Part

3

Technical Foundations

Chapter

Introduction

Michael R. Lyu
AT&T Bell Laboratories

1.1 The Need for Reliable Software

With the advent of the electronic digital computer 50 years ago
[Burk46], we have become dependent on computers in our daily lives.
The computer revolution is fueled by an ever more rapid technological
advancement. Today, computer hardware and software permeates our
modern society. Computers are embedded in wristwatches, telephones,
home appliances, buildings, automobiles, and aircraft. Science and
technology demand high-performance hardware and high-quality soft-
ware for making improvements and breakthroughs. We can look at vir-
tually any industry—automotive, avionics, oil, telecommunications,
banking, semiconductors, pharmaceuticals—all these industries are
highly dependent on computers for their basie functioning.

The size and complexity of computer-intensive systems has grown
dramatically during the past decade, and the trend will certainly con-
tinue in the future. Contemporary examples of highly complex hard-
ware/software systems can be found in projects undertaken by NASA,
the Department of Defense, the Federal Aviation Administration, the
telecommunications industry, and a variety of other industries. For
instance, the NASA Space Shuttle flies with approximately 500,000
lines of software code on board and approximately 3.5 million lines of
code in ground control and processing. After being scaled down signifi-
cantly from its original plan, the International Space Station Alpha is
still projected to have millions of lines of software to operate innumer-
able hardware pieces for its navigation, communication, and experi-
mentation. In the telecommunications industry, operations for phone
carriers are supported by hundreds of software systems, with hundreds
of millions of lines of source code. In the avionies industry, almost all
new payload instruments contain their own microprocessor system

4 Technical Foundations

with extensive embedded software. A massive amount of hardware and
complicated software also exists in the Federal Aviation Administra-
tion’s Advanced Automation System, the new generation air traffic con-
trol system. In our offices and homes, personal computers cannot
function without complex operating systems (e.g., Windows) ranging
from 1 to 5 million lines of code, and many other shrink-wrapped soft-
ware packages of similar size provide a variety of applications for our
daily use of these computers.

The demand for complex hardware/software systems has increased
more rapidly than the ability to design, implement, test, and maintain
them. When the requirements for and dependencies on computers
increase, the possibility of crises from computer failures also increases.
The impact of these failures ranges from inconvenience (e.g., malfunc-
tions of home appliances) to economic damage (e.g., interruptions of
banking systems) to loss of life (e.g., failures of flight systems or medi-
cal software). Needless to say, the reliability of computer systems has
become a major concern for our society.

Within the computer revolution, progress has been uneven: software
assumes a larger burden, while based on a less firm foundation, than
hardware. It is the integrating potential of software that has allowed
designers to contemplate more ambitious systems encompassing a
broader and more multidisciplinary scope, and it is the growth in uti-
lization of software components that is largely responsible for the high
overall complexity of many system designs. However, in stark contrast
with the rapid advancement of hardware technology, proper develop-
ment of software technology has failed to keep pace in all measures,
including quality, productivity, cost, and performance. With the last
decade of the 20th century, computer software has already become the
major source of reported outages in many systems [Gray90]. Conse-
quently, recent literature is replete with horror stories of projects gone
awry, generally as a result of problems traced to software.

Software failures have impaired several high-visibility programs. In
the NASA Voyager project, the Uranus encounter was in jeopardy
because of late software deliveries and reduced capability in the Deep
Space Network. Several Space Shuttle missions have been delayed due
to hardware/software interaction problems. In one DoD project, soft-
ware problems caused the first flight of the AFTI/F-16 jet fighter to
be delayed over a year, and none of the advanced modes originally
planned could be used. Critical software failures have also affected
numerous civil and scientific applications. The ozone hole over Antarc-
tica would have received attention sooner from the scientific commu-
nity if a data analysis program had not suppressed the anomalous data
because it was “out of range.” Software glitches in an automated
baggage-handling system forced Denver International Airport to sit

Introduction 5

empty more than a year after airplanes were to fill its gates and run-
ways [Gibb94].

Unfortunately, software can also kill people. The massive Therac-25
radiation therapy machine had enjoyed a perfect safety record until
software errors in its sophisticated control systems malfunctioned and
claimed several patients’ lives in 1985 and 1986 [Lee92]. On October
26, 1992, the Computer Aided Dispatch system of the London Ambu-
lance Service broke down right after its installation, paralyzing the
capability of the world’s largest ambulance service, which handles
5000 daily requests to transport patients in emergency situations
[SWTR93]. In the highly automated aviation industry, misunderstand-
ings between computers and pilots have been implicated in several air-
line crashes in the past few years [Swee95], and in some cases experts
hold software control responsible because of inappropriate reaction of
the aircraft to the pilots’ desperate inquiries during an abnormal
flight.

Software failures also have led to serious consequences in business.
On January 15, 1990, a fault in a switching system’s newly released
software caused massive disruption of a major carrier’s long-distance
network, and another series of local phone outages traced to software
problems occurred during the summer of 1991 [Lee92]. These critical
failures caused enormous revenue losses to thousands of companies
relying on telecommunications companies to support their businesses.

Many software systems and packages are distributed and installed in
identical or similar copies, all of which are vulnerable to the same soft-
ware failure. This is why even the most powerful software companies
such as Microsoft are fearful of “killer bugs” which can easily wipe out
all the profits of a glorious product if a recall is required on the tens of
millions of copies they have sold [Cusu95]. To this end, many software
companies see a major share of project development costs identified
with the design, implementation, and assurance of reliable software,
and they recognize a tremendous need for systematic approaches using
software reliability engineering techniques. Clearly, developing the
required techniques for software reliability engineering is a major chal-
lenge to computer engineers, software engineers, and engineers of vari-
ous disciplines now and for decades to come.

1.2 Software Reliability
Engineering Concepts

Software reliability engineering is centered around a very important
software attribute: reliability. Software reliability is defined as the
probability of failure-free software operation for a specified period of
time in a specified environment [ANSI91]. It is one of the attributes of

6 Technical Foundations

software quality, a multidimensional property including other cus-
tomer satisfaction factors such as functionality, usability, performance,
serviceability, capability, installability, maintainability, and documen-
tation [Grad87, Grad92]. Software reliability, however, is generally
accepted as the key factor in software quality since it quantifies soft-
ware failures—which can make a powerful system inoperative or, as
with the Therac-25, deadly. As a result, reliability is an essential ingre-
dient in customer satisfaction. In fact, ISO 9000-3 specifies measure-
ment of field failures as the only required quality metric: “. .. at a
minimum, some metrics should be used which represent reported field
failures and/or defects from the customer’s viewpoint. . . . The supplier
of software products should collect and act on quantitative measures of
the quality of these software products.” (See sec. 6.4.1 of [ISO91].)

Example 1.1 shows the impact of high-severity failures to customer
satisfaction.

Example 1.1 A survey of nine large software projects was taken in [Merc94] to
study the factors contributing to customer satisfaction. These projects were
telecommunications systems responsible for day-to-day operations in the U.S.
local telephone business. The survey requested telephone customers to assess a
quality score between 0 and 100 for each system. The average size of these proj-
ects was 1 million lines of source code.

Trouble Reports (i.e., failure reports in the field) were collected from these proj-
ects. Figure 1.1 shows the overall quality score from the survey of these projects,
plotted against the number of high-severity Trouble Reports.

100
90

Overall 80

70
Quality gq

50
40
30
20
10

Score

0 50 100 150 200 250 300
Number of Severity 1 and 2 Trouble Reports

Figure 1.1 Correlations between software quality and high-severity
failures.

Introduction 7

From Fig. 1.1 we can observe a high negative correlation (-0.86) between the
overall quality score and the number of high-severity failures for each project.
This example illustrates that in the telecommunications industry, the number of
critical software failures promptly indicates negative customer perception on
overall software quality. This quality indicator is also generally applicable to
many other industries.

Software reliability is also one of the system dependability concepts
that are discussed in detail in Chap. 2. Example 1.2 demonstrates the
impact of software reliability to system reliability.

Example 1.2 A military distributed processing system has an MTTF (mean time
to failure, see definition in Sec. 1.4) requirement of 100 hours and an availability
requirement of 0.99. The overall architecture of the system is shown in Fig. 1.2,
indicating that the system consists of three subsystems, SYS1, SYS2, SYS3, a
local area network, LAN, and a 10-kW power generator GEN. In order for the 8yS-
tem to work, all the components (except SYS2) have to work. In the early phase
of system testing, hardware reliability parameters are predicted according to the
MIL-HDBK-217 and shown for each system component. Namely, above each com-
ponent block in Fig. 1.2, two numbers appear. The upper number represents the
predicted MTTF for that component, and the lower number represents its MTTR
(mean time to repair, see Sec. 1.4). The units are hours. For example, SYS1 has
280 hours for MTTF and 0.53 hours for MTTR, while SYS2 and SYS3 have 387
hours for MTTF and 0.50 hours for MTTR. Note that SYS? is configured as a
triple-module redundant system, shown in the dotted-line block, where the sub-
system will work as long as two or more modules work. Due to this fault-tolerant
capability, its MTTF improves to 5,01 x 10* hours and MTTR becomes 0.25 hours.

To calculate the overall system reliability, all the components in the system have
to be considered. If we assume the software does not fail (a mistake often made
by system reliability engineers!), the resulting system MTTF would be 125.9

5.01 x 10°
0.25
@ 387
0.50
SYS2
v SYS2 m 4
280 SW 10 600 3187
0.53 1.25 0.95 0.50
SYS2
L4 SYS1 o i GEN & - SYS3
YS1 SYS2 L Y
SYS S/W S/W AN (10 kW) SYS3 S'W
SYS2
H sys2 H gw H

Figure 1.2 An example of predicting system reliability.

8 Technical Foundations

hours and MTTR would be 0.62 hours, achieving system availability of 0.995. It
looks as if the system already meets its original requirements.

But the software does fail. Both SYS2 and SYS3 software contain 300,000 lines
of source code, and following the prediction model described in Chap. 3 (Sec.
3.8.3) and [RADCS87], the predicted initial failure rates for SYS2 and SYS3 soft-
ware are both 2.52 failures per execution hour. (Note the three SYS2 S/W are
identical software copies and not fault-tolerant.) Even without considering SYS1
software failures, the system MTTF would have become 11.9 CPU minutes!
Assuming MTTR is still 0.62 hours (although it should be higher since it gener-
ally takes longer to reinitialize the software) and CPU time and calendar time
are close to each other (which is true for this distribution system), the system
availability becomes 0.24—far less than predicted!

Note that the system presented in Example 1.2 was a real-world
example, and the estimated reliability parameters were actual prac-
tices following military handbooks [Lyu89]. This example is not an
extreme case. In fact, many existing large systems face the same situ-
ation: software reliability is the bottleneck of system reliability, and the
maturity of software always lags behind that of hardware. Accurately
modeling software reliability and predicting its trend have become crit-
ical, since this effort provides crucial information for decision making
and reliability engineering for most projects.

Reliability engineering is a daily practiced technique in many engi-
neering disciplines. Civil engineers use it to build bridges and com-
puter hardware engineers use it to design chips and computers. Using
a similar concept in these disciplines, we define software reliability
engineering (SRE) as the quantitative study of the operational behavior
of software-based systems with respect to user requirements concerning
reliability [IEEE95]. SRE therefore includes:

1. Software reliability measurement, which includes estimation and
prediction, with the help of software reliability models established
in the literature ‘

2. The attributes and metrics of product design, development process,
system architecture, software operational environment, and their
implications on reliability

3. The application of this knowledge in specifying and guiding system
software architecture, development, testing, acquisition, use, and
maintenance

Based on the above definjtions, this book details current SRE tech-
niques and practices.

1.3 Book Overview

Mature engineering fields classify and organize proven solutions in
handbooks so that most engineers can consistently handle complicated

Introduction 9

but routine designs. Unfortunately, handbooks of software engineering
practice are unknown. Software development has been treated as an
art. Although we understand a very large part of this art, it is still not
a practiced engineering discipline. Consequently, mistakes in software
development are repeated project after project, year after year, and the
software crises of 25 years ago are still with us today [Gibb94].

Fortunately, the reliability component of software engineering is
evolving from an art to a practical engineering discipline. It is time to
begin to codify our knowledge in SRE and make it available—this is
the main purpose of this handbook. This handbook provides informa-
tion on the key methods and methodologies used in SRE, covering its
state-of-the-art techniques and state-of-practice approaches. The book
is divided into three parts and 17 chapters. Each chapter is written by
SRE experts, including researchers and practitioners. These chapters
cover the theory, design, methodology, modeling, evaluation, experi-
ence, and assessment of SRE techniques and applications.

Part 1 of the book, composed of five chapters, sets up the technical
foundations for software reliability modeling techniques, in which
system-level dependability and reliability concepts, software reliability
prediction and estimation models, model evaluation and recalibration
techniques, and operational profile techniques are presented. In par-
ticular,

1. Chapter 1 gives an introduction of the book, where its framework is
outlined and the main contents of each chapter are surveyed. Basic
ideas, terminology, and techniques in SRE are presented.

2. Chapter 2 provides a general overview of the system dependability
concept, and shows that the classical reliability theory can be
extended in order to be interpreted from both hardware and soft-
ware viewpoint.

3. Chapter 3 reviews the major software reliability models that appear
in the literature, from both historical and applications perspectives.
Each model is presented with its motivation, model assumptions,
data requirements, model form, estimation procedure, and general
comments about its usage.

4. Chapter 4 presents a systematic framework to conduct model evalu-
ation of several competing reliability models, using advanced statis-
tical criteria. Recalibration techniques which can greatly improve
model performance are also introduced.

5. Chapter 5 details a technique that is essential to SRE: the opera-
tional profile. The operational profile shows you how to increase
productivity and reliability and speed development by allocating
project resources to functions on the basis of how a system will
be used.

10 Technical Foundations

Part 2 contains SRE practices and experiences in six chapters. This
part of the book consists of practical experiences from major organiza-
tions such as AT&T, JPL, Bellcore, Tandem, IBM, NASA, Nortel, ALCA-
TEL, and other international organizations. Various SRE procedures
are implemented for particular requirements under different environ-
ments. The authors of each chapter in Part 2 describe the practical pro-
cedures that work for them, and convey to you their experiences and
lessons learned. Specifically,

1. Chapter 6 describes the best current practice in SRE adopted by over
70 projects at AT&T. This practice allows you to analyze, manage,
and improve the reliability of software products, to balance cus-
tomer needs in terms of cost, schedule, and quality, and to minimize
the risks of releasing software with serious problems.

2. Chapter 7 conveys the measurement experience in applying software
reliability models to several large-scale projects at JPL and Bellcore.
We discuss the SRE procedures, data collection efforts, modeling
approaches, data analysis methods, reliability measurement results,
lessons learned, and future directions. A practical scheme to
improve measurement accuracy by linear combination models is
also presented.

3. Chapter 8 shows measurement-based analysis techniques which
directly measure software reliability through monitoring and
recording failure occurrences in a running system under various
user workloads. Experiences with Tandem GUARDIAN, IBM MVS,

and VAX VMS operating systems are explored.

4. Chapter 9 proposes a defect classification scheme which extracts
semantic information from software defects such that it provides a
measurement on the software development process. This chapter
explains the framework, procedure, and advantage of this scheme

and its successful application and deployment in many projects
at IBM.

5. Chapter 10 addresses software reliability trend analysis, which can
help project managers control the progress of the development activ-
ities and determine the efficiency of the test programs. Application
results from a number of studies including switching systems and
avionic applications are reported.

6. Chapter 11 provides insight into the process of collecting and ana-
lyzing software reliability field data through a discussion of the
underlying principles and case study illustrations. Included in the
field data analysis are projects from IBM, Hitachi, Nortel, and space
shuttle onboard flight software.

Introduction 11

Emerging techniques which have been used to advance SRE research
field are addressed by the six chapters in Part 3. These techniques
include software metrics, testing schemes, fault-tolerant software,
fault tree analysis, simulation, and neural networks. After explicitly
explaining these techniques in concrete terms, authors of the chapters
in Part 3 establish the relationships between these techniques and
software reliability. Potential research topics and their directions are
also addressed in detail. In summary,

1. Chapter 12 presents the technique to incorporate software metrics
for reliability assessment. This chapter makes the connection
between software complexity and software reliability, in which both
functional complexity and operational complexity of a program are
examined for the development and maintenance of reliable software.

2. Chapter 13 explores the relationship between software testing and
reliability. In addressing the impact of testing to reliability, this
chapter applies program structure metrics and code coverage data
for the estimation of software reliability and the assessment of the
risk associated with software.

3. Chapter 14 focuses on the software fault tolerance approach as a
potential technique to improve software reliability. Issues regarding
the architecture, design, implementation, modeling, failure behav-
1or, and cost of fault tolerant systems are discussed.

4. Chapter 15 introduces the fault tree technique for the reliability
analysis of software systems. This technique helps you to analyze
the impact of software failures on a system, to combine off-line and
on-line tests to prevent or detect software failures, and to compare
different design alternatives for fault tolerance with respect to both
reliability and safety.

5. Chapter 16 demonstrates how several simulation techniques can be
applied to a typical software reliability engineering process, in which
many simplifying assumptions in reliability modeling could be lifted.
This chapter shows the power, flexibility, and potential benefits that
the simulation techniques offer, together with methods for represent-
ing artifacts, activities, and events of the reliability process.

6. Chapter 17 elaborates how the neural networks technology can be
used in software reliability engineering applications, including its
usage as a general reliability growth model for better predictive
accuracy, and its exercise as a classifier to identify fault-prone soft-
ware modules.

In addition to these book chapters, two appendixes and an MS/DOS
diskette are enclosed in the book. Appendix A surveys the currently

12 Technical Foundations

available tools which encapsulate software reliability models and tech-
niques. These tools include AT&T Toolkit, SMERFS, SRMP, SoRel,
CASRE, and SoftRel. Appendix B reviews the analytical modeling tech-
niques, statistical techniques, and reliability theory commonly used in
the SRE studies. The MS/DOS disk, called Data and Tool Disk (or Data
Disk), includes two directories: the DATA directory and the TOOL
directory. The DATA directory contains more than 40 published and
unpublished software failure data sets used in the book chapters,
and the TOOL directory contains the AT&T SRE Toolkit, SMERFS,
CASRE, and SoftRel software reliability tools.

Finally, at the end of each book chapter are problems which provide
practice exercises for the reader.

1.4 Basic Definitions

We notice three major components in the definition of software relia-
bility: failure, time, and operational environment. We now define these
terms and other related SRE terminology. We begin with the notions of
a software system and its expected service.

Software systems. A software system is an interacting set of software
subsystems that is embedded in a computing environment that pro-
vides inputs to the software system and accepts service (outputs) from
the software. A software subsystem itself is composed of other subsys-
tems, and so on, to a desired level of decomposition into the smallest
meaningful elements (e.g., modules or files).

Service. Expected service (or “behavior”) of a software system is a
time-dependent sequence of outputs that agrees with the initial speci-
fication from which the software implementation has been derived (for
the verification purpose), or which agrees with what system users have
perceived the correct values to be (for the validation purpose).

Now we observe the following situation: a software system named
program is delivering an expected service to an environment or a per-
son named user.

Failures. A failure occurs when the user perceives that the program
ceases to deliver the expected service.

The user may choose to identify several severity levels of failures,
such as: catastrophic, major, and minor, depending on their impacts to
the system service. The definitions of these severity levels vary from
system to system.

Outages. An outage is a special case of a failure that is defined as a
loss or degradation of service to a customer for a period of time {(called

— e

Introduction 13

outage duration). In general, outages can be caused by hardware or
software failures, human errors, and environmental variables (e.g.,
lightning, power failures, fire). A failure resulting in the loss of func-
tionality of the entire system is called a system outage. An example to
quantify a system outage in the telecommunications industry is to
define the outage duration of telephone switching systems to be
“greater than 3 seconds (due to failures that results in loss of stable
calls) or greater than 30 seconds (for failures that do not result in loss
of stable calls).” [BELL90c]

Faults. A fault is uncovered when either a failure of the program
occurs or an internal error (e.g., an incorrect state) is detected within
the program. The cause of the failure or the internal error is said to be
a fault. It is also referred as a bug.

In most cases the fault can be identified and removed; in some cases
it remains a hypothesis that cannot be adequately verified (e.g., timing
faults in distributed systems).

In summary, a software failure is an incorrect result with respect to
the specification or an unexpected software behavior perceived by the
user at the boundary of the software system, while a software fault is
the identified or hypothesized cause of the software failure.

Defects. When the distinction between fault and failure is not critical,
defect can be used as a generic term to refer to either a fault (cause) or
a failure (effect). Chapter 9 provides a complete and practical class1fi-
cation of software defects from various perspectives.

Errors. The term error has two different meanings:

1. A discrepancy between a computed, observed, or measured value or
condition and the true, specified, or theoretically correct value or
condition. Errors occur when some part of the computer software
produces an undesired state. Examples include exceptional condi-
tions raised by the activation of existing software faults, and incor-
rect computer status due to an unexpected external interference.
This term is especially useful in fault-tolerant computing to describe
an intermediate stage in between faults and failures.

2. Ahuman action that results in software containing a fault. Examples
include omission or misinterpretation of user requirements in a soft-
ware specification, and incorrect translation or omission of a require-
ment in the design specification. However, this is not a preferred
usage, and the term mistake is used instead to avoid the confusion.

Time. Reliability quantities are defined with respect to time, although
1t is possible to define them with respect to other bases such as pro-

14 Technical Foundations

gram runs. We are concerned with three types of time: the execution
time for a software system is the CPU time that is actually spent by the
computer in executing the software; the calendar time is the time peo-
ple normally experience in terms of years, months, weeks, days, etc.;
and the clock time is the elapsed time from start to end of computer
execution in running the software. In measuring clock time, the periods
during which the computer is shut down are not counted.

It is generally accepted that execution time is more adequate than
calendar time for software rehablhty measurement and modeling.
However, rel1ab111ty quantities must ultimately bé related back to cal-
endar time for easy human interpretation, particularly when man-
agers, engineers, and customers want to compare them across different
systems. As a result, translations between calendar time and execution
time are required. The technique for such translations is described in
[Musa87]. If execution time is not readily available, approximations
such as clock time, weighted clock time, staff working time, or units
that are natural to the application (such as transactions or test cases
executed) may be used. '

Failure functions. When a time basis is determined, failures can be
expressed in several ways: the cumulative failure function, the failure
intensity function, the failure rate function, and the mean time to fail-
ure function. The cumulative failure function (also called the mean
value function) denotes the average cumulative failures associated
with each point of time. The failure intensity function represents the
rate of change of the cumulative failure function. The failure rate func-
tion (also called the rate of occurrence of failures) is defined as the prob-
ablhty that a failure per unit time occurs in the interval [¢, ¢ + At], given
that a faﬂure has not occurred before ¢. The mean time to failure
(MTTF) functlon represents the expected time that the next failure
will be observed. (MTTF is also. known as MTBF, mean time between
failures.) Note that the above four measures are closely related and
could be transposed with one another. Appendix B provides the mathe-
matlcs of these funct1ons in detail.

Mean time to repair and availability. Another quantity related to time is
mean time to repair (MTTR), which represents the expected time until
a system will be repaired after a failure is observed. When the MTTF
and MTTR for a system are measured, its availability can be obtained.
Avazlabzhty is the probability that a system is available when needed.
Typlcally, it is measured by

Availability = MTTI\F{T-TﬁTTR

introduction 15

Chapter 2 (Sec. 2.4.4) gives a theoretical model for availability, while
Chap. 11 (Sec. 11.8) provides some practical examples of this measure.

Operational profile. The operational profile of a system is defined as
the set of operations that the software can execute along with the prob-
ability with which they will occur. An operation is a group of runs
which typically involve similar processing. A sample operational pro-
file is illustrated in Fig. 1.3. Note that, without loss of generality, the
operations can be located on the x axis in order of the probabilities of
their occurrence.

Chapter 5 provides a detailed description on the structure, develop-
ment, illustration, and project application of the operational profile. In
general, the number of possible software operations is quite large.
When it is not practical to determine all the operations and their prob-
abilities in complete detail, operations based on grouping or partition-
ing of input states (or systein states) into domains are determined. In
the situations where an operational profile is not available or only an
approximation can be obtained, you may make use of code coverage
data generated during reliability growth testing to obtain reliability
estimates. Chapter 13 describes some methods for doing so.

Failure data collection. Two types of failure data, namely failure-count
data and time-between-failures data, can be collected for the purpose of
software reliability measurement.

Failure-count (or failures per time period) data. This type of data tracks
the number of failures detected per unit of time. Typical failure-count
data are shown in Table 1.1.

Probability
of
Occurrence

Operation

Figure 1.3 Operational profile.

16 Technical Foundations

TABLE 1.1 Failure-Count Data

Failures in Cumulative
Time (hours) the period failures

8 4 4
16 4 8
24 3 11
32 5 16
40 3 19
48 2 21
56 1 22
64 1 23
72 1 24

Time-between-failures (or interfailure times) data. This type of data tracks
the intervals between consecutive failures. Typical time-between-
failures data can be seen in Table 1.2.

Many reliability modeling programs have the capability to estimate
model parameters from either failure-count or time-between-failures
data, as statistical modeling techniques can be applied to both. How-
ever, if a program accommodates only one type of data, it may be
required to transform the other type.

TABLE 1.2 Time-Between-Failures Data

Failure) Failure Failure
number interval {hours) times (hours)
1 0.5 0.5
2 1.2 1.7
3 2.8 4.5
4 2.7 7.2
5 2.8 10.0
6 3.0 13.0
7 1.8 14.8
8 0.9 15.7
9 1.4 171
10 3.5 20.6
11 3.4 24.0
12 1.2 25.2
13 0.9 26.1
14 1.7 27.8
15 1.4 29.2
16 2.7 31.9
17 3.2 35.1
18 2.5 37.6
19 2.0 39.6
20 4.5 44.1
21 3.5 47.6
22 5.2 52.8
23 7.2 60.0

24 10.7 70.7

Introduction 17

Transformations between data types. If the expected input is failure-
count data, it may be obtained by transforming time-between-failures
data to cumulative failure times and then simply counting the number
of failures whose cumulative times occur within a specified time
period. If the expected input is time-between-failures data, converting
the failure-count data can be achieved by either randomly or uniformly
allocating the failures for the specified time intervals, and then by cal-
culating the time periods between adjacent failures. Some software
reliability tools surveyed in App. A (e.g., SMERFS and CASRE) incor-
porate the capability to perform these data transformations.

Software reliability measurement. Measurement of software reliability
includes two types of activities: reliability estimation and reliability
prediction,

Estimation. This activity determines current software reliability by
applying statistical inference techniques to failure data obtained dur-
ing system test or during system operation. This is a measure regard-
ing the achieved reliability from the past until the current point. Its
main purpose is to assess the current reliability and determine
whether a reliability model is a good fit in retrospect.

Prediction. This activity determines future software reliability based
upon available software metrics and measures. Depending on the soft-
ware development stage, prediction involves different techniques:

1. When failure data are available (e.g., software is in system test or
operation stage), the estimation techniques can be used to parame-
terize and verify software reliability models, which can perform
future reliability prediction.

2. When failure data are not available (e.g., software is in the design or
coding stage), the metrics obtained from the software development
process and the characteristics of the resulting product can be used
to determine reliability of the software upon testing or delivery.

The first definition is also referred to as reliability prediction and the
second definition as early prediction. When there is no ambiguity in the
text, only the word prediction will be used.

Most current software reliability models fall in the estimation cate-
gory to do reliability prediction. Nevertheless, a few early prediction
models were proposed and described in the literature. A survey of
existing estimation models and some early prediction models can be
found in Chap. 3. Chapter 12 provides some product complexity met-
rics which can be used for early prediction purposes.

18 Technical Foundations

Software reliability models. A software reliability model specifies the
general form of the dependence of the failure process on the principal
factors that affect it: fault introduction, fault removal, and the opera-
tional environment. Figure 1.4 shows the basic ideas of software relia-
bility modeling.

In Fig. 1.4, the failure rate of a software system is generally decreas-
ing due to the discovery and removal of software failures. At any partic-
ular time (say, the point marked “present time”), it is possible to observe
a history of the failure rate of the software. Software reliability model-
ing forecasts the curve of the failure rate by statistical evidence. The
purpose of this measure is twofold: (1) to predict the extra time needed
to test the software to achieve a specified objective; (2) to predict the
expected reliability of the software when the testing is finished.

Software reliability is similar to hardware reliability in that both are
stochastic processes and can be described by probability distributions.
However, software reliability is different from hardware reliability in
the sense that software does not wear out, burn out, or deteriorate, i.e.,
its reliability does not decrease with time. Moreover, software gener-
ally enjoys reliability growth during testing and operation since soft-
ware faults can be detected and removed when software failures occur.
On the other hand, software may experience reliability decrease due to
abrupt changes of its operational usage or incorrect modifications to
the software. Software is also continuously modified throughout its life
cycle. The malleability of software makes it inevitable for us to consider
variable failure rates.

Unlike hardware faults which are mostly physical faults, software
faults are design foults, which are harder to visualize, classify, detect,

Failure
Rate

Present
failure | - -
rate

Specified
goal

- Testing Ti
Projected esting Time

finishing time

Present time

Figure 1.4 Basic ideas on software reliability modeling.

Introduction 19

and correct. As a result, software reliability is a much more difficult
measure to obtain and analyze than hardware reliability. Usually,
hardware reliability theory relies on the analysis of stationary pro-
cesses, because only physical faults are considered. However, with the
increase of systems complexity and the introduction of design faults in
software, reliability theory based on stationary process becomes
unsuitable to address nonstationary phenomena, such as reliability
growth or reliability decrease, experienced in software. This makes
software reliability a challenging problem that requires employing sev-
eral methods of attack.

1.5 Technical Areas Related to the Book

Achieving highly reliable software from the customer’s perspective is a
demanding job to all software engineers and reliability engineers.
Adopting a similar notation from [Lapr85, Aviz86] for system depend-
ability, four technical methods are applicable for you to achieve reliable
software systems:

1. Fault prevention. 'To avoid, by construction, fault occurrences.

2. Fault removal. To detect, by verification and validation, the exis-
tence of faults and eliminate them.

3. Fault tolerance. To provide, by redundancy, service complying with
the specification in spite of faults having occurred or occurring.

4. Fault/failure forecasting. To estimate, by evaluation, the presence
of faults and the occurrence and consequences of failures. This has
been the main focus of software reliability modeling.

Detailed discussions regarding these technical areas are provided in
the following sections. You can also refer to Chap. 2 (Sec. 2.2) for a com-
plete list of dependability- and reliability-related concepts.

1.5.1 Fault prevention

The interactive refinement of the user’s system requirement, the engi-
neering of the software specification process, the use of good software
design methods, the enforcement of a structured programming disci-
pline, and the encouragement of writing clear code are the general
approaches to prevent faults in the software. These guidelines have
been, and will continue to be, the fundamental techniques in prevent-
ing software faults from being created.

Recently, formal methods have been attempted in the research com-
munity to attack the software quality problem. In formal-methods
approaches, requirement specifications are developed and maintained

20 Technical Foundations

using mathematically trackable languages and tools. Current studies
in this area have been focused on language issues and environmental
supports, which include at least the following goals: (1) executable
specifications for systematic and precise evaluation, (2) proof mecha-
nisms for software verification and validation, (3) development proce-
dures that follow incremental refinement for step-by-step verification,
and (4) every work item, be it a specification or a test case, is subject to
mathematical verification for correctness and appropriateness.

Another fault-prevention technique, particularly popular in the soft-
ware development community, is software reuse. The crucial measure of
success in this area is the capability to prototype and evaluate reusable
synthesis techniques. This is why object-oriented paradigms and tech-
niques are receiving much attention nowadays—largely due to their
inherent properties in enforcing software reuse.

1.5.2 Fault removal

When formal methods are in full swing, formal design proofs might be
available to achieve mathematical proof of correctness for programs.
Also, fault-monitoring assertions could be employed through exe-
cutable specifications, and test cases could be automatically generated
to achieve efficient software verification. However, before this happens,
practitioners will have to rely mostly on software testing techniques to
remove existing faults. Microsoft, for example, allocates as many soft-
ware testers as software developers, and employs a buddy system
which binds the developer of every software component to its tester for
their daily work [Cusu95]. The key question to reliability engineers,
then, is how to derive testing-quality measures (e.g., test-coverage fac-
tors) and establish their relationships to reliability.

Another practical fault removal scheme which has been widely
implemented in industry is formal inspection [Faga76]. A formal
inspection is a rigorous process focused on finding faults, correcting
faults, and verifying the corrections. Formal inspection is carried out
by a small group of peers with a vested interest in the work product
during pretest phases of the life cycle. Many companies have acclaimed
its success [Grad92].

1.5.3 Fault tolerance

Fault tolerance is the survival attribute of computing systems or soft-
ware in their ability to deliver continuous service to their users in the
presence of faults [Aviz78]. Software fault tolerance is concerned with
all the techniques necessary to enable a system to tolerate software
faults remaining in the system after its development. These software
faults may or may not manifest themselves during system operations,

Introduction 21

but when they do, software fault tolerance techniques should provide
the necessary mechanisms to the software system to prevent system
failure from occurring.

In a single-version software environment, the techniques for par-
tially tolerating software design faults include monitoring techniques,
atomicity of actions, decision verification, and exception handling. In
order to fully recover from activated design faults, multiple versions of
software developed via design diversity [Aviz86] are introduced in
which functionally equivalent yet independently developed software
versions are applied in the system to provide ultimate tolerance to
software design faults. The main approaches include the recovery
blocks technique [Rand75], the N-version programming technique
[Aviz77], and the N self-checking programming technique [Lapr87].
These approaches have found a wide range of applications in the
aerospace industry, the nuclear power industry, the health care indus-
try, the telecommunications industry, and the ground transportation
industry.

1.5.4 Faultffailure forecasting

Fault/failure forecasting involves formulation of the fault/failure rela-
tionship, an understanding of the operational environment, the estab-
lishment of reliability models, the collection of failure data, the
application of reliability models by tools, the selection of appropriate
models, the analysis and interpretation of results, and the guidance for
management decisions. The concepts and techniques laid out in
[Musa87] have provided an excellent foundation for this area. Other
reference texts include [Xie91, Neuf93]. Besides, the July 1992 issue of
IEEE Software, the November 1993 issue of IEEE Transactions on
Software Engineering, and the December 1994 issue of IEEE Transac-
tions on Reliability are all devoted to this aspect of SRE. This handbook
provides a comprehensive treatment of this subject.

1.5.5 Scope of this handbook

Due to the intrinsic complexity of modern software systems, software
reliability engineers must apply a combination of the above methods
for the delivery of reliable software systems. These four areas are also
the main theme of the state of the art for software engineering, cover-
ing a wide range of disciplines. In addition to focusing on the fault/fail-
ure forecasting area, this book attempts to address the other three
technical areas as well. However, instead of incorporating all possible
techniques available in software engineering, this book examines and
emphasizes mature as well as emerging techniques that could be quan-
titatively related to software reliability.

22 Technical Foundations

As a general guideline, most chapters of the book are concerned with
fault/failure forecasting, in which Chaps. 1 to 5 provide technical foun-
dations, while Chaps. 6, 7, 10, and 11 present project practices and
experiences, and Chaps. 16 and 17 describe two emerging techniques.
In addition, Chaps. 9 and 12 are related to fault prevention, and Chaps.
8 and 13 address fault removal techniques. (Fault prevention and
removal techniques are the subject of discussion in many software
engineering texts.) Finally, Chaps. 14 and 15 cover fault tolerance tech-
niques and the associated modeling work. For a detailed treatment on
software fault tolerance, interested readers are referred to [Lyu95].

The scope of the handbook is summarized in Table 1.3, which pro-
vides a guideline for using this book according to various subjects of
interest, including the four technical areas we have discussed, and
some special topics that you may want to study in depth. For example,
if you are interested in the topic of software reliability modeling theory
(topic 1), reading Chaps. 1, 2, 3, 4, 9, 10, 12, 14, and 16 is recommended.
Note that topics 1 and 2 in Table 1.3 are mutually exclusive. So are top-
ics 3 and 4, topics 5 and 6. Please note that the classification of the book
chapters into various topics in Table 1.3 is for your reading conve-
nience only. This classification is approximate and subjective.

1.6 Summary

The growing trend of software criticality and the unacceptable conse-
quences of software failures force us to plead urgently for better soft-
ware reliability engineering. This book codifies our knowledge of SRE
and puts together a comprehensive and organized repository for our
daily practice in software reliability. The structure of the book and key
contents of each chapter are described. The definitions of major terms
in SRE are provided, and fundamental concepts in software reliability
modeling and measurement are discussed. Finally, the related techni-
cal areas in software engineering and some reading guidelines are pro-
vided for your convenience.

Problems

1.1 Some hardware faults are not physical faults and have a similar nature
to software faults. What are they?

1.2 What ére the main differences between software failures and hardware
failures?

1.3 Give several examples of software faults and software failures.

1.4 Some people argue that the modeling technique for software reliability is
similar to that of hardware reliability, while other people disagree. List the
commonalities and differences between them.

sanbruyoe sis[euy—eg otdog,
B1Ep Ap(IqeIey— ddoy,
$9aNSST JonpolJ—9 dordog,
$9TESI 59201 J—¢ atdo],

JusWwaInses\—% ordoT,
soLe—¢ oudog,
aouatradxe Surepoy—rg aidog,

K100} Surpepoy—T 21day,

Surysesedo] sanfrelymej—y eary

2URBIS[0] JNEJ—E BILY

[eAowal I nef—7 BaIy
uonusaAsad ynef—T vary

HLON

Mo M

>

Mo MM
=
i

Mo oM o) M
i

X

el

T B Rl

=

KK

P
>

X

Mook Mg

X

>

Moo M

M oKX

>

M M X

b

P4 PR

o

X

T T

Mo M e

g orday,
1 otdof,
g otdaf,
g ordog,
¥ otdaf,
¢ otdoy,
g odog,
1 awday,

¥ vary
¢ oIy
g BOIY
[BOIY

LY

91 ST ¥1 €1

¢l

11

01 6

8

L

*

g

(4

T

sanbruyoa, Sutdrowy

seoustiadxy pue sednoRI]

SUOTJRpUNO, [BOIUYD9],

Jandeyn

so1do] pue sealy {BOIUYI3] SNOLEA 10} aujjapiny Buipeay ¢'{ 319Vl

[x¢]
N

24 Technical Foundations

1.5 Give a couple of examples for each of the definitions of failure severity lev-
els. One is qualitative and one is quantitative.

1.6 What is the mapping relationship between faults and failures? Is it one-
to-one mapping (one fault leading to one failure), one-to-many, many-to-one, or
many-to-many? Discuss the mapping relationship in different conditions.
What is the preferred mapping relationship? Why? How is it achieved?

1.7 The term ultrareliability has been used to denote highly reliable systems.
This could be expressed, for example, as R (10 hour) = 0.9999999. That is, the
probability that a system will fail in a 10-hour operation is 10”". Some people
have proposed making this a reliability requirement for software. Discuss the
implications of this kind of reliability requirement and its practicality.

1.8 What are the difficulties and issues involved in the data collection of
failure-count data and time-between-failures data?

1.9 Regarding the failure data collection process, consider the following situ-
ations:
a. How do you adjust the failure times for an evolving program, i.e., a
software program which changes over time through various releases?
b. How do you handle multiple sites or versions of the software?

110 Show that the time-between-failures data in Table 1.2 can be trans-
formed to failure-count data in Table 1.1. Assuming random distribution,
transform the failure-count data in Table 1.1 to time-between-failures data.
Compare your results with Table 1.2.

1.11 For the data in Tables 1.1 and 1.2:

a. Calculate failure intensity at the end of each time period (for Table
1.1) or failure interval (for Table 1.2).
b. Plot the failure intensity quantities along with the time axis.

Try to fit a curve on the plots manually.

d. What are your estimates on (1) the failure rate of the next time period
after observing the data in Table 1.1 and (2) the time to next failure
after observing the data in Table 1.2?

e. What should be the relationship between the two estimates you
obtained in d? Verify it.

]

1.12 Compare the MTTR measure for hardware and software and discuss the
difference.

1.13 Refer to Example 1.2 and Fig. 1.2
a. What is the failure rate of each component in Fig. 1.2? What is the
reliability function of each component?
b. What assumption is made to calculate the MTTF for SYS2 in the
triple-module redundant configuration? If the reliability function for
SYS2 is R,(t), what is the reliability function for SYS2 in the triple-

Introduction 25

module redundant configuration? How is its MTTF calculated? How
is its MTTR calculated?

c. How is the overall system MTTF calculated? Verify that it is 125.9
hours when software failures are not considered, and that it is 11.9
minutes when software failures are considered.

d. How is the system MTTR calculated? Verify that it is 0.62 hours.

e. Does the triplication of SYS2 software help to improve its software
MTTF? Why? If not, what techniques could be employed to improve
the software MTTF?

1.14 . What is the difference between reliability estimation and reliability

prediction? Draw the application range of each technique in Fig. 1.4.

b. What is the difference between reliability prediction and early pre-
diction? Summarize their differences in a comparison table.

1.15 Section 1.4 describes the concepts and constructions for software relia-
bility models. It is important to identify which models are better than the oth-
ers. Make a list of evaluation criteria for software reliability models.

