
ZapRAID: Toward High-Performance RAID for ZNS
SSDs via Zone Append

Qiuping Wang
The Chinese University of Hong Kong

Shatin, Hong Kong, China

Patrick P. C. Lee
The Chinese University of Hong Kong

Shatin, Hong Kong, China

ABSTRACT
Zoned Namespace (ZNS) provides the Zone Append primi-
tive to boost the write performance of ZNS SSDs via intra-
zone parallelism. However, making Zone Append effective
for a RAID array of multiple ZNS SSDs is non-trivial, since
Zone Append offloads address management to ZNS SSDs and
requires hosts to dedicatedly manage RAID stripes across
multiple drives. We propose ZapRAID, a high-performance
software RAID layer for ZNS SSDs by carefully using Zone
Append to achieve high write parallelism and lightweight
stripe management. ZapRAID’s core idea is a group-based
data layout with coarse-grained ordering across multiple
groups of stripes, such that it can use small-size metadata for
stripe management on a per-group basis. Our prototype eval-
uation shows that ZapRAID achieves a 2.34× write through-
put gain compared with using the Zone Write primitive.

CCS CONCEPTS
• Computer systems organization → Reliability; Avail-
ability; • Information systems→ RAID.

KEYWORDS
Zoned namespaces, RAID, Storage

ACM Reference Format:
Qiuping Wang and Patrick P. C. Lee. 2023. ZapRAID: Toward High-
Performance RAID for ZNS SSDs via Zone Append. In 14th ACM
SIGOPS Asia-Pacific Workshop on Systems (APSys ’23), August 24–25,
2023, Seoul, Republic of Korea. ACM, New York, NY, USA, 6 pages.
https://doi.org/10.1145/3609510.3609810

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
APSys ’23, August 24–25, 2023, Seoul, Republic of Korea
© 2023 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 979-8-4007-0305-8/23/08. . . $15.00
https://doi.org/10.1145/3609510.3609810

1 INTRODUCTION
Zoned Namespace (ZNS) [4, 5] abstracts flash-based solid-
state drives (SSDs) as append-only zones, so as to eliminate
the costly operations of the traditional block interface and
shift the storage management to the host. Compared with
conventional SSDs, ZNS SSDs are shown to achieve higher
write throughput, lower tail read latencies, and less device-
level DRAM usage [5]. ZNS SSDs support two write prim-
itives, namely Zone Write and Zone Append. Specifically, a
ZNS SSD tracks per-zone write pointers, such that any write
to a zone must specify the same offset indicated by the write
pointer. Zone Write requires the host to specify the block
address when writing a block as in conventional SSDs. How-
ever, to match the offset of a Zone Write with the on-device
write pointer of a zone, the host can only issue one request to
each zone at a time, thereby limiting intra-zone parallelism.
In contrast, Zone Append eliminates the need for the host
to specify block addresses in writes by offloading address
management to ZNS SSDs, such that the host only specifies
the zone to which a write is issued, and the ZNS SSD returns
the address to the host upon the write completion. Thus, the
host can issue multiple Zone Append commands to exploit
intra-zone parallelism for improved write performance.

Despite the performance gains from Zone Append, its of-
floading of address management to ZNS SSDs implies that
the host not only cannot directly specify the block addresses
of writes in a zone, but it also cannot control the ordering of
writes in concurrent Zone Append commands. This creates
new challenges to host-level address management, particu-
larly when applying RAID [19] to form an array of multiple
ZNS SSDs for reliable storage. In traditional (𝑘 +𝑚)-RAID,
a RAID controller runs atop 𝑘 +𝑚 drives and organizes data
in stripes, each of which encodes 𝑘 data blocks into𝑚 parity
blocks and distributes the stripe of blocks across drives. Also,
the RAID controller statically assigns the same block address
in each drive for the blocks of the same stripe, so that the
repair of any lost block can directly retrieve any 𝑘 alive data
and parity blocks of the same stripe from other drives for de-
coding. However, under Zone Append, the RAID controller
needs to maintain dedicated address mapping information
to specify the block locations for each stripe, which unavoid-
ably incurs performance penalties to stripe management.

We present ZapRAID, a high-performance software RAID

https://doi.org/10.1145/3609510.3609810
https://doi.org/10.1145/3609510.3609810


APSys ’23, August 24–25, 2023, Seoul, Republic of Korea Qiuping Wang and Patrick P. C. Lee

ZoneWrite ZoneAppend

 337.6

 541.5
 613.6

1026.6 1050.0 1050.1

0

250

500

750

1000

4K 8K 16KW
ri

te
 T

h
pt

 (
M

iB
/s

)

0
250
500
750

1000

1 2 3 4 5 6 7 8
# of open zonesW

ri
te

 T
h

pt
 (

M
iB

/s
)

(a) Varying request sizes (b) Varying # of open zones

Figure 1: Write throughput of Zone Write and Zone Append.

layer for ZNS SSDs by carefully exploiting Zone Append
to achieve high write performance. ZapRAID extends log-
structured RAID (Log-RAID) [8, 9, 11, 15] with a novel group-
based data layout that partitions stripes into stripe groups.
It issues Zone Append to the stripes within the same stripe
group for high write performance, while the group-based
data layout organizes stripes with coarse-grained ordering
and enables ZapRAID to manage stripes efficiently on a
per-group basis. We evaluate our preliminary ZapRAID pro-
totype on real ZNS SSD devices and show that ZapRAID
achieves a 2.34×write throughput gain compared with using
the Zone Write primitive.

We now release the source code of our ZapRAID prototype
at https://github.com/fallfish/zapraid.

2 PRELIMINARIES
2.1 Why Zone Append?
We conduct evaluation on a testbed with a Western Digital
Ultrastar DC ZN540 ZNS SSD [3] (see §4 for testbed details)
to show how Zone Append improves write performance
over Zone Write. We issue writes of 4-KiB, 8-KiB, and 16-KiB
requests to the ZNS SSD. We write a total of 64GiB of data
five times and measure the average write throughput.
We issue writes to a single zone; if the zone is full, we

issue writes to a different zone. From Figure 1(a), Zone Write
achieves a write throughput of 337.6MiB/s, 613.6MiB/s, and
1,050.0MiB/s for 4-KiB, 8-KiB, and 16-KiB requests, respec-
tively. Recall that Zone Write specifies the per-zone write
pointer for the write position (§1), so a ZNS SSD can have
only one outstanding Zone Write at any time, and the write
throughput cannot be further increased with concurrent
write requests. In contrast, Zone Append achieves a write
throughput of 541.5MiB/s, 1,026.7MiB/s, and 1,050.1MiB/s
for 4-KiB, 8-KiB, and 16-KiB requests, respectively with four
concurrent write requests (note that if we issue more than
four concurrent write requests, it does not further increase
the write throughput of Zone Append as it already saturates
intra-zone parallelism for this specific ZN540 model). This
shows that Zone Append can increase the write throughput
via intra-zone parallelism.

Note that ZoneWrite already achieves the maximumwrite

throughput of a zone in ZN540 for 16-KiB requests, so Zone
Append does not see more growth. Nevertheless, the write
request size of 4 KiB is commonly observed in practical stor-
age workloads, such as in production servers [12] and cloud
block storage [17], so Zone Append can benefit such appli-
cations. Thus, we target the write request size of 4 KiB.
We further examine how inter-zone parallelism affects

the effectiveness of Zone Append, by issuing writes to mul-
tiple zones in parallel. We set the number of concurrent
write requests as one and four for Zone Write and Zone
Append, respectively. We vary the number of open zones
and focus on 4-KiB requests. From Figure 1(b), while Zone
Append shows scalable write throughput in the single-zone
experiment above, it can only achieve a write throughput
of 577.5MiB/s under two open zones. Zone Write can scale
to a larger number of open zones, with a write throughput
of 777.2MiB/s under six open zones. The reason is that the
current firmware implementation of Zone Append is more
computationally intensive, so Zone Append has even lower
write throughput than Zone Write under a larger number
of open zones due to the limited computational power in
existing hardware. We conjecture that such a limitation can
be addressed in future ZNS SSD models.
In this paper, we consider the scenario where an applica-

tion is deployed in a single open zone per drive; we pose the
inter-zone design in future work. The scenario addresses per-
formance isolation in SSD-based shared storage [6, 10, 13].
By exploiting Zone Append for intra-zone parallelism, appli-
cations can boost write performance and sustain the bursts
of writes, even with only a single open zone.

2.2 Log-structured RAID (Log-RAID)
SSDs adopt out-of-place updates, and small writes trigger
frequent device-level garbage collection that degrades I/O
performance and flash endurance [7, 14, 18]. Log-RAID [8, 9,
11, 15] applies the log-structured design [20] to SSD RAID by
issuing sequential host-level writes to remove small writes.

Log-RAID manages stripes in append-only segments. Each
segment holds a number of stripes (up to some pre-specified
capacity) and is mapped to 𝑘 +𝑚 fixed-size contiguous areas
that reside in 𝑘 +𝑚 drives (one area per drive). Log-RAID
aggregates newly written blocks as new stripes. It writes
each stripe of new 𝑘 +𝑚 blocks to the same offset of the
𝑘 +𝑚 segments in an append-only manner, such that 𝑘 +𝑚
blocks of the same stripe are aligned at the same offsets of
the segments (i.e., static mapping) and are stored in different
drives for fault tolerance. When recovering any lost block,
Log-RAID can deterministically retrieve any 𝑘 alive blocks
of the same stripe at the same offsets from other segments
for decoding. If a segment reaches its full capacity, Log-RAID
seals the segment and creates a new segment from the free
contiguous areas in the underlying drives.

https://github.com/fallfish/zapraid
pclee
Cross-Out

pclee
Cross-Out

pclee
Cross-Out

pclee
Sticky Note
contiguous areas

pclee
Sticky Note
contiguous areas

pclee
Sticky Note
contiguous areas



APSys ’23, August 24–25, 2023, Seoul, Republic of Korea

SSD 2

ZNS Array

ZapRAID

Controller

Application
Write (LBA)

Block-Level Volume

In-Flight Stripes

Write (PBA)

…

H Data

B

Segment Table

{Segment ID →

(Zone IDs, State)}

L2P Table

{LBA → (Segment ID, 

Drive ID, Offset)}

Compact Stripe Table

{Segment ID

→ Stripe IDs}

LBA Write Timestamp Stripe ID Block Metadata

F

SSD 1

SSD 3

SSD 4

B B

B B B

B B B

B B B

Figure 2: ZapRAID architecture. We show a (3+1)-RAID-5
array and the layout of a segment of four zones, where the
parity blocks are rotated across drives.

By treating written blocks as new stripes, Log-RAID needs
garbage collection to reclaim the space from stale blocks.
When garbage collection is triggered (say, when the avail-
able space drops below some threshold), Log-RAID selects
a sealed segment by some policy (e.g., using a greedy algo-
rithm to select the one with the most stale blocks), rewrites
all non-stale blocks into a new open segment, and releases
the space of the selected sealed segment for reuse.

3 ZAPRAID DESIGN
3.1 Design Overview
Architecture. ZapRAID is an extended Log-RAID design
for ZNS SSDs. Figure 2 shows the architecture of ZapRAID.
ZapRAID exposes a block-level volume that supports random
reads/writes. We assume that the block size is 4 KiB. A user
application can read or write an arbitrary number of blocks,
each being identified by a logical block address (LBA). Each
drive is a ZNS SSD, and ZapRAID maps each contiguous
area of a drive under Log-RAID to a zone, which only allows
sequential writes. Let 𝑍 be the total number of zones in
a drive, so there are 𝑍 segments in a ZNS SSD array. For
example, a 4-TiB ZN540 ZNS SSD [3] configures 𝑍 = 3,690
zones. Each of the drives, segments, zones, and stripes is
associated with an identifier (ID).
Segment organization. Each segment corresponds to 𝑘 +𝑚
zones in 𝑘 +𝑚 drives. It comprises three regions that span
across 𝑘 +𝑚 drives: the header region and the footer region
for keeping metadata for crash recovery (§3.3), and the data
region for storing data and parity blocks. The header region
stores the zone IDs of all zones in the segment. The footer
region keeps the block metadata, including the LBA, write
timestamp, and stripe ID of each block in the data region.

All three regions have pre-specified sizes. The header re-
gion contains exactly one stripe of𝑘+𝑚 blocks, each of which
resides at the beginning of a zone. The data region contains
a fixed number of stripes, denoted by 𝑆 , following the header
region. Suppose that the LBA size is 8 bytes, the write times-
tamp size is 8 bytes, the stripe ID size is 4 bytes, and the
block size is 4 KiB. Thus, each block in the footer region
can store the block metadata of ⌊ 409620 ⌋ = 204 blocks, so the
footer region occupies ⌈ 𝑆

204 ⌉ stripes following the data region.
For example, the size of a zone in a ZN540 ZNS SSD [3] is
1,077MiB (or equivalently, 275,512 blocks). Thus, the header,
data, and footer regions occupy 1 block, 274,160 blocks, and
1,351 blocks in a zone, respectively.

Block metadata. ZapRAID stores the block metadata for
each block in the out-of-band area of the corresponding flash
page for persistence. Each data block has its LBA, write times-
tamp, and stripe ID as its block metadata. ZapRAID provides
fault tolerance for the block metadata: for LBAs and write
timestamps, ZapRAID generates parity-based redundancy
for them from all data blocks in the same stripe and stores
the parity results in the block metadata of the parity blocks,
while for stripe IDs, ZapRAID replicates them into all the
data and parity blocks in the same stripe.

Recall that the footer region also stores the block metadata
for all blocks in the segment, so ZapRAID keeps two copies
of block summaries (i.e., in the out-of-band area of each flash
page and the footer region). Both copies are necessary for
different purposes: the block metadata in the out-of-band
area associated with each block provides persistence for
block writes, while the block metadata in the footer region
provides fast crash recovery (§3.3).

In-memory items. ZapRAID keeps a number of in-memory
in-flight stripes for newly written blocks. Each in-flight stripe
is kept in memory until all of its 𝑘 data blocks and𝑚 par-
ity blocks are formed and persisted. To maintain durability,
ZapRAID acknowledges the writes of an in-flight stripe only
after the whole in-flight stripe is persisted (note that ac-
knowledging the write of each data block can lead to data
loss if a drive storing an acknowledged block fails but the
parity blocks are yet generated).
ZapRAID also maintains three in-memory index struc-

tures: (i) the segment table, which maps each segment ID to
its corresponding 𝑘 +𝑚 zones (identified by the zone IDs in
the respective 𝑘 +𝑚 drives) and the segment state; (ii) the
logical-to-physical (L2P) table, which maps the LBA of each
block issued by an application to the physical block address
(PBA) (i.e., the segment ID, the drive ID, and the offset in
the respective zone); and (iii) the compact stripe table, which
maps each segment ID to the stripe IDs of all blocks in the
segment. Both the segment table and L2P table are similarly
found in Log-RAID, and we adapt them for zoned storage.



APSys ’23, August 24–25, 2023, Seoul, Republic of Korea Qiuping Wang and Patrick P. C. Lee

0

1

0

1

0

2

2

2

1

3

3

3

Group 0

Zone
Append
Block

Zone
Write
Block3

3

3

3

3

3

Zone B0

Zone A0

Zone C0

Group 1 Group 2 

0 2 1 3 3 3

Zone D0

Figure 3: Group-based data layout. Each block is labeled with
its stripe ID in the group.

The compact stripe table is newly introduced to ZapRAID
(elaborated in §3.2), since Zone Append can make the blocks
of the same stripe reside at different offsets across the drives.
Note that ZapRAID ensures fault tolerance for the index
structures by persisting the segment-to-zones mappings in
the segment table into the header region of each segment
and persisting the LBAs, write timestamps, and stripe IDs
as block metadata into the out-of-band area of each block.
Currently, our prototype keeps the index structures all in
memory. We can also adopt persistent log-structured indexes
[9] to reduce their memory space.

3.2 Group-Based Data Layout
ZapRAID adopts a group-based data layout to organize stripes
with coarse-grained ordering for low stripe management
overhead. It partitions a fixed number of contiguous stripes,
denoted by 𝐺 , within a segment into stripe groups, where
𝐺 is a configurable parameter. For each stripe group, it first
issues Zone Append for all but the last stripes within the
same stripe group, such that all blocks of each stripe are
in the same stripe group but may reside in different offsets
within the stripe group. It then issues Zone Write for the last
stripe. Thus, each Zone Write serves as an explicit ordering
barrier between adjacent stripe groups. Each stripe group
is in the same offset ranges across all zones, so the offset
ranges of its blocks can be identified via static mapping. Most
importantly, ZapRAID only needs to track a small number
of stripes within each stripe group, so it can use fewer bits
for metadata for significant memory savings.

Figure 3 depicts one segment with𝐺 = 4 stripes per stripe
group. Within the segment, the data region now comprises
a fixed number of stripe groups, each of which further com-
prises a fixed number of stripes. In general, the number of
stripe groups in a segment is determined by both 𝑆 (i.e., the
data region size) and 𝐺 . Each stripe in a stripe group is as-
sociated with a unique stripe ID, which can be viewed as a
sequence number of when the stripe is generated. Due to
Zone Append, the blocks of the same stripe may reside in
different offsets, as shown in Figure 3. The last stripe of each
stripe group always has the stripe ID 𝐺 − 1.
It is possible for ZapRAID to issue Zone Append to all

𝐺 stripes per stripe group, instead of issuing Zone Write

for the last stripe. Currently, we use the last stripe for data
storage, yet we can also use it to store block checksums
and intra-device redundancy for higher fault tolerance; such
redundancy can only be generated when all𝐺 − 1 stripes are
persisted. Thus, we use Zone Write as an explicit barrier to
provide such design flexibility. Also, issuing Zone Write for
the last stripe does not cause much performance degradation
(§4), as it is only issued for a fraction of stripes.

ZapRAID tracks the stripe IDs of all stripe groups in the
compact stripe table. For each segment, the compact stripe
table stores a two-dimensional (𝑘 +𝑚) × 𝑆 matrix, in which
each entry stores the stripe ID of each block in the segment.
In the matrix, the 𝑖-th row corresponds to the zone of the 𝑖-th
drive of the RAID array, and the 𝑗-th column corresponds
to the 𝑗-th block in the segment. Given the LBA of a block,
ZapRAID first identifies the PBA from the L2P table, and
then retrieves the stripe ID from the compact stripe table.
Trade-off analysis. The choice of 𝐺 determines the trade-
off between the degree of intra-zone parallelism via Zone
Append and the stripe management overhead. A larger 𝐺
allows more stripes to be issued via Zone Append, but it also
increases the stripe management overhead.

We analyze the maximum memory usage and query over-
head of the compact stripe table. For the maximum memory
usage, each stripe ID is represented in ⌈log2𝐺⌉ bits. Thus,
the maximum memory size of the compact stripe table is
(𝑘 +𝑚) · 𝑆 · 𝑍 ⌈log2𝐺⌉ bits. For the query overhead, we mea-
sure the number of entries in the compact stripe table being
accessed during a degraded read (§3.3), which is 𝑘 ·𝐺 . With a
proper choice of 𝐺 , ZapRAID can achieve high write perfor-
mance via Zone Append, while limiting the memory usage
and query overhead of the compact stripe table. For example,
we consider a (3+1)-RAID-5 array of four 4-TiB ZN540 drives,
where 𝑆 = 274,160 and 𝑍 = 1,351 (§3.1). For 𝐺 = 256 (our de-
fault), the maximummemory size of the compact stripe table
is 3.77 GiB, while the query overhead is to access 768 entries,
which translates to only around 1𝜇s from our evaluation. In
contrast, Zone Append represents the case of 𝐺 = 𝑆 , which
translates to 19 bits per stripe ID and hence 8.95 GiB of mem-
ory for the compact stripe table. A large compact stripe table
also incurs high query overhead (e.g., in degraded reads).

3.3 Complete Workflows
Writes. To write a block (identified by an LBA), ZapRAID
first assigns the block to a stripe associated with an open
segment. It writes the block into an in-flight stripe in mem-
ory (§3.1). It also issues a Zone Append command to write
the block and block metadata based on the block’s position
in the stripe and the RAID scheme. When an in-flight stripe
contains 𝑘 data blocks, ZapRAID encodes them to gener-
ate𝑚 parity blocks and their block metadata. It then issues
a Zone Append command for each of the parity blocks to



APSys ’23, August 24–25, 2023, Seoul, Republic of Korea

ZoneWrite-Only ZoneAppend-Only ZapRAID

 662.4

1564.0 1547.6

0
500

1000
1500
2000

T
hp

t 
(M

iB
/s

)

104.8

 48.0  50.0

0
50

100
150
200

95
p 

L
at

. (
μ

s)

(a) Write throughput (b) Write 95p latency
Figure 4: Exp#1 (Write performance).

NR DR-Log-RAID DR-ZapRAID

46.5 44.8 44.0

0

20

40

60

T
hp

t 
(M

iB
/s

)

92 95 96

0

50

100

150

9
5p

 L
at

. 
(μ

s)

(a) Read throughput (c) Read 95p latency
Figure 5: Exp#2 (Normal and degraded read
performance).

0
250
500
750

1000

0 200 400 600 800 1000
Storage space (GiB)R

ec
ov

er
y 

ti
m

e 
(s

)

Figure 6: Exp#3 (Full-drive re-
covery).

its respective zone. Only after all the blocks of a stripe are
persisted, ZapRAID updates the L2P table with the corre-
sponding LBAs and PBAs as well as acknowledges the com-
pletion of the block writes; the in-flight stripe is also released
from memory. If there are insufficient data blocks to form
a full stripe after a small timeout since the stripe is created
(currently set as 1ms in our prototype), ZapRAID fills the
remaining stripe with zero blocks and invalid LBAs.
If the stripe group is also the last one in the data region,

ZapRAID writes the block metadata of all blocks in the seg-
ment into the footer region. It also creates a new segment
and writes the segment information to the header region, so
that the new segment can serve new writes.
Reads. To read a block (identified by an LBA), ZapRAID
queries the L2P table for its PBA (i.e., the segment ID, the
drive ID, and the offset in the respective zone). It then locates
the zone from the segment table and retrieves the block from
the specified offset of the zone.
Degraded reads. To issue a degraded read to a lost block,
ZapRAID queries the L2P table for its PBA and also queries
the compact stripe table to find out the stripe ID of the re-
quested block. Since all alive blocks of the same stripe reside
in the same stripe group, ZapRAID searches for the offsets
of the 𝑘 alive blocks in the stripe group from the compact
stripe table; note that the search is efficient due to the limited
group size. It then reads the alive blocks from the other zones
and decodes the requested block.
Full-drive recovery. When a drive fails, ZapRAID recovers
the lost data into a new drive. It first identifies the segments
that contain the lost zones in the failed drive by examining
the segment-to-zones mappings in the header regions of all
stored segments. For each lost zone, ZapRAID retrieves all
available zones in the same segment from other alive drives
into memory, and reconstructs the stripe groups that cover
the lost zone. It examines the block metadata of the alive
blocks and identifies the blocks from the same stripe. It then
decodes the lost blocks for each stripe independently. After
repairing all the stripes in a segment, ZapRAID writes the
recovered zone to the new drive.

4 EVALUATION
We implement ZapRAID as an SPDK user-space block de-
vice module [2] in C++ with around 4.8 K LoC. We present

preliminary evaluation results.
Testbed.We use a server that runs Ubuntu 22.04 LTS with
Linux kernel 5.15. It has a 16-core Intel Xeon Silver 4215
2.5 GHz CPU and 96GiB DRAM. It is attached with four 4-
TiB Western Digital Ultrastar DC ZN540 ZNS SSDs [3]. Each
SSD has 3,690 zones, with a zone capacity of 1,077MiB each.
We format each SSD with a logical block size of 4 KiB and a
block metadata size (in the out-of-band area) of 64 bytes.

We consider two baselines by configuring the stripe group
size 𝐺 of ZapRAID (§3.2): ZoneWrite-Only (i.e., 𝐺 = 1) and
ZoneAppend-Only (i.e., 𝐺 = 𝑆), which exclusively use Zone
Write and Zone Append to write blocks to the SSDs, respec-
tively. For ZapRAID, we set its default group size as𝐺 = 256.
We focus on (3+1)-RAID-5. We configure the logical space
with 200GiB. We report the average results over five runs.
Exp#1 (Write performance). We use Flexible IO Tester
(FIO) (v3.30) [1] with the randwrite option to issue random
writes of 64GiB of data with a request size of 4 KiB. We fix
the queue depth as 16 to saturate system parallelism. Figure 4
shows the write throughput and 95th-percentile latency re-
sults. Compared with ZoneWrite-Only, ZapRAID achieves
2.34× write throughput and 52.3% lower 95th-percentile la-
tency. Compared with ZoneAppend-Only, ZapRAID achieves
similar performance, yet ZoneAppend-Only incurs much
higher memory usage in the compact stripe table (§3.2).
Exp#2 (Normal and degraded read performance). We
fill up the 200-GiB logical address space to store every logi-
cal block being read, and use FIO with the randread option
to issue random reads to 16GiB of data with a request size
of 4 KiB. We set the queue depth as one, so as to focus on
the performance of individual read requests and exclude the
interference among requests. We consider three cases: nor-
mal reads (NR), degraded reads under the static mapping in
Log-RAID (DR-Log-RAID) (see §2.2), and degraded reads un-
der the group-based data layout in ZapRAID (DR-ZapRAID);
note that both Log-RAID and ZapRAID have the same work-
flow for normal reads. To evaluate degraded reads, we fail a
drive and issue reads to the lost blocks of the failed drive. Fig-
ure 5 shows the read throughput and 95th-percentile latency
results. All read operations have less than 5% of difference in
performance results. The degraded reads of both Log-RAID
and ZapRAID only have slightly worse performance than
normal reads, as both systems retrieve alive blocks in par-

pclee
Cross-Out

pclee
Sticky Note
(b)



APSys ’23, August 24–25, 2023, Seoul, Republic of Korea Qiuping Wang and Patrick P. C. Lee

allel. Also, ZapRAID achieves comparable performance to
Log-RAID, which uses static mapping.

Exp#3 (Recovery time).We sequentially write data to Zap-
RAID configured with a fixed size of logical space (varying
from 100GiB to 1,000GiB). We erase all data in one drive,
and recover the lost data in the same drive. We report the
average recovery time as the total time spent on reading
alive data from existing drives, reconstructing the stripes,
and writing the recovered data to the new drive. Figure 6
shows the results. The full-drive recovery time is propor-
tional to the logical space size. For example, ZapRAID takes
81.9 s and 813.2 s to recover the lost data for the 100-GiB and
1,000-GiB storage space, respectively.

5 RELATEDWORK
Some studies propose Log-RAID architectures for SSD RAID
to improve both write performance and flash endurance.
SOFA [8] places the FTL in the RAID controller for efficient
data management. Purity [9] manages both indexing and
data storage under Log-RAID and supports data compres-
sion. SALSA [11] implements a general translation layer for
SSDs and Shingled Magnetic Recording (SMR) disks. SWAN
[15] proposes spatial data separation to reduce garbage col-
lection interference. ZapRAID targets ZNS SSDs. A recent
work, RAIZN [16], exposes a ZNS SSD array as a single
ZNS interface to applications, and focuses on fault tolerance,
correctness, and crash consistency. In contrast, ZapRAID
focuses on exploiting Zone Append for high performance.

6 CONCLUSION AND FUTUREWORK
We make a case for showing how to effectively deploy RAID
on ZNS SSDs. ZapRAID is a software RAID layer for ZNS
SSDs and aims for high performance, lightweight stripe man-
agement, and reliability. It exploits Zone Append for high
write performance, and proposes the group-based data layout
to mitigate stripe management overhead. Prototype evalu-
ation on real ZNS SSDs shows that ZapRAID improves the
write throughput over the exclusive use of ZoneWrite, while
maintaining efficient degraded reads and crash recovery. Our
future work includes: (i) exploring mixed request sizes (e.g.,
beyond 4 KiB) and inter-zone parallelism atop Zone Append
(§2.1), (ii) optimizingmemory usage of index structures (§3.1),
(iii) exploring the design space of issuing Zone Write for the
last stripe per stripe group (§3.2), (iv) a more detailed analy-
sis on crash consistency, and (v) extending evaluation (e.g.,
CPU/memory overhead, impact of the stripe group size and
RAID scheme, etc.).

Acknowledgments. This work is supported by Research
Grants Council of Hong Kong (GRF 14214622 and AoE/P-
404/18). The corresponding author is Patrick P. C. Lee.

REFERENCES
[1] Accessed in 2023. Fio - Flexible I/O Tester Synthetic Benchmark.

http://git.kernel.dk/?p=fio.git.
[2] Accessed in 2023. SPDK Block Device Layer Programming Guide.

https://spdk.io/doc/bdev_pg.html.
[3] Accessed in 2023. Western Digital Ultrastar DC ZN540.

https://www.westerndigital.com/products/internal-drives/data-
center-drives/ultrastar-dc-zn540-nvme-ssd.

[4] Accessed in 2023. Zoned Storage Website. https://zonedstorage.io.
[5] Matias Bjørling, Abutalib Aghayev, Hans Holmberg, Aravind Ramesh,

Damien Le Moal, Gregory R. Ganger, and George Amvrosiadis. 2021.
ZNS: Avoiding the Block Interface Tax for Flash-based SSDs. In Proc.
of USENIX ATC.

[6] Da-Wei Chang, Hsin-Hung Chen, and Wei-Jian Su. 2015. VSSD: Per-
formance Isolation in a Solid-State Drive. ACM Trans. on Design
Automation of Electronic Systems 20, 4 (2015), 51:1–51:33. https:
//doi.org/10.1145/2755560

[7] Feng Chen, David A. Koufaty, and Xiaodong Zhang. 2009. Understand-
ing Intrinsic Characteristics and System Implications of Flash Memory
based Solid State Drives. In Proc. of ACM SIGMETRICS.

[8] Tzi-cker Chiueh, Weafon Tsao, Hou-Chiang Sun, Ting-Fang Chien,
An-Nan Chang, and Cheng-Ding Chen. 2014. Software orchestrated
flash array. In Proc. of ACM SYSTOR.

[9] John Colgrove, John DDavis, JohnHayes, Ethan LMiller, Cary Sandvig,
Russell Sears, Ari Tamches, Neil Vachharajani, and Feng Wang. 2015.
Purity: Building fast, highly-available enterprise flash storage from
commodity components. In Proc. of ACM SIGMOD.

[10] Jian Huang, Anirudh Badam, Laura Caulfield, Suman Nath, Sudipta
Sengupta, Bikash Sharma, and Moinuddin K. Qureshi. 2017. Flash-
Blox: Achieving Both Performance Isolation and Uniform Lifetime for
Virtualized SSDs. In Proc. of USENIX FAST.

[11] Nikolas Ioannou, Kornilios Kourtis, and Ioannis Koltsidas. 2018. Ele-
vating commodity storage with the SALSA host translation layer. In
Proc. of IEEE MASCOTS.

[12] Swaroop Kavalanekar, Bruce Worthington, Qi Zhang, and Vishal
Sharda. 2008. Characterization of Storage Workload Traces from
Production Windows Servers. In Proc. of IEEE IISWC.

[13] Bryan Suk Kim. 2018. Utilitarian Performance Isolation in Shared
SSDs. In Proc. of USENIX HotStorage.

[14] Hyojun Kim and Seongjun Ahn. 2008. BPLRU: A Buffer Management
Scheme for Improving Random Writes in Flash Storage.. In Proc. of
USENIX FAST.

[15] Jaeho Kim, Kwanghyun Lim, Youngdon Jung, Sungjin Lee, Changwoo
Min, and SamH. Noh. 2019. Alleviating garbage collection interference
through spatial separation in all flash arrays. In Proc. of USENIX ATC.

[16] Thomas Kim, Jekyeom Jeon, Nikhil Arora, Huaicheng Li, Michael
Kaminsky, David Andersen, Gregory R. Ganger, George Amvrosiadis,
and Matias Bjørling. 2023. RAIZN: Redundant Array of Independent
Zoned Namespaces. In Proc. of ACM ASPLOS.

[17] Jinhong Li, Qiuping Wang, Patrick P. C. Lee, and Chao Shi. 2020. An
In-Depth Analysis of Cloud Block Storage Workloads in Large Scale
Production. In Proc. of IEEE IISWC.

[18] Changwoo Min, Kangnyeon Kim, Hyunjin Cho, Sang-Won Lee, and
Young Ik Eom. 2012. SFS: Random write considered harmful in solid
state drives.. In Proc. of USENIX FAST.

[19] David A. Patterson, Garth A. Gibson, and Randy H. Katz. 1988. A Case
for Redundant Arrays of Inexpensive Disks (RAID). In Proc. of ACM
SIGMOD.

[20] Mendel Rosenblum and John K. Ousterhout. 1992. The Design and
Implementation of a Log-Structured File System. ACM Trans. on Com-
puter Systems 10, 1 (1992), 26–52.

http://git.kernel.dk/?p=fio.git
https://spdk.io/doc/bdev_pg.html
https://www.westerndigital.com/products/internal-drives/data-center-drives/ultrastar-dc-zn540-nvme-ssd
https://www.westerndigital.com/products/internal-drives/data-center-drives/ultrastar-dc-zn540-nvme-ssd
https://zonedstorage.io
https://doi.org/10.1145/2755560
https://doi.org/10.1145/2755560

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Why Zone Append?
	2.2 Log-structured RAID (Log-RAID)

	3 ZapRAID Design
	3.1 Design Overview
	3.2 Group-Based Data Layout
	3.3 Complete Workflows

	4 Evaluation
	5 Related Work
	6 Conclusion and Future Work
	References

