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Abstract—Quasi-Cyclic Low-Density Parity-Check (QC-LDPC)
codes are widely used in flash-based solid-state drives (SSDs)
to ensure storage reliability due to their efficient encoding and
decoding, as well as their compact structure. However, as SSD
capacities grow, existing QC-LDPC codes face higher error rates,
leading to both lifetime and performance degradation. We propose
MASS, a new QC-LDPC code construction framework that
leverages masking to remove error-prone substructures from
the coding matrix during construction, thereby improving SSD
reliability. MASS further adopts a smart decoding policy that
selectively skips decoding operations to boost I/O performance. We
implement MASS in the MQSim SSD simulator, where evaluation
shows up to 93% reduction in decoding failure rates, and up to
47.5% lower read response latency.

Index Terms—SSD reliability, ECC, LDPC codes

I. INTRODUCTION

Advances in solid-state drive (SSD) technology, particularly
multi-level cell storage, have significantly increased SSD
capacities by enabling a single flash cell to store multiple bits
[3], [16], [20], [41]. However, this higher density also reduces
reliability, with the raw bit error rate (RBER) increasing from
10~8 in 2009 [12] to 0.01 in 2017 [8], and further climbing to
0.015 in a recent study [57].

To ensure reliability under increasing RBERs, SSDs use
error correction codes (ECCs), which encode user data with
additional parity bits for error recovery. Traditionally, SSDs
rely on Bose-Chaudhuri-Hocquenghem (BCH) codes [6], [26],
[30], [31], [38]. As RBERs increase, low-density parity-check
(LDPC) codes become the preferred choice of ECCs due to their
superior error-correction capability [60]. In particular, quasi-
cyclic LDPC (QC-LDPC) codes are the most commonly used
LDPC codes in modern SSDs, as their quasi-cyclic structure
simplifies encoding and decoding operations with improved
computational efficiency, and further reduces storage overhead
in the SSD controller via a more compact matrix representation.
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As RBERSs continue to grow in large-capacity flash-based
SSDs, the reliability of QC-LDPC codes becomes a critical
issue, especially when the number of errors may exceed the
error correction capability of the QC-LDPC codes. To enhance
the error correction capability of QC-LDPC codes, one approach
is to reduce the code rate, defined as the number of user data
bits divided by the code length (i.e., the total number of user
data bits and parity bits). However, a lower code rate results
in higher storage overhead for parity bits. This is particularly
problematic for large-capacity SSDs. For example, for a 100 TiB
SSD, reducing the code rate from 0.9 to 0.8 doubles the storage
for parity bits from 10 TiB to 20 TiB.

An alternative approach is to improve the QC-LDPC code
design with higher error correction capability, while maintaining
a high code rate and low storage costs. However, designing
reliable QC-LDPC codes is non-trivial. We observe that
commonly used QC-LDPC codes are based on deterministic
constructions, which restrict the potential for further reliability
optimization. Existing theoretical constructions and optimiza-
tion techniques (§II-C) often fall short of delivering sufficient
reliability improvements for large code lengths, which are
typical in SSDs. Consequently, designing reliable QC-LDPC
codes and leveraging their strong error correction capability
for I/O performance improvements remain unresolved.

We propose MASS, a QC-LDPC code construction frame-
work designed to enhance SSD reliability with stronger error
correction capability and improve I/O performance based on
an enhanced error correction model. Our contributions are
summarized as follows.

o We propose a masking-aware search framework to construct
more reliable QC-LDPC codes for SSDs. MASS leverages
masking to remove error-prone substructures from the coding
matrix during QC-LDPC code construction.

e We design a smart decoding technique that selectively
bypasses decoding based on an enhanced error correction
model of MASS, so as to improve I/O performance.

« We implement MASS into the open-source SSD simulator,
MQSim [50]. Our evaluation shows that MASS reduces the



decoding failure rate by up to 93% compared to state-of-the-
art QC-LDPC code constructions. Based on Alibaba block
traces [28], our smart decoding technique reduces the read
response latency by up to 47.5% compared to the default
decoding approach.

MASS is now open-sourced at https://github.com/
ukulililixl/mass.

II. BACKGROUND
A. Basics of SSDs

SSDs perform I/O in units of pages. Each page consists of
a user area for storing data and a spare area for metadata,
such as parity data for fault tolerance. Page sizes vary by
manufacturer, but mainstream SSDs typically allocate 16 KiB
for the user area and about 2 KiB for the spare area [46]. For
example, MICRON’s NAND flash implementation designates
2,208 bytes for the spare area [1].

To write pages, the SSD controller generates ECC codewords,
comprising user data and corresponding parity data. Due to
the high encoding complexity of large codewords, a page is
typically segmented into multiple smaller codewords, such as
2 KiB or 4KiB of user data per codeword [39], [60].

To read pages, the SSD controller first senses the raw page
data and applies hard-decision decoding (or hard decoding
in short), a fast and simple error correction method based on
bit values (0 or 1). If successful, the user data is returned. If
errors remain, the SSD controller applies multiple rounds of
soft-decision decoding (or soft decoding in short). Each round
starts with a read retry to re-sense the raw data [10], [32],
[40], followed by more robust, computationally intensive error
correction. If soft decoding cannot correct all errors after a
certain number of rounds, a read error is returned.

B. Basics of QC-LDPC Codes

LDPC codes are widely adopted ECCs in modern SSDs [60].
An (N,M) LDPC code encodes N — M information bits into
M parity bits, with a code length N and a code rate % A
common code rate in production SSDs is 0.89 [11], [14], with
4-KiB user data and 512-byte parity data per codeword.

Parity-check matrix. An LDPC code is defined by a
parity-check matrix H with M rows and N columns, where
the N columns correspond to the N bits of a codeword
(vo,v1,...,vN—1), while the M rows represent M parity-check
equations (co,c1,...,cpm—1). The matrix H is characterized by
the column weight (i.e., number of 1’s per column) and the row
weight (i.e., number of 1’s per row). An LDPC code is regular
if all columns have the same column weight and all rows have
the same row weight; otherwise, it is irregular. LDPC codes
in SSDs often have a column weight of 4 or 5 for enhanced
reliability [13], [53], [59].

Tanner graph. A Tanner graph G = (V,E) is a bipartite
graph that describes an (N,M) LDPC code, which contains N
variable nodes (representing codeword bits) and M check nodes
(representing parity equations). Each check node ¢; connects
to variable nodes involved in its parity equation. The error

Fig. 1: Example of the Tanner graph for the (8,4) LDPC code in
Equation (1), where variable nodes are in the top layer and check
nodes are in the bottom layer.

correction algorithms are performed based on the Tanner graph
(e.g., bit-flipping algorithm for hard decoding [51] and min-sum
algorithm for soft decoding [44]). For example, Equation (1)
defines an irregular (8,4) LDPC code, which encodes four
information bits vy, v, v2, and v3 into four parity bits vy, vs,
vg, and v7, and the four rows of the parity-check matrix define
four parity equations in Equation (2), which are all equal to
zero for a correct codeword (i.e., ¢; =0 for all i =1,2,3,4).
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Figure 1 shows the corresponding Tanner graph. For example,
the check node ¢y connects to variable nodes vy, v4, and v7, so
co = v1 +v4+v7, which equals zero in an error-free codeword.

The error correction capability of an LDPC code mainly
depends on three metrics:

o Cycles: 2¢-Cycle is a closed path in the Tanner graph that
comprises ¢ variable nodes and ¢ check nodes. For example,
(v1, co, v7, c2, v1) form a 4-cycle in Figure 1. Shorter
cycles are more prone to uncorrectable errors due to limited
information available for error correction. Thus, reducing
the number of short cycles improves the error correction
capability.

o Girth: The girth is the length of the shortest cycle in a
Tanner graph. In Figure 1, the girth is 4. A larger girth
implies longer cycles, so increasing the girth improves the
error correction capability.

o Trapping sets: A trapping set defines a group of bits that,
if simultaneously erroneous, cannot be corrected [43]. Short
cycles with chords (i.e., edges that connect two non-adjacent
vertices of a cycle) are often the root causes of trapping sets
[4]. Thus, reducing the number of chords reduces the number
of trapping sets and improves the error correction capability.

QC-LDPC codes. QC-LDPC codes are a special family of
LDPC codes that have been popularly used in SSDs [54],
[58]. QC-LDPC codes are configured by parameters (N, M,
q), where the M x N parity-check matrix can be divided into
several square sub-matrices of size g x g. Each sub-matrix
is either a permuted identity matrix or a zero matrix. For
example, the (8,4) LDPC code in Equation (1) corresponds
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to an (N =8,M =4,q=2) QC-LDPC code, with its matrix
divided into eight 2 x 2 sub-matrices.

QC-LDPC codes achieve small storage footprints, as the
parity-check matrix of size M x N can be compressed into an
exponent matrix of size ¥ x X Each item in the exponent
matrix means a zero matrix (denoted by infty), or a permuted
identity matrix (denoted by integers in [0,q — 1]). For example,
the parity-check matrix in Equation 1 can be compressed into
the following exponent matrix:

I o 0 1
A= [ I 1 o 1 } )

QC-LDPC codes also enable parallel processing by dividing
the parity-check matrix into sub-matrices, so as to allow
multiple processing units to perform computations on different
parts of the code simultaneously.

C. Limitations of Existing QC-LDPC Codes

We review existing QC-LDPC construction approaches and
their limitations.

Finite-field-based QC-LDPC codes. QC-LDPC codes based
on finite fields, such as Galois Field (GF), are commonly used
in SSDs [13], [19], [27], with exponent matrix elements derived
from GF [19], [27]. While some GF-based constructions are
specifically designed for NAND flash [5], [15], [22], [29], [33]
and enable rapid code generation, they do not optimize cycles,
girth, and trapping sets for reliability enhancements.

Search-based QC-LDPC codes. Search-based QC-LDPC
constructions use algorithms to optimize code structures. While
effective for short codes (e.g., shorter than 512 bytes) [47]-[49]
or trapping set elimination [4], they face challenges with longer
codes used in SSDs (longer than 4 KiB), as they often result in
smaller girth [47]-[49] and have difficulty in removing small
trapping sets [4].

Masking. Masking improves QC-LDPC reliability by strate-
gically replacing exponent matrix values with oo (converting
certain 1’s to 0’s in the parity-check matrix), to remove Tanner
graph edges to eliminate cycles, increase girth, and reduce
trapping sets. Existing masking techniques include random
masking, which inserts co randomly [29], and structural masking
which inserts o« based on predefined patterns (e.g., cyclic shifts
[13], [29]). Masking can be implemented before [52] or after
[55] the construction of a QC-LDPC code. However, existing
masking approaches do not simultaneously optimize cycles,
girths, and trapping sets.

III. MASS
A. QC-LDPC Construction Framework

Since increasing girth, reducing cycles, and reducing trapping
sets enhance reliability, MASS aims to construct a QC-LDPC
code by finding an exponent matrix with a larger girth, fewer
cycles, and fewer trapping sets, given parameters N, M, g, and
column weight w. MASS’s key idea is to incorporate masking
into its construction process. It returns an % X % exponent
matrix with entries in [0,g — 1] or oo, following these steps:

Step 1: Initialization. We initialize a random exponent matrix
A of size ¥ x ¥ with each entry chosen from [0,q — 1] or oo,
To meet the column weight constraint, each column contains
exactly w values from [0,q — 1]. We then evaluate the girth g,
the number of g-cycles r,, and the number of chords under

girth g, denoted by 7.

Step 2: Matrix optimization. We search for a better exponent
matrix with a larger girth g, fewer g-cycles r,, and fewer chords
tg in multiple rounds. In each round, we update the exponent
matrix column by column, starting from the leftmost column in
A. The search for a column comprises the following steps, and
is executed in multiple rounds until it cannot find an exponent
matrix that provides a larger girth, fewer cycles, or fewer chords.

Step 2.1: Masking enumeration. When optimizing a column,
we first enumerate all possible combinations of positions
to fill with . Given the column weight w, the number of
positions filled with oo in a column should be % —w. For each
combination, we randomly fill the remaining positions with
values from [0, g — 1] and evaluate the corresponding girth g’ as
well as the number of g’-cycles 7, and the number of chords
under girth g’, denoted by ;.

Step 2.2: Column optimization. We optimize each column
based on the combinations enumerated in Step 2.1. For each
combination, we change the value of one position out of the
w positions that are not e to another value from [0,q — 1] as
an extension of the combination. We then examine whether
the extension provides a larger girth, fewer cycles, and fewer
chords. Once we encounter a combination that provides a better
exponent matrix, we update A accordingly.

Priority in comparison. When comparing the girth g, the
number of g-cycles, and the number of chords under girth g of
two exponent matrices, we give the highest priority to the girth,
such that an exponent matrix with a larger girth is considered
better than the other. For the number of g-cycles and chords,
we provide two comparison policies: cycle-first, where the
number of g-cycles has higher priority, and chord-first, where
the number of chords has higher priority.

Example. Figure 2 shows an example of how we optimize a
column in a round of Step 2 for the (6,4,5) QC-LDPC code
with w = 2. Suppose that we start with a randomly initialized
exponent matrix ((0), with the girth g =4 and the number
of 4-cycles r4 = 5. Next, we optimize the first column. We
enumerate (3) = 6 combinations of the two oo positions in
the first column. For each combination, we randomly fill the
remaining positions and evaluate the corresponding metrics of
girth, cycles, and chords ((2)). Then, we generate extensions
starting from the first combination of (eo,c0,4,4) and examine
the metrics one by one ((3)). Note that (g =6,r, = 55,1, =70)
is the best result among all the extensions of (co,00,4 4), with
the first occurrence in (eo,00,4,3). Thus, we update the first
column of A with (eo,00,4,3) after examining the extension of
the first combination of co. For brevity, we omit the details of
examining the extensions of the other five combinations of the
first column in this example.
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Fig. 2: Example of the optimization of a column in a round of step 2
for the (6,4,5) QC-LDPC code with w =2, where g, rg, and t, refer
to the girth, the number of g-cycles, and the number of chords under
girth g, respectively.

We show that MASS improves reliability in terms of the
girth, number of cycles, number of chords (see Exp#l1 in §IV-A),
and the decoding failure rate (see Exp#2 in §1V-A), compared
with several state-of-the-art QC-LDPC constructions.

B. Smart Decoding

At high RBERSs, hard decoding often fails, requiring multiple
soft decoding rounds. Skipping hard decoding at a high RBER
improves read performance, but determining when to skip hard
decoding is difficult, as the QC-LDPC code acts as a black
box in SSDs. MASS adopts smart decoding by selectively
bypassing hard decoding based on the error correction model
of the constructed QC-LDPC code.

Latency model. We first model the latency of a single decoding
operation, which includes three components. (i) data read
latency, the time to read data from the flash chip, denoted
by tgy, for hard decoding and fgs for soft decoding; (ii) data
transfer latency, the time to transfer data from the flash chip to
the decoder, denoted by tppsap for hard decoding and fppsa for
soft decoding; and (iii) decoding latency, the time to execute
the decoding algorithm, denoted by tz¢¢y for hard decoding
and tgccs for soft decoding.
Thus, the latency of hard decoding is

th (RBER) = trn +tpman +tecch (RBER), 4)

while the latency of a round of soft decoding is
ts(RBER) = tgy +tpymas +teccs(RBER). 5)

Smart decoding. Based on the latency model, we can make
a decision on when to skip the hard decoding. We mainly
consider only one round of hard decoding and one round of
soft decoding, as multiple rounds of soft decoding indicate a
high RBER where hard decoding is unlikely to succeed. Given
the error correction model, P(RBER), which denotes the failure
probability of hard decoding at a given RBER. The expected
latency of performing a round of hard decoding followed by a
round of soft decoding (if hard decoding fails) is:

T = 1,(RBER) + P(RBER) x t,(RBER). (6)

By comparing T and #,(RBER), we can find a crosspoint,
where on the left of the point, T < #;(RBER), meaning that
the default decoding is expected to finish within less time
compared with skipping the hard decoding, while on the right
of the point, skipping hard decoding provides less latency. In
real deployment, we can figure out the RBER of this point
given the system configurations and the error model of an
SSD to enable smart decoding (See our experiment Exp#3 in
§IV-B).

C. Implementation

The implementation of MASS comprises two parts: (i) an
offline QC-LDPC constructor based on our design in §III-A;
and (ii) the integration of ECC modules, including an error
injector, and a pair of encoder and decoder per channel into
the MQSim SSD simulator [50] to show how we deploy the
QC-LDPC code generated by MASS in a general SSD. The
implementation involves 3.9 K LoC in MQSim.

Error injector. The error injector simulates errors in raw data
read from flash chips based on a published error model [21]
and the Additive White Gaussian Noise (AWGN) model [23].
It predicts RBERs from SSD statistics, halving the RBER with
each read retry. It injects errors accordingly and initiates states
for hard decoding and soft decoding operations.

Encoder. The encoder simulates the encoding process by
adjusting the data size to account for parity data, as MQSim
does not store actual data. The encoding procedure is integrated
into the write flow, redirecting write requests to the encoder
to modify the data size before it reaches the back end.

Decoder. The decoder handles error correction, supporting the
default decoding procedure that begins with hard decoding
followed by multiple rounds of soft decoding, and the smart
decoding method (§III-B). The hard decoding uses the Gradient
Descent Bit-Flipping algorithm [51], while the soft decoding
employs the min-sum algorithm [44].

Latency model modifications. We update MQSim’s end-to-
end latency model to support MASS by incorporating encoding
latency (data size divided by the encoding throughput of
specific hardware), decoding latency (Equations (4) and (5)),
and pipelining (where encoding or decoding of one codeword
occurs concurrently with the data transfer of another codeword).

Discussion. We assume sufficient memory to store the full
address mapping table, enabling in-memory operations to
enhance I/0 performance. MASS integrates ECC operations
into the read/write flows, ensuring compatibility with standard
garbage collection procedures. For overhead, MASS aligns
with conventional QC-LDPC ECC processes, introducing no
additional computational overhead and requiring only minimal
extra memory to store RBER values for smart decoding.

IV. EVALUATION
A. Reliability Analysis

We compare MASS’s reliability with several state-of-the-art
QC-LDPC code constructions: (i) GF, which constructs an



TABLE I: (Exp#1) Girth, cycles, and chords.

Approach (g 1) Rl:;ll:llzng
GF (6, 228417, 93513) 2s
Post-masking (6, 66170, 6617) 18s
Pre-masking (6, 2560, 0) 175s
Cycle-first MASS | (8, 15008256, 689072128) 330s
Chord-first MASS | (8, 14994432, 686882816) 330s
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Fig. 3: (Exp#2) Decoding failure rate.

exponent matrix based on Galois Field [13], [19], [27]; (ii)
post-masking, which applies masking after forming an exponent
matrix to eliminate small cycles [55]; (iii) pre-masking, which
applies masking before forming an exponent matrix to eliminate
small cycles [52]; (iv) cycle-first MASS, configured with the
cycle-first policy; and (v) chord-first MASS, configured with
with the chord-first policy. By default, we configure (N =
36864,M = 4096, = 512) QC-LDPC with a column weight
of four (i.e., code rate of 0.89). Each codeword comprises
4 KiB of information bits and 512 bytes of parity bits.

(Exp#1) Girth, cycles, and chords. We evaluate the girth
(denoted as g), the number of g-cycles, and the number of
chords under g-cycles for QC-LDPC codes constructed by
different methods. Table I shows the results. MASS achieves a
girth of g = 8, surpassing other methods limited to g = 6, thus
offering higher reliability at the cost of increased algorithm
running time. As a search-based algorithm, MASS incurs longer
runtimes, which we deem acceptable for offline exponent matrix
construction. Among the two MASS variants, chord-first MASS
shows slightly higher reliability than cycle-first MASS. Both
achieve g = 8§, but chord-first MASS has fewer cycles and
chords, indicating that chords have a slightly greater impact
on QC-LDPC code error correction capability.

(Exp#2) Decoding failure rate. We evaluate the decoding
failure rate of a codeword across various RBERs, where the
decoding failure rate specifies the probability of a failed read
operation in an SSD. For each test, we encode information
bits based on Gaussian elimination [7], [25], simulate errors
by the error injector for different RBERs, and then apply
the decoder for error correction. The decoding failure rate
is calculated as the number of failed tests divided by the
total number of tests, with up to 500 million tests for hard
decoding and 100 million tests for soft decoding. As shown in
Figure 3(a), MASS outperforms other methods in both hard

and soft decoding.

For hard decoding, chord-first MASS achieves decoding
failure rate reductions of 91.7%, 93.2%, 58.6%, and 30.9%
compared to GF, Post-masking, Pre-masking, and cycle-first
MASS, respectively, at an RBER of 0.002. At an RBER of
0.0045, the reductions are 34.1%, 37.0%, 48.2%, and 17.5%,
respectively. As Figure 3(a) shows, chord-first MASS offers
higher reliability over other methods when the RBER is below
0.0045, where an SSD operates in healthy mode after many
program-and-erase (P/E) cycles. At RBERs above 0.0045,
MASS’s decoding failure rate is comparable to other methods
due to excessive errors, with soft decoding ensuring reliability.

For soft decoding, similar trends are observed, with reductions
of 50%-93.6% at an RBER of 0.014 and 4.6%-46.8% at an
RBER of 0.01525 compared to other methods. Figure 3(b)
shows that MASS outperforms other approaches and provides
higher reliability when the RBER is below 0.015.

MASS’s reliability improvements stem from its QC-LDPC
construction that optimizes girth, cycles, and trapping sets
through masking awareness. We omit results beyond specified
RBERs due to small differences at high RBERs or insufficient
errors at low RBERs.

B. Performance Evaluation in MQSim

Default settings. We use the SSD configuration from [9],
featuring a 2 TiB capacity, 8 channels (2 chips per channel),
and each chip with 2 dies (4 planes per die). Each plane has
1,888 blocks with 576 pages per block, and each page is 18 KiB
(16 KiB user space and 2 KiB spare space). Write and erase
latencies are set to 400 us and 3,500 ps, respectively, while
read latency varies based on hard and soft decoding. The error
model from [21] is integrated into MQSim to estimate RBER
from page statistics. Each codeword encodes 4 KiB of data
with a code rate of 0.89 and 12.4 Gb/s encoding throughput [2],
following the default QC-LDPC configuration in §IV-A. Hard
decoding runs up to 200 iterations at 0.16 us per iteration, while
soft decoding runs up to 20 iterations at 1 us per iteration [24].
With 2-bit quantization, soft decoding’s page read latency is
three times that of hard decoding (tg, = 13.33 us, tgs = 40 us)
[9], [13], [29], [33]. Data transfer latency for soft decoding is
double that of hard decoding due to 2-bit quantization, resulting
in tppyap = 15.36 us and tpyas = 30.72 us based on PCle 4.0.
We perform a trace-driven evaluation using 10 volumes from
the Alibaba block trace [28], with characteristics detailed in
Table II.

(Exp#3) MASS correction model. We assess when to skip
hard decoding by comparing three policies: (i) default, which
performs hard decoding followed by soft decoding; (ii) soft-
only, which directly performs soft decoding; and (iii) smart
decoding proposed in §III-B. As Figure 4 shows, for RBERs
below 0.00575, the default policy offers lower read latency due
to efficient hard decoding. For RBERs above 0.00575, soft-
only excels as hard decoding runs too many iterations, while
soft decoding’s stronger correction runs fewer iterations. Smart
decoding dynamically switches between the two, achieving the
lowest latency (i.e., the red curve in Figure 4).



TABLE II: Volumes selected from Alibaba block trace.

Read | Avg. read | Avg. write
Volume ID | # Requests ratio bytes bytes

1 363248 3% 47357 14618
2 293618 10% 26268 17157
3 117498 19% 38637 18979
4 70515 31% 39374 39295
5 37394 40% 30756 15890
6 27598 50% 33138 21489
7 37250 60% 37589 33229
8 36315 70% 33717 80425
9 33344 77% 33356 79615
10 475806 99% 4095 5964
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Fig. 4: (Exp#3) MASS correction model.
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Fig. 5: (Exp#4) Impact of P/E cycles. D refers to default; SO refers
to soft-only; SD refers to smart decoding. Read refers to the time to
read data from flash chips; Transfer refers to the time to transfer data
from flash chips to the decoder; ECC refers to the time spent on error
correction; Others refers the to time spent in other aspects.

(Exp#4) Impact of P/E cycles. We evaluate the impact of P/E
cycles on smart decoding, focusing on read response latency on
Volume 10, which has the highest read ratio. Figure 5 shows
the results. At P/E cycles below 1,000, both default and smart
decoding achieve optimal performance with low error rates,
while soft-only underperforms due to quantization overhead. At
2,000 P/E cycles, default and smart decoding show increased
ECC time due to higher error rates but still outperform soft-
only. At 3,000 P/E cycles, smart decoding matches soft-only’s
by skipping hard decoding, significantly reducing ECC time.
At 4,000 P/E cycles, smart decoding reduces read response
latency by 47.5% , effectively mitigating latency under high
RBERs.

(Exp#5) Impact of different workloads. We evaluate the
performance of smart decoding across 10 selected volumes
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Fig. 6: (Exp#5) Impact of different workloads.

from the Alibaba block trace, with the SSD configured at 3,000
P/E cycles. We measure the average response latency for read
and write operations, with results shown in Figure 6. The
response latency varies across workloads due to differences in
read ratios, request counts, and average read and write byte
sizes. Smart decoding improves performance by over 10%
compared to the default policy for all workloads. At 3,000
P/E cycles, smart decoding skips hard decoding, matching the
performance of soft-only policy.

V. RELATED WORK

In §1I-C, we reviewed various QC-LDPC code constructions.
Coding-based redundancy enhances fault tolerance at different
SSD levels. Cell-based coding, applied within a flash cell,
encodes information into distinct states using approaches such
as WOM-v codes [17], [18], [37], [56], Gray codes [34], [36],
[42], and Multi-Gray-Codes [35]. These can be used with ECCs,
which operate within a page to correct raw bit errors from flash
chips. While earlier ECCs relied on BCH codes [26], [31],
[38], modern flash storage predominantly uses LDPC codes
for superior error correction.

Zhao et al. [60] examine LDPC codes in SSDs, focusing
on reducing LDPC-induced response delays. Song et al. [45]
propose an adaptive approach that lowers the code rate for hot
data to enhance reliability, thereby reducing read failure rates
and associated read response latency. Some studies [13], [33]
design hardware architectures for LDPC decoders to improve
decoding performance in SSDs. Globally-Coupled LDPC (GC-
LDPC) codes [5], [29], a special type of QC-LDPC codes, have
been proposed to further improve decoding efficiency in SSDs.
These performance-driven approaches can be integrated with
MASS to enhance reliability.

VI. CONCLUSION

We present MASS, a framework for constructing reliable QC-
LDPC codes for SSDs by applying masking during exponent
matrix construction, to increase girth, reduce short cycles, and
reduce small trapping sets. Leveraging MASS’s error correction
model, we propose smart decoding, which selectively bypasses
hard decoding for better I/O performance. MASS outperforms
state-of-the-art QC-LDPC codes in reliability, while smart
decoding significantly improves read performance, particularly
at high P/E cycles and enhances write performance.



[1

—

[2

—

[4

=

[5

=

[6]

[7

—

[10]

[11]

(12]

[13]

[14]

[15]

[16]

(17]

(18]

(19]

[20]

[21]

REFERENCES

4Tb NAND flash memory; UT8INDQ512GS8T. https:
/Iwww.frontgrade.com/sites/default/files/documents/NAND_Basics_
AppNote_1_2%20(2).pdf.

Xilinx LDPC Encoder/Decoder v1.0. https://docs.amd.com/v/u/en-US/
pb052-1dpc.

Y. Aiba, H. Tanaka, T. Maeda, K. Sawa, F. Kikushima, M. Miura,
T. Fujisawa, M. Matsuo, and T. Sanuki. Cryogenic operation of 3D
flash memory for new applications and bit cost scaling with 6-bit per
cell (HLC) and beyond. In Proc. of IEEE Electron Devices Technology
& Manufacturing Conference (EDTM), 2021.

F. Amirzade, M.-R. Sadeghi, and D. Panario. Construction of protograph-
based LDPC codes with chordless short cycles. [EEE Trans. on
Information Theory (TIT), 2023.

B. Bao, W. Guan, L. Liang, and X. Qiu. An efficient GC-LDPC encoder
architecture for high-speed NAND flash applications. IEICE Electronics
Express, 21(2):1-6, 2024.

R. C. Bose and D. K. Ray-Chaudhuri. On a class of error correcting
binary group codes. Information and Control, 3(1):68-79, 1960.

D. Burshtein and G. Miller. Efficient maximum-likelihood decoding of
LDPC codes over the binary erasure channel. IEEE Trans. on Information
Theory (TIT), 50(11):2837-2844, 2004.

Y. Cai, S. Ghose, E. F. Haratsch, Y. Luo, and O. Mutlu. Error
characterization, mitigation, and recovery in flash-memory-based solid-
state drives. Proc. of the IEEE (Proc. IEEE), 2017.

M. Chun, J. Lee, M. Kim, J. Park, and J. Kim. Rif: Improving read
performance of modern SSDs using an on-die early-retry engine. In
2024 IEEE International Symposium on High-Performance Computer
Architecture (HPCA), 2024.

J. Cui, Z. Zeng, J. Huang, W. Yuan, and L. T. Yang. Improving 3-D
NAND SSD read performance by parallelizing read-retry. IEEE Trans.
on Computer-Aided Design of Integrated Circuits and Systems (TCAD),
42(3):768-780, 2023.

L. Cui, F. Wu, X. Liu, M. Zhang, R. Xiao, and C. Xie. Improving LDPC
decoding performance for 3D TLC NAND flash by LLR optimization
scheme for hard and soft decision. ACM Trans. on Design Automation
of Electronic Systems (TODAES), 27(1):1-20, 2021.

L. M. Grupp, A. M. Caulfield, J. Coburn, S. Swanson, E. Yaakobi,
P. H. Siegel, and J. K. Wolf. Characterizing flash memory: Anomalies,
observations, and applications. In Proc. of IEEE/ACM International
Symposium on Microarchitecture (MICRO), 2009.

K.-C. Ho, C.-L. Chen, and H.-C. Chang. A 520k (18900, 17010)
array dispersion LDPC decoder architectures for NAND flash memory.
IEEE Trans. on Very Large Scale Integration (VLSI) systems (TVLSI),
24(4):1293-1304, 2015.

J.-X. Hou and L.-P. Chang. Improving read performance for LDPC-
based SSDs with adaptive bit labeling on Vmka,, mstates. In Proc. of
IEEE International Conference on Embedded and Real-Time Computing
Systems and Applications (RTCSA), 2023.

Y.-L. Hsu, L.-W. Liu, Y.-C. Liao, and H.-C. Chang. GC-like LDPC
code construction and its NN-aided decoder implementation. /EEE Open
Journal of Circuits and Systems (OJCAS), 2024.

K. Ishimaru. Future of non-volatile memory-from storage to computing.
In Proc. of IEEE International Electron Devices Meeting (IEDM), 2019.
S. Jaffer, K. Mahdaviani, and B. Schroeder. Rethinking WOM codes to
enhance the lifetime in new SSD generations. In 12th USENIX Workshop
on Hot Topics in Storage and File Systems (HotStorage), 2020.

S. Jaffer, K. Mahdaviani, and B. Schroeder. Improving the reliability of
next generation SSDs using WOM-v codes. In Proc. of 20th USENIX
Conference on File and Storage Technologies (FAST), 2022.

J. Kang, Q. Huang, L. Zhang, B. Zhou, and S. Lin. Quasi-cyclic LDPC
codes: An algebraic construction. [EEE Trans. on Communications
(TCOMM), 58(5):1383-1396, 2010.

A. Khakifirooz, S. Balasubrahmanyam, R. Fastow, K. H. Gaewsky, C. W.
Ha, R. Haque, O. W. Jungroth, S. Law, A. S. Madraswala, B. Ngo,
V. Naveen Prabhu, S. Rajwade, K. Ramamurthi, R. S. Shenoy, J. Snyder,
C. Sun, D. Thimmegowda, B. M. Pathak, and P. Kalavade. 30.2 a 1Tb
4b/cell 144-tier floating-gate 3D-NAND flash memory with 40MB/s
program throughput and 13.8Gb/mm?2 bit density. In Proc. of IEEE
International Solid-State Circuits Conference (ISSCC), 2021.

B. S. Kim, J. Choi, and S. L. Min. Design tradeoffs for SSD reliability. In
Proc. of the 17th USENIX Conference on File and Storage Technologies
(FAST), 2019.

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

(33]

[34]

[35]

[36]

[37]

[38]

(39]

[40]

[41]

[42]

J. Kim, D.-h. Lee, and W. Sung. Performance of rate 0.96 (68254,
65536) EG-LDPC code for NAND flash memory error correction. In
Proc. of IEEE International Conference on Communications (ICC), pages
7029-7033. 1EEE, 2012.

Y. Kou, S. Lin, and M. P. Fossorier. Low-density parity-check codes
based on finite geometries: a rediscovery and new results. IEEE Trans.
on Information Theory (TIT), 47(7):2711-2736, 2001.

S.-H. Kuo. Ultra MMI: an LDPC decoder that doubles throughput
at end-of-life.  https://old.flashmemorysummit.com/Proceedings2019/
08-07-Wednesday/20190807_CTRL-202-1_Kuo.pdf.

B. A. LaMacchia and A. M. Odlyzko. Solving large sparse linear systems
over finite fields. In A. J. Menezes and S. A. Vanstone, editors, Advances
in Cryptology-CRYPTO’ 90, pages 109-133. Springer Berlin Heidelberg,
1991.

Y. Lee, H. Yoo, I. Yoo, and L.-C. Park. 6.4 gb/s multi-threaded BCH
encoder and decoder for multi-channel SSD controllers. In Proc. of IEEE
International Solid-State Circuits Conference (ISSCC), 2012.

J. Li, S. Lin, K. Abdel-Ghaffar, W. E. Ryan, and D. J. Costello. Globally
coupled LDPC codes. In Information Theory and Applications Workshop
(ITA), pages 1-10. IEEE, 2016.

J. Li, Q. Wang, P. P. C. Lee, and C. Shi. An in-depth analysis of cloud
block storage workloads in large-scale production. In Proc. of IEEE
International Symposium on Workload Characterization (IISWC), 2020.
Y.-C. Liao, C. Lin, H.-C. Chang, and S. Lin. A (21150, 19050) GC-
LDPC decoder for NAND flash applications. IEEE Trans. on Circuits
and Systems I: Regular Papers (TCSI), 66(3):1219-1230, 2018.

S. Lin and D. Costello. Error control coding: fundamentals and
applications. Prentice Hall, 2004.

Y.-M. Lin, C.-L. Chen, H.-C. Chang, and C.-Y. Lee. A 26.9 k 314.5
mb/s soft (32400, 32208) BCH decoder chip for DVB-S2 system. IEEE
Journal of solid-state circuits (JSSC), 45(11):2330-2340, 2010.

C.-Y. Liu, J. B. Kotra, M. Jung, M. T. Kandemir, and C. R. Das. SOML
read: Rethinking the read operation granularity of 3D NAND SSDs. In
Proc. of the Twenty-Fourth International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS),
2019.

L.-W. Liu, M.-H. Yuan, Y.-C. Liao, and H.-C. Chang. A 38.64-gb/s large-
CPM 2-KB LDPC decoder implementation for NAND flash memories.
IEEE Open Journal of Circuits and Systems (OJCAS), 3:180-191, 2022.
S. Liu and X. Zou. QLC NAND study and enhanced Gray coding
methods for sixteen-level-based program algorithms. Microelectronics
Journal, 66:58-66, 2017.

Y. Lv, L. Shi, Q. Li, C. Gao, Y. Song, L. Luo, and Y. Zhang. MGC:
Multiple-gray-code for 3D NAND flash based high-density SSDs. In
Proc. of IEEE International Symposium on High-Performance Computer
Architecture (HPCA), 2023.

Y. Lv, L. Shi, C. J. Xue, Q. Zhuge, and E. H.-M. Sha. Latency variation
aware read performance optimization on 3D high density NAND flash
memory. In Proc. of the Great Lakes Symposium on VLSI (GLSVLSI),
2020.

F. Margaglia, G. Yadgar, E. Yaakobi, Y. Li, A. Schuster, and A. Brinkmann.
The devil is in the details: Implementing flash page reuse with WOM
codes. In Proc. of 14th USENIX Conference on File and Storage
Technologies (FAST), 2016.

R. Micheloni, R. Ravasio, A. Marelli, E. Alice, V. Altieri, A. Bovino,
L. Crippa, E. Di Martino, L. D’Onofrio, A. Gambardella, et al. A 4Gb
2b/cell NAND flash memory with embedded 5b BCH ECC for 36mb/s
system read throughput. In Proc. of IEEE International Solid State
Circuits Conference-Digest of Technical Papers (ISSCC), 2006.

S. Nie, Y. Zhang, W. Wu, and J. Yang. Layer RBER variation aware read
performance optimization for 3D flash memories. In 57th ACM/IEEE
Design Automation Conference (DAC), pages 1-6, 2020.

J. Park, M. Kim, M. Chun, L. Orosa, J. Kim, and O. Mutlu. Reducing
solid-state drive read latency by optimizing read-retry. In Proc. of the 26th
ACM International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2021.

T. Pekny, L. Vu, J. Tsai, D. Srinivasan, E. Yu, J. Pabustan, J. Xu,
S. Deshmukh, K.-F. Chan, M. Piccardi, et al. A 1-Tb density 4b/cell 3D-
NAND flash on 176-tier technology with 4-independent planes for read
using CMOS-under-the-array. In Proc. of IEEE International Solid-State
Circuits Conference (ISSCC), 2022.

R. Pletka, N. Papandreou, R. Stoica, H. Pozidis, N. Ioannou, T. Fisher,
A. Fry, K. Ingram, and A. Walls. Improving NAND flash performance
with read heat separation. In Proc. of International Symposium on


https://www.frontgrade.com/sites/default/files/documents/NAND_Basics_AppNote_1_2%20(2).pdf
https://www.frontgrade.com/sites/default/files/documents/NAND_Basics_AppNote_1_2%20(2).pdf
https://www.frontgrade.com/sites/default/files/documents/NAND_Basics_AppNote_1_2%20(2).pdf
https://docs.amd.com/v/u/en-US/pb052-ldpc
https://docs.amd.com/v/u/en-US/pb052-ldpc
https://old.flashmemorysummit.com/Proceedings2019/08-07-Wednesday/20190807_CTRL-202-1_Kuo.pdf
https://old.flashmemorysummit.com/Proceedings2019/08-07-Wednesday/20190807_CTRL-202-1_Kuo.pdf

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

[52]

(53]

[54]

[55]

[56]

[57]

(58]

[59]

[60]

Modeling, Analysis, and Simulation of Computer and Telecommunication
Systems (MASCOTS), 2020.

T. Richardson. Error floors of LDPC codes. In Proc. of the
Annual Allerton Conference on Communication Control and Computing,
volume 41, pages 1426-1435, 2003.

W. Ryan and S. Lin. Channel codes: classical and modern. Cambridge
university press, 2009.

Y. Song, Y. Lv, and L. Shi. DECC: Differential ECC for read performance
optimization on high-density NAND flash memory. In Proc. of the 28th
Asia and South Pacific Design Automation Conference (ASP-DAC), 2023.
R. Stoica, R. Pletka, N. Papandreou, N. Ioannou, S. Tomic, and H. Pozidis.
Enabling 3D QLC NAND flash. IBM Corporation, Flash Memory Summit,
2019.

M. H. Tadayon, A. Tasdighi, M. Battaglioni, M. Baldi, and F. Chiaraluce.
Efficient search of compact QC-LDPC and SC-LDPC convolutional codes
with large girth. IEEE Communications Letters, 22(6):1156-1159, 2018.
A. Tasdighi, A. H. Banihashemi, and M.-R. Sadeghi. Efficient search
of girth-optimal QC-LDPC codes. IEEE Trans. on Information Theory
(TIT), 62(4):1552-1564, 2016.

A. Tasdighi and E. Boutillon. Integer ring sieve for constructing compact
QC-LDPC codes with girths 8, 10, and 12. IEEE Trans. on Information
Theory (TIT), 68(1):35-46, 2021.

A. Tavakkol, J. Gomez-Luna, M. Sadrosadati, S. Ghose, and O. Mutlu.
MQSim: A framework for enabling realistic studies of modern multi-
queue SSD devices. In Proc. of 16th USENIX Conference on File and
Storage Technologies (FAST), 2018.

T. Wadayama, K. Nakamura, M. Yagita, Y. Funahashi, S. Usami, and
I. Takumi. Gradient descent bit flipping algorithms for decoding LDPC
codes. IEEE Trans. on Communications (TCOMM), 58(6):1610-1614,
2010.

D. Wang, L. Wang, X. Chen, A. Fei, C. Ju, and Z. Wang. Construction
of QC-LDPC codes based on pre-masking and local optimal searching.
IEEE Communications Letters, 22(6):1148-1151, 2017.

X. Wang, G. Dong, L. Pan, R. Zhou, and I. Stievano. Error correction
codes and signal processing in flash memory. Flash Memories, pages
57-82, 2011.

C. Wu LDPC for SSD - from theory to practice.
https://www.inc.cuhk.edu.hk/wp-content/uploads/INC/default/files/
/seminars/slides/SSD_LDPC%20Talk.pdf, 2022.

H. Xu, D. Feng, R. Luo, and B. Bai. Construction of quasi-cyclic
LDPC codes via masking with successive cycle elimination. IEEE
Communications Letters, 20(12):2370-2373, 2016.

G. Yadgar, E. Yaakobi, and A. Schuster. Write once, get 50% free:
Saving SSD erase costs using WOM codes. In Proc. of 13th USENIX
Conference on File and Storage Technologies (FAST), 2015.

G. Yang, M. Zhang, P. Guo, X. Zhan, S. Yang, X. Zhao, X. Guo, P. Sang,
J. Wu, F. Wu, et al. High-precision error bit prediction for 3D QLC
NAND flash memory: Observations, analysis, and modeling. /EEE Trans.
on Computers (TC), 2025.

X. Yu, J. He, B. Zhang, X. Wang, Q. Li, Q. Wang, Z. Huo, and T. Ye.
Interleaved LDPC decoding scheme improves 3-D TLC NAND flash
memory system performance. IEEE Trans. on Computer-Aided Design
of Integrated Circuits and Systems (TCAD), 42(11):4191-4204, 2023.
W. Zhang, J. Kang, Z. Dong, and Y. Zhu. RS-LDPC concatenated coding
for NAND flash memory: Designs and reduction of short cycles. In
IEEE 3rd International Conference on Information Communication and
Signal Processing (ICICSP), 2020.

K. Zhao, W. Zhao, H. Sun, X. Zhang, N. Zheng, and T. Zhang. LDPC-
in-SSD: Making advanced error correction codes work effectively in
solid state drives. In Proc. of the 11th USENIX Conference on File and
Storage Technologies (FAST), 2013.


https://www.inc.cuhk.edu.hk/wp-content/uploads/INC/default/files//seminars/slides/SSD_LDPC%20Talk.pdf
https://www.inc.cuhk.edu.hk/wp-content/uploads/INC/default/files//seminars/slides/SSD_LDPC%20Talk.pdf

	Introduction
	Background
	Basics of SSDs
	Basics of QC-LDPC Codes
	Limitations of Existing QC-LDPC Codes

	MASS
	QC-LDPC Construction Framework
	Smart Decoding
	Implementation

	Evaluation
	Reliability Analysis
	Performance Evaluation in MQSim

	Related Work
	Conclusion
	References

