
HyperGen: Optimizing Generative Inference with
Long Prompts for Resource-Constrained Systems
Lingwen Gong

Huazhong University of
Science and Technology

Wuhan, China

Kaixin Liu
Huazhong University of
Science and Technology

Wuhan, China

Xiaolu Li
Huazhong University of
Science and Technology

Wuhan, China

Shujie Han
Northwestern

Polytechnical University
Xi’an, China

Patrick P. C. Lee
The Chinese University

of Hong Kong
Hong Kong, China

Yuchong Hu
Huazhong University of
Science and Technology

Wuhan, China

Dan Feng
Huazhong University of
Science and Technology

Wuhan, China

Abstract
Generative inference with long prompts often exceeds GPU
memory limits in resource-constrained systems (e.g., work-
stations and edge devices), thereby causing inference failures.
We present HyperGen, a lightweight generative inference
framework that optimizes the prefill stage (i.e., when input
prompts are processed) via two fine-grained partitioning
techniques: (i) partitioning and loading model parameters
with size awareness into GPU memory; and (ii) partitioning
computations of different inference steps to fit into GPU
memory and offloading concatenation of partial results to
CPU memory. Evaluation shows that HyperGen supports a
maximum prompt length of up to 3.8× longer than an ex-
isting GPU-based inference approach and reduces the time-
to-first-token from hours to seconds compared to the CPU-
based prefill approach.

CCS Concepts
• Computer systems organization → Pipeline comput-
ing; • Information systems→Hierarchical storageman-
agement.

Keywords
Generative inference; Resource-constrained system;Memory
management

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
APSys ’25, Seoul, Republic of Korea
© 2025 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 979-8-4007-1572-3/25/10
https://doi.org/10.1145/3725783.3764409

ACM Reference Format:
Lingwen Gong, Kaixin Liu, Xiaolu Li, Shujie Han, Patrick P. C. Lee,
Yuchong Hu, and Dan Feng. 2025. HyperGen: Optimizing Gen-
erative Inference with Long Prompts for Resource-Constrained
Systems. In 16th ACM SIGOPS Asia-Pacific Workshop on Systems
(APSys ’25), October 12–13, 2025, Seoul, Republic of Korea. ACM, New
York, NY, USA, 7 pages. https://doi.org/10.1145/3725783.3764409

1 Introduction
Generative inference is critical for applications such as code
generation [1, 15, 17] and healthcare [7, 14, 25], where in-
put prompts often exceed thousands of tokens to produce
contextually relevant outputs. Meanwhile, there is a grow-
ing demand for deploying these applications in resource-
constrained systems, including workstations for enhanced
data security [21, 27] and edge devices for personalized rec-
ommendation [5, 27].

Enabling efficient generative inference with long prompts
is challenging with limited resources. First, modern large-
scale models require substantial GPU memory space that
surpasses the capacities of commodity workstations and
edge devices. For example, GPT-3, with 175 billion param-
eters, requires approximately 350GiB of memory [16, 22];
the smaller OPT-30B, with 57GiB of parameters (quantized
to 2 bytes per parameter), still exceeds the memory capacity
of the consumer-grade NVIDIA RTX 4090 GPU with only
24GiB of memory. Caching all model parameters in GPU
memory is thus infeasible. Second, processing long prompts
significantly increases GPU memory demands (§2.1). Our
evaluation (§4) shows that FlexGen [18], a generative infer-
ence system designed for consumer-grade GPUs, returns
inference failures when processing 4096-token prompts on
an NVIDIA RTX 4090 GPU.
We propose HyperGen, a lightweight generative infer-

ence system aiming to optimize long prompts in resource-
constrained systems. HyperGen focuses on optimizing the
prefill stage, while FlexGen targets the decode stage (see §2.1

https://doi.org/10.1145/3725783.3764409
https://doi.org/10.1145/3725783.3764409


APSys ’25, October 12–13, 2025, Seoul, Republic of Korea Gong et al.

for background details on generative inference). It applies
fine-grained partitioning to GPU memory management in
two aspects. First, it partitions model parameters into smaller
variable-size groups, which are loaded into GPU memory
with size awareness. Second, it partitions operations with
high memory demands into sub-operations that fit within
GPU memory, and offloads partial results to the CPU for
concatenation to utilize both GPU and CPU resources.
We implement HyperGen atop FlexGen [18] and eval-

uate it in a resource-constrained environment. Compared
with FlexGen, HyperGen increases the maximum allowed
prompt length by up to 3.8×. Compared to the CPU-based
prefill approach, HyperGen reduces the time-to-first-token
from hours to seconds. Its prefill-stage optimization also
complements FlexGen by increasing its throughput by up
to 25.2%. Our HyperGen prototype is now open-sourced at
https://github.com/ukulililixl/hypergen.

2 Background and Motivation
2.1 Challenges of Generative Inference
Generative inference comprises the prefill and the decode
stages. In the prefill stage, input prompts are tokenized and
processed via multiple transformer blocks [20] to initialize
transient states for the decode stage. Each transformer block
generates query, key, and value (QKV) matrices, computes
self-attention, and processes the results through amulti-layer
perceptron (MLP). The decode stage operates iteratively, gen-
erating one output token per iteration by updating QKV ma-
trices, computing self-attention, and processing through the
MLP in each transformer block. To operate within GPUmem-
ory constraints, generative inference in resource-constrained
environments typically offloads transient states to CPUmem-
ory or persistent storage, thereby allowing the prefill stage
and each iteration of the decode stage to proceed within GPU
memory [18, 19].
However, modern large-scale models include billions of

parameters and consume substantial GPU memory (§1). In
addition, both prefill and decode stages process prompts
through multiple transformer blocks, each requiring distinct
model weights and generating unique transient states (e.g.,
QKVmatrices and other temporary results within each trans-
former block), and hence lead to significant GPU memory
usage as the prompt length increases. Our analysis reveals
that GPU memory remains the major limiting factor for gen-
erative inference, even when transient states are offloaded.
Figure 1 shows the peak GPUmemory usage in FlexGen with
the OPT-30B model for various prompt lengths (see §4 for
testbed details) with an output length of 32 tokens by default.
As the prompt length increases from 1,000 to 4,000 tokens,
the peak GPU memory usage in the prefill stage increases
significantly from 2.3GiB to 15.9 GiB, while that in the de-

2.3
5.0

9.7

15.9

2.4 2.1 2.6 2.62.3
3.9

5.4
7.2

0

5

10

15

1000 2000 3000 4000

Length of input text

P
ea

k 
G

P
U

 m
em

or
y

 u
sa

ge
 (

G
iB

)

Prefill
Decode
Others

Figure 1: Peak GPU memory usage in the prefill and decode
stages in FlexGen with the OPT-30B model; Others refers to
the GPU memory reserved by PyTorch [10].

code stage remains stable at 2.1-2.6 GiB. This disparity occurs
because transformer blocks in the prefill stage process the
entire prompts, while those in the decode stage only process
a single output token per iteration. Thus, inference failures
can occur during the prefill stage due to insufficient GPU
memory before generating the first output token.

2.2 Opportunities for Optimization
We explore partitioning to solve generative inference as mul-
tiple sub-problems and optimize GPU memory usage for
resource-constrained systems. Here, we identify two parti-
tioning opportunities for our HyperGen design.
Opportunities for model parameters. Partitioning model
parameters into smaller, more manageable units offers signif-
icant potential for GPU memory optimization. We find that
FlexGen [18] partitions model parameters based on their us-
age in the prefill and decode stages prior to generative infer-
ence execution. For example, in the OPT-30B model, FlexGen
partitions model parameters into 773 groups. Such parameter
groups also exhibit substantial size variation, with 482 groups
smaller than 60KiB each (totaling 8.6MiB), 290 groups ex-
ceeding 90MiB each (totaling 56.5GiB), and one group of
size 28.0MiB (storing position embeddings). This variation
suggests that caching all model parameters in GPU memory
is impractical, while selectively caching small groups, which
contribute negligibly to memory overhead, can optimize
GPU memory utilization.
Opportunities for transient states. The prefill stage can
be decomposed into fine-grained steps of processing tran-
sient states with predictable memory requirements. Each
transformer block in the prefill stage comprises five steps:
QKV calculation, attention score calculation, softmax, atten-
tion output generation, and MLP processing. Figure 2 shows
the peak GPU memory usage across these steps for prompt
lengths from 1,000 to 4,000 tokens. We observe significant
variation in memory usage for different steps. Notably, the
peak memory usage for each step is predictable for fine-
grained computation scheduling (§3.2).

Furthermore, memory-intensive operations, including at-
tention score calculation, softmax, and attention output

https://github.com/ukulililixl/hypergen


APSys ’25, October 12–13, 2025, Seoul, Republic of Korea

1.4 1.8 2.3 2.0 1.6 1.7
3.4

5.0
3.6

2.0 2.1

5.7

9.5

6.1

2.4 2.4

8.9

15.6

9.4

2.9

0

5

10

15

1000 2000 3000 4000

Length of input text

P
ea

k 
G

P
U

 m
em

or
y

 u
sa

ge
 (

G
iB

)

QKV Calculation

Attention Score Calculation

Softmax

Attention Output Generation

MLP Processing

Figure 2: Peak GPU memory usage for different steps in the
prefill stage under different prompt lengths.

generation, can be decomposed into sub-operations that fit
within GPU memory. For instance, matrix multiplications in
attention score calculation and attention output generation
are partitionable into smaller sub-matrix multiplications.

2.3 Related Work
The most related work to ours includes FlexGen [18] and
PowerInfer [19], both of which are designed for high-
throughput generative inference on consumer-grade GPUs
and target decode-stage optimization. FlexGen searches for
efficient strategies to offload transient states to CPU mem-
ory and disk, subject to hardware constraints, and further
compresses transient states to reduce I/O costs. PowerInfer
partitions the working set based on operation frequency, and
executes frequent operations on GPUs and less frequent ones
on CPUs. However, for long prompts, FlexGen may fail in
inference during the GPU-based prefill stage, while Power-
Infer suffers from inefficient CPU-based prefill processing.
In contrast, HyperGen focuses on prefill-stage optimization
for long prompts and is compatible with FlexGen for further
performance enhancements (§4).
Our work focuses on generative inference with long

prompts and addresses a critical challenge in long-context
generative inference. Many research efforts address long-
context processing by carefullymanagingmemory footprints
for transient states. InfiniGen [11] speculates on and retains
only critical entries. IMPRESS [3] exploits cross-head sim-
ilarity to identify crucial tokens. RetroInfer [4] leverages
attention sparsity to reduce memory footprints. MagicPig
[6] uses locality-sensitive hashing for selection to preserve
accuracy. ARKVALE [2] introduces a page-based offloading
technique to adapt to importance shifts across decoding steps.
HEADINFER [12] employs a head-wise offloading technique
to reduce GPU memory footprints. SpecOffload [28] utilizes
speculative decoding to exploit idle GPU resources during
long-context processing. However, in resource-constrained
environments, the effectiveness of these solutions may still
be limited when GPU memory is the primary bottleneck.
HyperGen offers a complementary solution to specifically
address resource-constrained environments.

There are other efficient generative inference approaches.
TwinPilots [24] optimizes the decode stage and reduces data

transfers between GPU and CPUmemories. OmniKV [9] and
H2O [26] compress transient states to improve prefill-stage
performance. LazyLLM [8] selectively computes transient
states for only the most relevant tokens. However, even with
compression, high memory demands may persist for very
long prompts (§2.1). HyperGen explores fine-grained parti-
tioning techniques to relieve memory demands.

3 HyperGen Design
HyperGen addresses GPU memory limitations in generative
inference with long prompts in resource-constrained sys-
tems. It employs two fine-grained partitioning strategies: (i)
size-aware parameter partitioning and (ii) step-aware com-
putation partitioning.

3.1 Size-aware Parameter Partitioning
HyperGen performs an offline pre-processing phase on
model parameters prior to the execution of generative in-
ference. It first divides model parameters into independent
groups based on transformer blocks, where parameters
within the same group are used by the same transformer
block. Each group is further divided into independent frag-
ments, where each fragment represents a weight matrix used
in a specific computation (e.g., each of the model weight
matrices for query, key, and value calculations is assigned to
a single dedicated fragment). This fine-grained partitioning
enables efficient access of model parameters in resource-
constrained systems.
HyperGen further employs a size-aware caching for frag-

ment management to optimize GPU memory usage. It classi-
fies fragments based on their memory footprints into small
and large fragments. It caches only small fragments in GPU
memory within a predefined GPU allocation limit, which is
configurable to accommodate different models. For exam-
ple, we set a default limit of 10MiB in total for the OPT-30B
model. HyperGen then sorts all fragments in ascending or-
der by size and applies a smallest-first caching policy (i.e.,
smaller fragments have a higher priority to be stored in GPU
memory) until the GPU allocation limit is reached.
Unlike FlexGen [18], which repeatedly loads small frag-

ments from disk to GPU memory for each transformer block,
HyperGen’s size-aware caching always keeps small frag-
ments in GPU memory as they can be accessed by different
transformer blocks during generative inference, while they
contribute to limited memory overhead (§2.2). Our evalua-
tion shows that size-aware caching significantly enhances
generative inference performance (§4).

3.2 Step-aware Computation Partitioning
Memory usage estimation. To accurately partition com-
putations and allocate them into GPU memory, HyperGen



APSys ’25, October 12–13, 2025, Seoul, Republic of Korea Gong et al.

Steps Peak memory Retained memory
QKV calculation 4𝑏𝑠ℎ1 + 3ℎ21 4𝑏𝑠ℎ1
Attention score
calculation 4𝑏𝑠ℎ1 + 𝑛𝑏𝑠2 2𝑏𝑠ℎ1 + 𝑛𝑏𝑠2

Softmax 2𝑏𝑠ℎ1 + 2𝑛𝑏𝑠2 2𝑏𝑠ℎ1 + 𝑛𝑏𝑠2
Attention output

generation 3𝑏𝑠ℎ1 + ℎ21 + 𝑛𝑏𝑠
2 𝑏𝑠ℎ1

MLP processing 2𝑏𝑠ℎ1 + 2ℎ1ℎ2 + 𝑏𝑠ℎ2 𝑏𝑠ℎ1

Table 1: Estimation of peak and retained memory usage be-
fore and after each step in the prefill stage.

first divides the prefill stage into five distinct steps (§2.2)
and estimates memory requirements for each step before
executing generative inference. Such estimations can be fea-
sibly done based on key model parameters, including input
prompts length (𝑠), batch size (𝑏), hidden layer dimensions
(ℎ1 for attention and ℎ2 for MLP processing), and the number
of attention heads (𝑛).
The peak memory usage for each step comprises three

components (see Table 1), including (i) memory retained
from the previous step, (ii) memory used for model param-
eter fragments, and (iii) memory for generating transient
states. For example, in the QKV calculation step, HyperGen
estimates the peak memory usage starting with the input
token matrix X, with dimensions [𝑏 × 𝑠 × ℎ1]. To compute
the query, key, and value matrices (Q, K, and V, respectively),
HyperGen loads model parameter groupsW𝑄 ,W𝐾 ,W𝑉 into
GPU memory, each with dimensions [ℎ1 ×ℎ1]. The resulting
transient statesQ, K, and V each have dimensions [𝑏×𝑠×ℎ1].
Thus, the peak memory usage is 4𝑏𝑠ℎ1 + 3ℎ21. After this step,
HyperGen retains only X, Q, K, and V for subsequent steps
and releases W𝑄 , W𝐾 , and W𝑉 , resulting in a memory foot-
print of 4𝑏𝑠ℎ1. This retained memory serves as the starting
point for estimating the peak memory usage in the next step
(i.e., attention score calculation).
Computation scheduling. HyperGen implements fine-
grained computation scheduling for the prefill stage. It fo-
cuses on the three memory-intensive steps identified in §2.2:
attention score calculation, softmax, and attention output
generation. Based on memory usage estimation, in addition
to the default case where GPUmemory is sufficient to accom-
modate all steps in the prefill stage, HyperGen classifies the
deployment into one of the following memory-pressure sce-
narios and schedules computations accordingly: (i) moderate
pressure, where only softmax exceeds GPU memory limits,
and (ii) severe pressure, where all three memory-intensive
steps exceed GPU memory limits.
(i) Moderate pressure. Under moderate pressure, all steps,

except softmax, fit within GPU memory. Based on our mem-
ory usage estimation, the softmax input fits in memory, but
the output may not. HyperGen addresses this by partition-

GPU

s

s

b*n Softmax result
Input matrix

Softmax 

update

(a) Partitioning for moderate pressure

GPU Memory CPU Memory

offload

GPU Memory

load

softmax
Partitioned 
Matrix Mul.

CPU Memory

offload

GPU Memory

load

Partitioned
Matrix Mul.

Attention score calculation Softmax Attention output generation

Add up

(b) Partitioning for severe pressure

Figure 3: Partitioning for computations.

ing the softmax input matrix into independent groups, such
that the output of each group fits within GPU memory. As
shown in Figure 3(a), HyperGen processes each group, up-
dates the corresponding portion of the input matrix with the
softmax results, and continues until all groups are processed.
This ensures that softmax operates within GPU memory
constraints.

(ii) Severe pressure.Under severe pressure, QKV calculation
fits within GPU memory, but attention score calculation,
softmax, and attention output generation exceed memory
limits. Since MLP processing has low memory requirements,
HyperGen focuses on partitioning the three middle steps and
leverages CPU memory for result concatenation, as shown
in Figure 3(b).
• Attention score calculation:With input matrices residing in
GPU memory, HyperGen partitions matrix multiplication
into sub-matrix multiplications. Each input matrix is di-
vided into an equal number of sub-matrices that are sized
to ensure that the resulting sub-matrix fits within available
GPU memory. Once computed, the result is offloaded to
CPU memory for concatenation, so that HyperGen pro-
ceeds to process the next sub-matrix.

• Softmax:As the softmax input now resides in CPUmemory,
HyperGen partitions it into groups based on available GPU
memory, such that both the input and output of each group
fit in GPU memory. The output of each group is offloaded
to CPU memory for further processing.

• Attention output generation: Similar to attention score cal-
culation, HyperGen also partitions matrix multiplication
into sub-matrix multiplications. However, unlike the ear-
lier step, the input sub-matrices reside in CPU memory.
Thus, HyperGen needs to allocate GPU memory for both
the input sub-matrices and the result during each sub-
matrix multiplication.



APSys ’25, October 12–13, 2025, Seoul, Republic of Korea

Disk

Model partitioner Computation partitionerHyperGen

Init weight Load weight

Load cache Store cacheForward

Pop weight

FlexGen

FlexGen Interfaces GPU

I/O interface Compute interface

CPU

Figure 4: HyperGen’s architecture.

3.3 Implementation
HyperGen is implemented as an extension to FlexGen [18]
with 325 LoC of changes. It modifies FlexGen’s prefill-stage
implementation, while retaining FlexGen’s decode-stage
workflow. Figure 4 shows HyperGen’s architecture, which
comprises two key modules: a model partitioner and a com-
putation partitioner.
Model partitioner. The model partitioner implements size-
aware parameter partitioning (§3.1) based on FlexGen’s
model partitioning strategy. We modify the following in-
terfaces in FlexGen: (i) init_weight, modified to distinguish
between small and large model parameter fragments dur-
ing model weight initialization; (ii) load_weight, modified
to load fragments into GPU memory based on size-aware
caching (§3.1); (iii) pop, modified to free large fragments of a
transformer block from GPU memory.
Computation partitioner. The computation partitioner im-
plements step-aware partitioning for the prefill stage (§3.2).
We modify the forward interface to execute either the prefill
or decode stage within a transformer block. For fine-grained
operation partitioning, HyperGen leverages PyTorch’s I/O
interface to manage transient states: (i) load_cache, which
transfers key and value transient states from CPU or disk to
GPU memory; and (ii) store_cache, which offloads transient
states to disk.

4 Evaluation
We evaluate HyperGen on a commodity machine with an
NVIDIA GeForce RTX 4090 GPU (24GiB GDDR6X), a 48-
core Intel Xeon Silver 4310 CPU (2.1GHz), and 256GiB
DDR4memory. Themachine runs Linux kernel version 5.15.0
with CUDA 11.8 and PyTorch 2.4.1. We compare HyperGen
against two variants of FlexGen [18]: the default FlexGen,
which performs the prefill stage in GPU, and FlexGen-CPU,
which performs the prefill stage in CPU.

By default, we set the batch size 𝑏 = 4, the number of
output tokens as 32 (consistent with FlexGen), and the in-
put prompt length 𝑠 = 512 tokens. We set the available GPU

0

5000

10000

15000

20000

4 8 12 16 20 24
GPU memory limitation (GiB)

# 
T

ok
en

s

FlexGen
HyperGen

0

5000

10000

15000

20000

4 8 12 16 20 24
GPU memory limitation (GiB)

# 
T

ok
en

s

FlexGen
HyperGen

(a) OPT-30B (b) OPT-66B

Figure 5: (Exp#1) Maximum prompt length.

memory as 4GiB to simulate a resource-constrained scenario.
We consider twomodels: (i) OPT-30B, with the hidden dimen-
sions ℎ1 = 7168 and ℎ2 = 28672, and the number of attention
heads 𝑛 = 56; (ii) OPT-66B, with ℎ1 = 9216, ℎ2 = 36864, and
𝑛 = 72. Our results are averaged over five runs.
Exp#1 (Maximum prompt length).We examine Hyper-
Gen’s ability to handle long prompts by measuring the max-
imum prompt length supported by HyperGen and FlexGen
across various GPU memory constraints, varied from 4GiB
to 24GiB. We exclude FlexGen-CPU from this evaluation
as it has extremely long runtime for long prompts. Figure 5
shows the results. HyperGen consistently supports signifi-
cantly longer prompts than FlexGen. It achieves up to 3.8×
and 3.3× improvements in maximum input prompt length
for OPT-30B and OPT-66B, respectively. In most cases, the
maximum prompt length scales linearly with GPU memory
capacity, aligning with our memory usage estimates (Ta-
ble 1). An exception is that HyperGen’s maximum prompt
length shows only a sub-linear increase at 24GiB for OPT-
30B, where excessively long prompts cause CPU concatena-
tion of sub-operation results to become inefficient.
Exp#2 (Latency analysis). We measure time-to-first-token
(TTFT) for HyperGen, FlexGen, and FlexGen-CPU across
various prompt lengths of 256, 512, and 1,024 tokens. Due
to FlexGen-CPU’s prohibitively long runtime for 1,024 to-
kens, we exclude it from evaluation at this length. Table 2
shows the results. As the prompt length grows, FlexGen
encounters out-of-memory errors, while FlexGen-CPU, al-
though capable of processing long prompts, suffers from
extremely high TTFT (e.g., 6.67 hours for OPT-30B with
256 tokens). HyperGen supports long-prompt inference and
achieves the shortest TTFT. For example, HyperGen reduces
TTFT by 40.1% for OPT-66B with 256 input tokens compared
to FlexGen, mainly because HyperGen’s size-aware caching
strategy enables efficient memory access during transformer
block execution.

We further evaluate TTFT for HyperGen and FlexGenwith
long prompts (1,000 to 4,000 tokens) under a 24GiB GPU
memory constraint. We exclude FlexGen-CPU due to its pro-
hibitively long runtime. Table 3 shows the results. HyperGen
demonstrates two key advantages: (i) when the prefill stage



APSys ’25, October 12–13, 2025, Seoul, Republic of Korea Gong et al.

#Tokens FlexGen FlexGen-CPU HyperGen
256 7.80 s 6.67 h 7.06 s
512 7.59 s 13.53 h 7.09 s
1024 OOM - 32.44 s

(a) OPT-30B
#Tokens FlexGen FlexGen-CPU HyperGen

256 25.03 s 14.70 h 14.60 s
512 OOM 30.08 h 66.49 s
1024 OOM - 107.29 s

(b) OPT-66B
Table 2: (Exp#2) TTFT under 4GiB GPU memory (OOM =

out-of-memory).

#Tokens OPT-30B OPT-66B
FlexGen HyperGen FlexGen HyperGen

1000 9.71 s 7.39 s 23.43 s 15.50 s
2000 9.77 s 7.57 s 23.85 s 15.09 s
3000 9.87 s 7.93 s 24.14 s 16.24 s
4000 10.64 s 9.21 s OOM 68.37 s

Table 3: (Exp#2) TTFT under 24GiB GPU memory (OOM =

out-of-memory).

fits within GPU memory, HyperGen achieves up to 36.7%
lower TTFT than FlexGen for OPT-66B due to its size-aware
caching optimization; and (ii) for prompts exceeding GPU
memory capacity (e.g., 4,000 tokens), HyperGen successfully
generates the first token in 68.37 s, while FlexGen fails to
complete inference.
Exp#3 (Throughput analysis). We measure inference
throughput for HyperGen and FlexGen across output lengths,
varied from 16 to 1,024 tokens (FlexGen-CPU is excluded
due to its long runtime). We configure the input prompts
with 512 tokens for 4 GiB GPU memory and 1,024 tokens for
24GiB GPU. For 4 GiB GPU memory, HyperGen achieves up
to 9.7% higher throughput than FlexGen for OPT-30B with
16 output tokens using size-aware caching (Figure 6(a)). Flex-
Gen fails to complete inference for OPT-66B (Figure 6(b)),
while HyperGen enables inference. For 24GiB GPU mem-
ory, HyperGen increases throughput by 21.1% for OPT-30B
with 64 output tokens (Figure 6(c)), while for OPT-66B, its
throughput gain increases by up to 25.2% with 1,024 output
tokens (Figure 6(d)).

5 Conclusion and Future Work
HyperGen enhances generative inference for long prompts in
resource-constrained systems. It optimizes the prefill stage
with fine-grained partitioning techniques, including size-
aware parameter partitioning and step-aware computation
partitioning. Experiments show that HyperGen supports
long input prompts, reduces TTFT, and increases inference
throughput in a resource-constrained setting.

0.49 0.48 0.49 0.49
0.44 0.45 0.45 0.46

0.0

0.2

0.4

0.6

16 64 256 1024
#Tokens

T
hr
ou
gh
pu
t(
to
ke
ns
/s
) HyperGen

FlexGen

0.06 0.06 0.05 0.04
0.00 0.00 0.00 0.00

0.0

0.2

0.4

0.6

16 64 256 1024
#Tokens

T
hr
ou
gh
pu
t(
to
ke
ns
/s
) HyperGen

FlexGen

(a) OPT-30B (4GiB) (b) OPT-66B (4GiB)

0.46
0.51

0.46 0.46
0.42 0.42 0.43 0.43

0.0

0.2

0.4

0.6

16 64 256 1024
#Tokens

T
hr
ou
gh
pu
t(
to
ke
ns
/s
) HyperGen

FlexGen

0.24 0.25 0.24 0.24
0.21 0.22 0.20 0.20

0.0

0.2

0.4

0.6

16 64 256 1024
#Tokens

T
hr
ou
gh
pu
t(
to
ke
ns
/s
) HyperGen

FlexGen

(c) OPT-30B (24GiB) (d) OPT-66B (24GiB)

Figure 6: (Exp#3) Throughput versus number of output to-
kens.

We explore the following issues in future work. First,
HyperGen is currently designed for a single consumer-grade
GPU. One research direction is to extend HyperGen for mul-
tiple GPUs through new partitioning techniques. Second,
real-world edge environments often feature heterogeneous
hardware configurations over a networked environment. We
plan to extend HyperGen to support long-prompt gener-
ative inference in edge-based networked scenarios. Third,
the current implementation of HyperGen is based on full
attention. We plan to explore HyperGen’s compatibility with
sliding window and KV-Cache selection approaches. Finally,
we plan to extend our evaluation for various model architec-
tures, such as Llama [13] and QWen [23].

Acknowledgments
This work was supported by the National Natural Science
Foundation of China (No. 62302175). The corresponding au-
thor is Xiaolu Li.

References
[1] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde

De Oliveira Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas
Joseph, Greg Brockman, et al. Evaluating large languagemodels trained
on code. arXiv preprint arXiv:2107.03374, 2021.

[2] Renze Chen, Zhuofeng Wang, Beiquan Cao, Tong Wu, Size Zheng,
Xiuhong Li, Xuechao Wei, Shengen Yan, Meng Li, and Yun Liang. Ark-
Vale: Efficient Generative LLM Inference with Recallable Key-Value
Eviction. In A. Globerson, L. Mackey, D. Belgrave, A. Fan, U. Paquet,
J. Tomczak, and C. Zhang, editors, Advances in Neural Information Pro-
cessing Systems, volume 37, pages 113134–113155. Curran Associates,
Inc., 2024.

[3] Weijian Chen, Shuibing He, Haoyang Qu, Ruidong Zhang, Siling Yang,
Ping Chen, Yi Zheng, Baoxing Huai, and Gang Chen. IMPRESS: An
Importance-Informed Multi-Tier Prefix KV Storage System for Large
Language Model Inference. In 23rd USENIX Conference on File and



APSys ’25, October 12–13, 2025, Seoul, Republic of Korea

Storage Technologies (FAST 25), pages 187–201, 2025.
[4] Yaoqi Chen, Jinkai Zhang, Baotong Lu, Qianxi Zhang, Chengruidong

Zhang, Jingjia Luo, Di Liu, Huiqiang Jiang, Qi Chen, Jing Liu, et al.
RetroInfer: A Vector-Storage Approach for Scalable Long-Context LLM
Inference. arXiv preprint arXiv:2505.02922, 2025.

[5] Yuxuan Chen, Rongpeng Li, Zhifeng Zhao, Chenghui Peng, Jianjun
Wu, Ekram Hossain, and Honggang Zhang. NetGPT: A native-AI
network architecture beyond provisioning personalized generative
services. arXiv preprint arXiv:2307.06148, 2023.

[6] Zhuoming Chen, Ranajoy Sadhukhan, Zihao Ye, Yang Zhou, Jianyu
Zhang, Niklas Nolte, Yuandong Tian, Matthijs Douze, Leon Bottou,
Zhihao Jia, and Beidi Chen. Magic PIG: LSH Sampling for Efficient LLM
Generation. In The Thirteenth International Conference on Learning
Representations, 2025.

[7] Yinglong Dai and GuojunWang. A deep inference learning framework
for healthcare. Pattern Recognition Letters, 139:17–25, 2020.

[8] Qichen Fu, Minsik Cho, Thomas Merth, Sachin Mehta, Mohammad
Rastegari, and Mahyar Najibi. LazyLLM: Dynamic token pruning for
efficient long context LLM inference. In Workshop on Efficient Systems
for Foundation Models II @ ICML2024, 2024.

[9] Jitai Hao, Yuke Zhu, Tian Wang, Jun Yu, Xin Xin, Bo Zheng, Zhaochun
Ren, and Sheng Guo. OmniKV: Dynamic context selection for efficient
long-context LLMs. In The Thirteenth International Conference on
Learning Representations, 2025.

[10] Sagar Imambi, Kolla Bhanu Prakash, and G. R. Kanagachidambaresan.
PyTorch, pages 87–104. Springer International Publishing, Cham, 2021.

[11] Wonbeom Lee, Jungi Lee, Junghwan Seo, and Jaewoong Sim. Infini-
Gen: Efficient Generative Inference of Large Language Models with
Dynamic KV Cache Management. In 18th USENIX Symposium on Op-
erating Systems Design and Implementation (OSDI 24), pages 155–172,
Santa Clara, CA, July 2024. USENIX Association.

[12] Cheng Luo, Zefan Cai, Hanshi Sun, Jinqi Xiao, Bo Yuan, Wen Xiao,
Junjie Hu, Jiawei Zhao, Beidi Chen, and Anima Anandkumar. Head-
Infer: Memory-Efficient LLM Inference by Head-wise Offloading. In
ICML 2025 Workshop on Long-Context Foundation Models, 2025.

[13] Meta. Llama. https://www.llama.com/, 2025.
[14] Khadijeh Moulaei, Atiye Yadegari, Mahdi Baharestani, Shayan Farzan-

bakhsh, Babak Sabet, and Mohammad Reza Afrash. Generative arti-
ficial intelligence in healthcare: A scoping review on benefits, chal-
lenges and applications. International Journal of Medical Informatics,
188:105474, 2024.

[15] Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo
Zhou, Silvio Savarese, and Caiming Xiong. CodeGen: An open large
language model for code with multi-turn program synthesis. In The
Eleventh International Conference on Learning Representations, 2023.

[16] Tiernan Ray. OpenAI’s gigantic GPT-3 hints at the limits of language
models for AI. =https://www.zdnet.com/article/openais-gigantic-gpt-
3-hints-at-the-limits-of-language-models-for-ai/, 2020. Accessed: 2025-
05-23.

[17] Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai
Gat, Xiaoqing Ellen Tan, Yossi Adi, Jingyu Liu, Romain Sauvestre, Tal
Remez, et al. Code Llama: Open foundation models for code. arXiv
preprint arXiv:2308.12950, 2023.

[18] Ying Sheng, Lianmin Zheng, Binhang Yuan, Zhuohan Li, Max Ryabinin,
Beidi Chen, Percy Liang, Christopher Re, Ion Stoica, and Ce Zhang.
FlexGen: High-Throughput generative inference of large language
models with a single GPU. In Andreas Krause, Emma Brunskill,
Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan
Scarlett, editors, Proceedings of the 40th International Conference on
Machine Learning, volume 202 of Proceedings of Machine Learning
Research, pages 31094–31116. PMLR, 23–29 Jul 2023.

[19] Yixin Song, Zeyu Mi, Haotong Xie, and Haibo Chen. PowerInfer:

Fast large language model serving with a consumer-grade gpu. In
Proceedings of the ACM SIGOPS 30th Symposium on Operating Sys-
tems Principles, SOSP ’24, pages 590–606, New York, NY, USA, 2024.
Association for Computing Machinery.

[20] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N Gomez, Ł ukasz Kaiser, and Illia Polosukhin. Attention
is all you need. In I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach,
R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in Neural
Information Processing Systems, volume 30. Curran Associates, Inc.,
2017.

[21] Yiming Wang, Yu Lin, Xiaodong Zeng, and Guannan Zhang. Pri-
vatelora for efficient privacy preserving LLM. arXiv preprint
arXiv:2311.14030, 2023.

[22] Guangxuan Xiao, Ji Lin, and Song Han. Offsite-tuning: Transfer learn-
ing without full model. arXiv preprint arXiv:2302.04870, 2023.

[23] An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui,
Bo Zheng, Bowen Yu, Chang Gao, Chengen Huang, Chenxu Lv, et al.
Qwen3 technical report. arXiv preprint arXiv:2505.09388, 2025.

[24] Chengye Yu, Tianyu Wang, Zili Shao, Linjie Zhu, Xu Zhou, and Song
Jiang. TwinPilots: A new computing paradigm for GPU-CPU parallel
LLM inference. In Proceedings of the 17th ACM International Systems
and Storage Conference, SYSTOR ’24, pages 91–103, New York, NY,
USA, 2024. Association for Computing Machinery.

[25] Philipp Zagar, Vishnu Ravi, Lauren Aalami, Stephan Krusche, Oliver
Aalami, and Paul Schmiedmayer. Dynamic fog computing for enhanced
LLM execution in medical applications. Smart Health, 36:100577, 2025.

[26] Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong Chen, Lianmin
Zheng, Ruisi Cai, Zhao Song, Yuandong Tian, Christopher Ré, Clark
Barrett, Zhangyang "Atlas" Wang, and Beidi Chen. H2o: Heavy-Hitter
oracle for efficient generative inference of large language models. In
A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine,
editors, Advances in Neural Information Processing Systems, volume 36,
pages 34661–34710. Curran Associates, Inc., 2023.

[27] Zhi Zhou, Xu Chen, En Li, Liekang Zeng, Ke Luo, and Junshan Zhang.
Edge intelligence: Paving the last mile of artificial intelligence with
edge computing. Proceedings of the IEEE, 107(8):1738–1762, 2019.

[28] Xiangwen Zhuge, Xu Shen, Zeyu Wang, Fan Dang, Xuan Ding,
Danyang Li, Yahui Han, Tianxiang Hao, and Zheng Yang. SpecOf-
fload: Unlocking Latent GPU Capacity for LLM Inference on Resource-
Constrained Devices. arXiv preprint arXiv:2505.10259, 2025.

https://www.llama.com/
=

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Challenges of Generative Inference
	2.2 Opportunities for Optimization
	2.3 Related Work

	3 HyperGen Design
	3.1 Size-aware Parameter Partitioning
	3.2 Step-aware Computation Partitioning
	3.3 Implementation

	4 Evaluation
	5 Conclusion and Future Work
	References

