Exp#7).

Contents

The artifact comprises the following sub-directories:

• /Prototype includes the implementation of the Shield-
Reduce prototype.

• /MultiClient includes the implementation of parallel
processing of the ShieldReduce prototype (dedicated to
Exp#4).

• /Result stores evaluation results and scripts for generating
plots based on the results.

• /Dataset includes scripts for downloading datasets used
in our paper. Note that the Web dataset is private and not
included in the artifact.

• /ClientScript includes scripts for uploading backups
from a client.

• /ServerScript includes scripts for reproducing all exper-
imental results in §5.

Hosting
The artifact is available on GitHub. Users can obtain
the artifact from the repository https://github.com/
YangJingyuan99/shieldreduce. The version we pro-
vided for the artifact evaluation is marked with the atc25ae
tag. We encourage users to use the latest version of
the repository since it may include bug fixes. We also
release scripts for downloading (for Linux and Docker)
and generating (for SimOS) datasets used in §5. The
README file (https://github.com/YangJingyuan99/
shieldreduce/blob/master/README.md) describes the
detailed instructions to produce these datasets.

Requirements
We implement ShieldReduce based on Intel SGX SDK
Linux 2.15, Intel SGX SSL 1.1.1l, and OpenSSL 1.1.1l in
Ubuntu 20.04 LTS. See our README file for detailed depen-
dencies. We evaluate ShieldReduce on Alibaba Cloud using
ecs.r7t.xlarge virtual machine instances to host cloud
storage and multiple clients. Each instance has 32 GiB RAM
and a 4-core 2.7 GHz Intel Xeon CPU to support SGXv2, and
is installed with Ubuntu 20.04. All instances are connected
with a 3 GbE network. See §5.1 for the detailed evaluation
setup.

Workflow
To reproduce the experiments in §5, users can refer to
./AEInstructions.md for detailed instructions.

https://github.com/YangJingyuan99/shieldreduce
https://github.com/YangJingyuan99/shieldreduce
https://github.com/YangJingyuan99/shieldreduce/blob/master/README.md
https://github.com/YangJingyuan99/shieldreduce/blob/master/README.md

	Introduction
	Background and Problem
	Plain Data Reduction
	Encrypted Deduplication and Its Limitations
	Fine-grained Shielded Data Reduction
	Challenges

	ShieldReduce Design
	Main Idea
	Locality-based Inline Compression
	Tunable Offline Compression
	Storage Management
	Security Discussion

	Implementation
	Evaluation
	Methodology
	Storage Efficiency
	Performance
	Resource Overhead

	Related Work
	Conclusion
	Artifact Appendix

