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Abstract Both optimization and learning play important roles in a system for intelligent
tasks. On one hand, we introduce three types of optimization tasks studied in the machine
learning literature, corresponding to the three levels of inverse problems in an intelligent
system. Also, we discuss three major roles of convexity in machine learning, either directly
towards a convex programming or approximately transferring a difficult problem into a
tractable one in help of local convexity and convex duality. No doubly, a good optimization
algorithm takes an essential role in a learning process and new developments in the literature
of optimization may thrust the advances of machine learning. On the other hand, we also
interpret that the key task of learning is not simply optimization, as sometimes misunderstood
in the optimization literature. We introduce the key challenges of learning and the current
status of efforts towards the challenges. Furthermore, learning versus optimization has also
been examined from a unified perspective under the name of Bayesian Ying-Yang learning,
with combinatorial optimization made more effectively in help of learning.

Keywords Three levels of inverse problems · Parameter learning · Model selection ·
Local convexity · Convex duality · Learning versus optimization · Convex programming ·
Bayesian Ying-Yang learning · Automatic model selection · Learning based combinatorial
optimization

1 Introduction

Optimization takes an essential part in an intelligent system. Associating with three different
levels of inverse problems, there are three types of nested optimization tasks.

The first type of optimization (shortly, Type-1 optimization) is associated with tasks of
inverse inference. An observation x is regarded as either generated from an inner representation
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Fig. 1 Optimizations for inverse inference and probabilistic perspective

y or a consequence from a cause y via a given mapping G : y → x . The task is inversely
inferring y. Examples of such tasks include memory association, classification, decision mak-
ing, input encoding, reasoning, etc. If G : y → x is one-to-one and its inverse one-to-one
mapping F : x → y is analytically solvable, we can directly compute y = F(x). In other
cases, we need to enumerate every y ∈ Dy and check whether it is mapped to the observation
x by G : y → x , where Dy consists of all the possible values that y may take.

This is not a simple task due to uncertainties. One uncertainty is incurred by noises in
observation, as shown in Fig. 1a, for which we need an objective measure with noise in
consideration and search a best y via an optimization. Also, uncertainty is involved because
the mapping G : y → x is many-to-one or infinite many to one, for which we need an
additional measure that regularizes the optimization such that a most regular or reasonable y
can be selected among many possible solutions. In the framework of probability theory, the
first uncertainty is described by a distribution q(x |y) for a probabilistic mapping y → x while
the second uncertainty is considered by a distribution q(y) for every y ∈ Dy on its chance
to be a reasonable cause or inner representation, as shown in Fig. 1b. Then the uncertainty
of corresponding inverse mapping is described by a distribution p(y|x) for a probabilistic
inverse map x → y, summarized in the 1st column of Table 1 are four typical ways.

The first choice is Bayesian inference (BI) that provides a distribution p(y|x) via combin-
ing evidences from q(x |y, θx |y) and q(y|θy) in a normalized way, which involves an integral
with a computational complexity that is usually too high to be practical. The difficulty is tack-
led by seeking a most probable mapping x → y in a sense of the largest probability p(y|x),
called the maximum Bayes (MB) or MAximum Posteriori (MAP). It further degenerates
into y∗ = arg maxy q(x |y, θx |y) when there is no knowledge about q(y|θy). In some cases,
making maximization may also be computationally expensive. Instead, the last choice is to
Learn a Parametric Distribution (LPD) p(y|x, θy|x ) by which an inverse mapping x → y can
be fast implemented. To get this p(y|x, θy|x ), we need its structure pre-specified and then
learn the parameter set θy|x from samples either based on q(x |y, θx |y) and q(y|θy) or in help
of a teacher who teaches a desired response to each sample. Actually, this LPD is a special
case of the following second type of inverse problems.

The above studies base on knowing G : y → x or q(x |y) and q(y), while they are usually
unknown. What we can actually base on is only a set of observation samples XN = {xt }N

t=1.
Provided that q(x |y) and q(y) come from two families of parametric functions q(x |y, θx |y)
and q(y|θy) with their corresponding function structures pre-specified but two sets θx |y, θy

of unknown continuous parameters. As illustrated in Fig. 1c, the task is getting an inverse
mapping XN → �, referred by the term estimation or parameter learning for �. This �
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Fig. 2 A combination of a series of individual simple structures

consists of θx |y, θy , as well as θy|x if the above LPD is considered together. Similar to Fig. 1b,
we consider two distributions q(XN |�) and q(�) for uncertainties.

Usually, q(XN |�) is described by q(XN |�) = ∫
q(XN |YN , θx |y)q(YN |θy)dYN , while

it is difficult to get an appropriate q(�), which needs a priori knowledge that we may not
have. The simplest and most widely studied one is the maximum likelihood (ML) learning
max� q(XN |�), with the role of q(�) ignored. Also, various efforts were made on con-
sidering q(�). One is the choice at Table 1—MB, i.e., max�[q(XN |�)q(�)]. The second
type of optimization (shortly, Type-2 optimization) is encountered during implementing both
the ML and MB learning, featured by a continuous optimization that usually involves many
local optimal solutions. Extensive studies have been made under different names [22,26,34],
referred collectively in term of Bayesian school. Related efforts also include those made
under Tikhonov regularization [21,30] or regularization approaches.

Conceptually, we may also consider the choice of Table 1b—BI for a probabilistic inverse
mapping by a distribution p(�|XN ). Getting p(�|XN ) encounters a difficult integral over
�. An alternative is using a particularly designed parametric structure in place of p(�|XN ),
i.e., the choice LPD in the 2nd column of Table 1. Except of some special cases, even the
integral over YN for q(XN |�) encounters either a summation or a numerical integral, both of
which involve huge computing costs. Efforts have been made in the Helmholtz free energy
based learning [6,9], BYY Kullback learning [37], and BYY harmony learning [37,50] for
avoiding these integrals and getting p(y|x, θy|x ) and p(�|XN ) for the LPD choices in Table 1.
Detailed discussions are referred to Sects.3.3 and 4.1.

Usually, we do not know how to pre-specify the structure of q(x |y, θx |y) and q(y|θy).
We are facing a problem of inversely determining them from XN = {xt }N

t=1 too, for which
we consider a family of infinite many structures {Sk(�k)} via combining a set of individual
simple structures (or simply called units) via a simple combination scheme, as shown in
Fig. 2. Every unit can be simply one point, one dimension in a linear space, or one simple
computing unit. The types of the basic units and the combination scheme jointly act as a
seed or meta structure ℵ that grows into a family {Sk(�k)} with each Sk sharing a same
configuration but in different scales, each of which is labeled by a scale parameter k in term
of one integer or a set of integers. That is, each specific k corresponds to one candidate
model with a specific complexity. We can enumerate each candidate via enumerating1 k and
evaluate each candidate by a selection criterion J (k).

As shown in Fig. 1d, the third level of inverse problems considers selecting an appropriate
k∗ based on XN = {xt }N

t=1 only, usually referred as model selection. That is, the third type
optimization (shortly, Type-3 optimization) belongs discrete optimization. However, it is

1 We say that k1 proceeds k2 or k1 ≺ k2 if Sk1 is a part (or called a substructure) of Sk2 . When k consists
of only one integer, k1 ≺ k2 becomes simply k1 < k2.
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Fig. 3 Model selection: fitting performance versus generalization performance

not simply a conventional discrete optimization. We can not simply use J (k) = − max�

ln p(Xt |�k) for this purpose, as illustrated in Fig. 3a. For a finite N , this J (k) will keep
decreasing as k increases and reach zero at a value kN that is usually much larger than the
appropriate one k∗. Though a Sk(�k) with k∗ ≺ k can get a low value J (k) that means fitting
XN well, it has a poor generalization performance, i.e., performing poorly on new samples
with the same regularity underlying XN . This is usually called over-fitting problem that makes
the key challenge of learning is not same as seeking a global optimal solution. As shown
in Fig. 3a, seeking the global minimum of − ln p(Xt |�k) tends to reduce generalization
error for a small k, though this tendency weakens as k decreases. On the other hand, as k
goes beyond k∗, not only seeking a global minimum is no longer difficult because a global
minimum can be reached at infinite many values of �k, but also reaching the global minimum
of − ln p(Xt |�k) is no longer helpful to reduce generalization error.

Moreover, this Type-3 optimization is nested with a series of implementations of Type-2
optimization for estimating a best �∗

k at each k, which usually incurs a huge computing cost,
while many practical applications demand that learning is made adaptively upon each sample
comes. Efforts are also demanded on tackling this computational challenge too.

In the rest of this paper, several typical problems for three optimization types are intro-
duced in Sect. 2. Also, we interpret that the key task of learning is not simply optimization, via
introducing the key challenges of learning and the current status of efforts towards the chal-
lenges. Then, a unified perspective is provided in Sect. 3 to show how the three types interact
and implemented in one learning system, under guidance of the Bayesian Ying Yang harmony
theory. Moreover, comparisons are made on relations and differences with typical existing
learning theories. In Sect. 4, learning versus optimization is further elaborated. The roles of
convexity in machine learning are further discussed, featured by approximately transferring
a difficult problem into a tractable one. Also, a learning based approach is introduced for
making combinatorial optimization more effectively. Finally concluding remarks are made
in Sect. 5.

2 Learning problems: three types of optimizations

2.1 Type 1: optimizations for inverse inference

We start at several typical examples of inverse inference by the choice Table 1a—MB (the
choice MB in the first column of Table 1), i.e., the following optimization problem

y∗ = arg max
y

[q(x |y)q(y)], (1)
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with q(x |y) and q(y) in certain specific forms. Usually, observation noises are regarded as
from Gaussian,2 that is,

q(x |y) = G(x |μy, �y), μy = ∫
xq(x |y)dx, �y = ∫

(x − μy)(x − μy)
T q(x |y)dx . (2)

Listed in Table 2 are its typical structures and several structures of q(y).
For q(x |y) of Table 2c (A)&(1) (i.e., Type A & case (1) of q(x |y) in Table 2c) and q(y)

of Table 2a (2) + Table 2b (1), Eq. 1 is solved analytically by a linear function and thus the
mapping x → y is computable directly. We proceed to the combination with q(y) of Table 2a
(1) and q(x |y) of Table 2c (A)&(2), at which Eq. 1 becomes

�∗ = arg max
�

[G(x |μ�,��)α�]. (3)

The mapping x → �∗ is called maximum posteriori (MAP) classification, and is solved
simply by enumeration. The situation becomes more complicated if we change q(y) into
Table 2a (2) + Table 2b (2), which leads to the problem of binary factor analysis [40,42,43].
With each element of y = [y(1), . . . , y(m)]T in binary value, Eq. 1 becomes equivalently a
combinatorial optimization problem as follows:

min
y(1),...,y(m)

⎧
⎨

⎩
0.5eT �−1e −

m∑

j=1

[
y( j) ln q j + (1 − y( j)) ln (1 − q j )

]
⎫
⎬

⎭
, e = x − Ay − μ,

subject to y( j) = 1 or 0, j = 1, . . . , m, (4)

for which an exhaustive enumeration will grow exponentially with m. Usually, a heuristic
iterative algorithm is used [40,42,43] without a guarantee of a global optimal solution.

We further go to the combination with q(x |y) of Table 2c (B)&(2) and with q(y) of
Table 2a (2) + Table 2b (3) or (4), which leads to the problem of nonGaussian factor analysis
[40,42,43]. It follows that Eq. 1 becomes

min
{y( j)

g ,i ( j)}m
j=1

⎧
⎨

⎩
0.5eT �−1e −

m∑

j=1

ln
[
β( j,i ( j))G(y( j)

g |ν( j,i ( j)), λ( j,i ( j)))
]
⎫
⎬

⎭
, for Table 2b (3),

min
y(1)

g ,...,y(m)
g

⎧
⎨

⎩
0.5eT �−1e −

m∑

j=1

ln
∑

i

β( j,i)G(y( j)
g |ν( j,i), λ( j,i))

⎫
⎬

⎭
, for Table 2b (4), (5)

with e = x − (Ay + μ), which is an even difficult task of global continuous optimization.
Interestingly, a classical combinatorial optimization problem may also be re-examined

from the perspective of Eq. 1. We start at one typical example that considers an N × N
symmetrical matrix X that represents an attribute graph in consideration and a N × N
symmetrical matrix A as a reference. The task is matching two graphs X, A via searching
various permutations of their vertices, which is usually referred as attribute graph matching
(AGM) [8,31,54,55]. A mismatch is considered via the following matrix norm:

Eo(Y, X) = ‖X − Y T AY‖2, (6)

and the task is formulated into a combinatorial optimization as follows

min
Y∈�N

Eo(Y, X), where �N consists of all the N × N permutation matrices. (7)

2 In this paper, G(u|μ, �) denotes a Gaussian density of u with a mean μ and a covariance matrix �.
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We encounter a nonlinear mapping G : Y → X by Y T AY → X that can be put into the
framework as shown in Fig. 1b, with

q(Y ) on �N , q(X |Y ) = G(X |Y T AY, σ 2 IN×N ). (8)

With x, y replaced by X, Y respectively, it follows that Eq. 1 becomes equivalent to Eq. 7 if
q(Y ) is uniform over �N .

Another example is the well known traveling salesman problem (TSP), i.e., a salesman
visits every city only once and returns to the staring city, with this looping trip in a shortest
distance. The locations of N cities can be represented by an N × 2 matrix X with a loop path
from the 1st row to the last row. Enumerating all the possible loops in Y X,∀Y ∈ �N , the
TSP is formulated as Eq. 7 with

Eo(Y, X) = ‖DT Y X‖2, D = [d1, . . . , dN ]. (9)

For 1 ≤ i ≤ N −1, each N dimensional vector di consists of zeros except that its i th element
is 1 and its i + 1-th element is −1, while the elements of dN are zeros except that its N -th
element is 1 and its 1st element is −1. Thus, DT Y X calculates the location differences of
two subsequent cities and its norm is thus the total distance of the corresponding loop.

The TSP problem, as well as a class of combinatorial optimization problems formulated
as Eq. 7, can also be revisited from the perspective of Eq. 1 with

q(Y ) on �N , q(X |Y ) = e− 1
λ

Eo(Y,X)/Zλ(X), Zλ(X) =
∑

Y

e− 1
λ

Eo(Y,X). (10)

Again, Eq. 1 becomes equivalent to Eq. 7 if q(Y ) is uniform over �N .
This perspective not only provides new insights on such a class of classical combinatorial

optimization problems, but also a different road for making combinatorial optimization more
effectively in help of approaches developed in the literature of machine learning. This issue
will be further discussed later in Sect. 4.

2.2 Type 2: optimizations for parameter learning

Given a set � = {ξt } with its elements being identically and independently distributed (i.i.d.),
we have the following product form

p(�) =
∏

t

p(ξt ). (11)

When the samples in XN = {xt }N
t=1 are i.i.d., the choice Table 1b—ML becomes

max
�

ln q(XN |�), ln q(XN |�) =
N∑

t=1

ln q(xt |�). (12)

Also, � usually contains a part of parameters that should satisfy some constraints, e.g., any
covariance matrix should be nonnegative definite, and a discrete probability satisfies

n∑

j=1

a j = 1, 1 ≥ a j ≥ 0. (13)

Therefore, a Type-2 optimization is usually a constrained continuous optimization.
We further discuss several typical problems of Type-2 optimizations for parameter learn-

ing, again with q(x |y, θx |y) and q(y|θy) in those structures of Table 2. The simplest case
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is the combination with q(x |y) of Table 2c (A)&(1) and q(y) of Table 2a (2) + Table 2b (1),
by which Eq. 12 is solved analytically without involving an optimization. However, another
simple situation, featured by the combination with q(y) of Table 2a (1) and q(x |y) of Table 2c
(A)&(2), becomes quite complicated already. That is, considering the following Gaussian
mixture

q(xt |�) =
k∑

�=1

α�G(x |μ�,��), (14)

the ML learning by Eq. 12 is already a nonlinear multivariate continuous optimization, with
constraints that α� should satisfy Eq. 13 and every �� should be nonnegative definite. There
are many local optimal solutions, and there is no algorithm available to guarantee a global
optimal solution. A widely used algorithm for implementing Eq. 12 is an iterative algorithm
called expectation-maximization (EM), which guarantees the satisfaction of all the constraints
during iterations and a convergence to a local optimal solution.

There are certain studies on convergence rate of the EM algorithm [53]. However, the
picture about its computational complexity is quite complicated. To get some insights, we
consider a degenerated case with �� = σ 2 I and α� = 1/k. In this case, a Type-1 optimization
by Eq. 1 becomes equivalent to �∗ = arg min� ‖xt − μ�‖2 that classifies a sample xt to the
cluster represented by μ�. Thus, the set XN of samples is divided into k clusters represented by
k center points μ�, � = 1, . . . , k, which is the widely encountered problem called clustering
analysis. A typical formulation is that the representation of each xt by its cluster center is
measured by the corresponding square error and we expect the total square error over the
entire set XN is minimized, i.e.,

min
�

JN (�), JN (�) =
N∑

t=1

k∑

�=1

y�,t‖xt − μ�‖2, � = {μ�}k
�=1,

subject to y�,t =
{

1, if � = arg min� ‖xt − μ�‖2,

0, otherwise; (15)

where y�,t indicates a classification of xt to the cluster represented by μ�. From this problem,
we observe two features. First, a Type-1 optimization min� ‖xt − μ�‖2 is actually nested
within the optimization by Eq. 15 for learning �. Second, this apparently simple task is
actually a typical NP-hard combinatorial problem.

Next, we proceed to consider a problem called binary factor analysis [40,42,43], featured
by the combination with q(y) of Table 2a (2) + Table 2b (2) and q(x |y) of Table 2c (B)&(2).
It follows from previous discussions that Eq. 1 is alone a combinatorial optimization problem
already. Moreover, q(x |�) at the choice Table 1a—BI takes the following specific form

q(x |�) =
∑

y

G(x |Ay + μ,�)

m∏

j=1

q y( j)

j (1 − q j )
1−y( j)

, � = {A, �, {q j }}. (16)

Comparing with Eq. 14, this q(x |�) is actually a mixture of 2m Gaussian components that is
enumerated via a binary vector y. Thus, there is also an EM algorithm for implementing its
corresponding Eq. 12. However, not only the computing cost increases considerably because
evaluating q(x |�) at each iteration needs to compute 2m terms, but also it becomes much more
vulnerable to fall a poor local solution since it becomes a nonlinear optimization problem
with a considerably increased number of local optimal solutions.

We further consider the problem of nonGaussian factor analysis, featured by the combi-
nation with q(x |y) of Table 2c (B)&(1) and with q(y) of Table 2a (2) + Table 2b (3) or (4).
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In this case, a Type-1 optimization by Eq. 1 has again a computational complexity that grows
exponentially with m, while the implementation of a Type-2 optimization by Eq. 12 becomes
even more difficult. We observe q(y) of Table 2a (2) + Table 2b (3), with q(x |�) at the choice
Table 1b—ML

q(x |�) =
κ( j),m∑

i ( j)=1, j=1

∫
G(x |Ayg + μ,�)[β( j,i ( j))G(y( j)

g |ν( j,i ( j)), λ( j,i ( j)))]dyg, (17)

which is actually a mixture of
∏m

j=1 κ( j) Gaussian components. Similarly, its corresponding
Eq. 12 can be made by an EM algorithm, while we encounter a difficult nonlinear opti-
mization with a large number of local optimal solutions. For the case with q(y) of Table 2a
(2) + Table 2b (4), by turning the product

∏m
j=1

∑
i β( j,i)G(y( j)

g |ν( j,i), λ( j,i)) into a summa-

tion of
∏m

j=1 κ( j) terms [18] we encounter a situation similar to the above Eq. 17 though it
is apparently that the corresponding integral over yg can not be made analytically.

2.3 Type 3: optimizations for model selection

A Type-3 optimization is a discrete optimization via enumerating k and evaluating a criterion
J (k). As discussed after Fig. 3, the key challenge is how to get a J (k) for a good approxi-
mation on the generalization performance of a learning model, only based on a finite size of
samples in XN . In the past 30 or 40 years, several learning principles or theories have been
proposed and studied for an appropriate J (k), roughly along three directions.

Those measures summarized in Table 1 are featured by the most probable principle based
on probability theory. The efforts of the first direction can be summarized under this principle.
As discussed previously, the ML choice of the 2nd column in Table 1 can not serve as J (k).
Studies on the BI choice of the 2nd column, i.e., J (k) = − max�[q(XN |�)q(�)], have been
made under the name of minimum message length (MML) [34]. It can provide an improved
performance over J (k) = − max� q(XN |�) but is sensitive to whether an appropriate
q(�) is pre-specified, which is difficult. Studies on the BI choice of the third column in
Table 1 have also been conducted widely in the literature. Usually assuming that q(k) is
equal for every k, we are lead to the ML (marginal likelihood) choice of the third column,
i.e., J (k) = − ln q(XN |Sk), by which the effect of q(�) has been integrated out. However,
the integral over � is difficult to compute and thus is approximately tackled by turning it into
the following format:

J (k) = − max
�

ln q(XN |�) + �(k), (18)

where the term �(k) is resulted from a rough approximation such that it is computable.
Differences on q(�) and on techniques for approximating the integral result in different
specific forms. Typical efforts include those under the names of Bayesian Information Crite-
rion [20,28], Bayes Factors [14], the evidence or the marginal likelihood [16], etc. Also, the
Akaike Information Criterion (AIC) can be obtained as a special case though it was originally
derived from a different perspective [1,2].

The second direction follows the well known principle of Ockham Razor, i.e., seeking a
most economic model that represents XN . It is implemented via minimizing a two part coding
length. One is for encoding the residuals or errors incurred by the model in representing XN ,
which actually corresponds to the first term in Eq. 18. The other is for encoding the model
itself, which actually corresponds to the second term in Eq. 18. Different specific forms maybe
obtained due to differences on what measure is used for the length and on how to evaluate
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the measure, which is usually difficult, especially for the second part coding. Studies have
been made under the names of MML [34], minimum description length (MDL) [23], best
information transfer, etc. After this or that type of approximation, the resulted criteria turn
out closely related to or even same as those obtained along the above first direction.

Another direction is towards estimating the generalization performance directly. One
typical approach is called cross-validation (CV). XN is randomly and evenly divided into
Di , i = 1, . . . , m parts, each Di is used to measure the performance of Sk with its �k
determined from the rest samples in XN after taking Di away. Then we use the average per-
formances of m times as an estimation of J (k) [24,29]. One other approach is using the VC
dimension based learning theory [32] to estimate a bound of generalization performance via
theoretical analysis. A rough bound can be obtained for some special cases, e.g., a Gaussian
mixture [35]. Generally, such a bound is difficult to get because it is very difficult to estimate
the VC dimension of a learning model.

For all the above studies, we handle a discrete optimization nested with a series of imple-
mentations of Type-2 optimization for estimating a best �∗

k at each k. The task usually incurs
a huge computing cost, while many practical applications demand that learning is made adap-
tively upon each sample comes. Moreover, the parameter learning performance deteriorates
rapidly as k increases, which makes the value of J (k) evaluated unreliably. Efforts have been
made on tackling this challenge along two directions. One is featured by incremental algo-
rithms that attempts to incorporate as much as possible what learned as k increases step by
step, focusing on learning newly added parameters. Such an incremental implementation can
save computing costs in certain extent. However, one Type-2 optimization has to be made
by enumerating each value of k, and computing costs are still very high. Also, it usually
leads to suboptimal performance because not only those newly added parameters but also
the old parameter set �k have to be re-learned. Another type of efforts has been made on
a category that consists of individual substructures, e.g., a Gaussian mixture by Eq. 14. A
local error criterion is used to check whether a new sample x is classified to one substructure.
If x is regarded as not belonging to anyone of substructures, an additional substructure is
added to accommodate this new x . This incremental implementation is much faster but very
vulnerable to be trapped into a poor performance.

The other direction consists of learning algorithms that start with k at a large value and
decrease k step by step, with extra parameters discarded and the remaining parameter updated.
These algorithms are further classified into two types. One is featured by decreasing k step
by step, based on evaluating the value of J (k) at each k. The other is called automatic model
selection, with extra structural parts removed automatically during parameter learning. One
early effort is Rival Penalized Competitive Learning (RPCL) [56] for a model that consists
of k individual substructures, featured by a penalized mechanism that discards those extra
substructures and makes model selection automatically during learning. Various extensions
have been made in the past one decade and half. Readers are referred to a recent encyclopedia
paper [57].

3 A Unified perspective: BYY learning

3.1 Bayesian Ying-Yang system and best harmony learning

Firstly proposed in 1995 [37] and developed in the past decade, Bayesian Ying-Yang (BYY)
learning acts as a unified statistical framework featured by a Bayesian Ying-Yang (BYY)
system with all the unknowns learned under a best harmony theory [42–44,50].
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Fig. 4 Bayesian Ying-Yang system

As shown in Fig. 4, a unified scenario of Fig. 1 is considered by regarding that the observa-
tion set X = {x} are generated via a top-down path from its inner representation R = {Y,�}.
Given a system architecture, the parameter set � collectively represents the underlying struc-
ture of X, while one element y ∈ Y is the corresponding inner representation of one element
x ∈ X. A mapping R → X and an inverse mapping X → R are jointly considered via
the joint distribution of X and R in two types of Bayesian decomposition as shown at the
right-bottom of Fig. 4. In a compliment to the famous ancient Ying-Yang philosophy, the
decomposition of p(X, R) coincides the Yang concept with a visible domain p(X) for a
Yang space and a forward pathway by p(R|X) as a Yang pathway. Thus, p(X, R) is called
Yang machine. Similarly, q(X, R) is called Ying machine with an invisible domain q(R) for
a Ying space and a backward pathway by q(X|R) as a Ying pathway. Such a Ying-Yang pair
is called Bayesian Ying-Yang (BYY) system.

As shown in Fig. 4, the system is further divided into two layers. The front layer is actually
the one shown in Fig. 1b, with a parametric Ying-Yang pair at the left-bottom of Fig. 4, which
consists of four components with each associated with a subset of parameters � = {�p,�q},
where �p = {θy|x , θx } and �q = {θy, θx |y}. This � is accommodated on the back layer with
a priori structure q(�|�q) to back up the front layer, the back layer may be further modulated
by a meta knowledge from a meta layer q(�). Correspondingly, an inference on � is given by
p(�|X, �p) that integrates information from both the front layer and the meta layer. Putting
together, we have

q(X, R) = q(X|Y, θx |y)q(Y|θy)q(�|�q), p(X, R) = p(�|X, �p)p(Y|X, θy|x )p(X|θx ).

(19)

The external input is a set of samples XN = {xt }N
t=1 of X = {x}, based on which we form

an estimate of p(X|θx ) either directly or with a unknown scalar parameter θx = h. Based
on this very limited knowledge, the goal of building up the entire system is too ambitious to
pursuit. We need to further specify certain structures of p(X, R) and q(X, R). Similar to the
discussions made at Sect. 1, the Ying Yang system is also featured by a given meta structure ℵ
that grows into a family {Sk(�k)} with each Sk sharing a same configuration but in different
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scales of k. The meta structure ℵ consists ℵq ,ℵp for the Ying machine and the Yang machine
respectively, from which we get the structures of q(X, Y|�q) and p(X, Y|�p) in different
scales.

Different structures of the Ying machine q(X, Y|�q) are considered to accommodate the
world knowledge and different types of dependencies encountered in various learning tasks.
First, an expression format is needed for each inner representation Y. The general case is
Y = {Yv, L} with Yv = {y}, L = {�}, see Table 2a & (b) for some examples.3 Each � takes
a finite number of integers to denote one of several labels for tasks of pattern classification,
choice decision, and clustering analyses, etc, while each y is a vector that acts as an inner
coding or a cause for observations. Moreover, q(Yv|θy) describes the structure dependence
among a set of values that Yv may take. Second, q(X|Yv, L, θx |y) describes the knowledge
about the dependence relation from inner representation to observation. The simplest and
widely studied example is Gaussian based linear regression, see Table 2c for some examples.
Third, in addition to these structures, the knowledge is also represented by � jointly, which
may be further confined by a background knowledge via a priori structure q(�|�) with a
unknown parameter set �q , for which readers are referred to several choices discussed in
[52].

The Yang machine p(X, Y|�p) consists of p(X|θx ) as the input to the system and p(R|X)

that takes the inverse mapping roles in Fig. 1b and c. Performing the roles best and fast are
two purposes that compete each other, and a structure that best trades off the two purposes
is considered for p(R|X). An analogy of this Ying Yang system to the ancient Ying-Yang
philosophy motivates to determine the unknowns under a best harmony principle, which is
mathematically implemented by maximizing the following harmony measure

max{k, �, p(�|X,�)} H(p‖q, k, �), H(p‖q, k, �) = ∫
p(R|X)p(X) ln [q(X|R)q(R)]dXdR

= ∫
p(�|X, �)H f (X,�, k, �)d�, (20)

H f (X,�, k, �) =
∑

L

∫
p(L|X, θy|x )p(Yv|X, L , θy|x )p(X|θx )

× ln [q(X|Yv, L , θx |y)q(Yv|L , θy)q(L|θL)q(�|�q)]dYvdX.

Maximizing H(p‖q) forces q(X|R)q(R) to match p(R|X)p(X). In other words, q(X|R)q(R)

attempts to describe the data p(X) in help of p(R|X), which actually uses q(X) in the
next equation Eq. 21 to fit p(X) not in a maximum likelihood sense but with a promis-
ing model selection nature. Due to a finite size of samples XN = {xt }N

t=1 and structural
constraint of p(R|X), this matching aims at but may not really reach a perfect matching
p(R|X)p(X) = q(X|R)q(R). Still we get a trend at this equality by which H(p‖q) becomes
the negative entropy that describes the complexity of system, and thus its further maximiza-
tion is actually minimizing the complexity of system, which consequently provides a model
selection nature on k.

This model selection nature can also be observed on a differential level from a updating
flow for maximizing H(p‖q, k, �) via d H(p‖q, k, �) = ∫ [p(R|X)d L(X, R)+L(X, R)dp
(R|X)] p(X)dXdR with L(X, R) = ln [q(X|R)q(R)]. Consider a Bayesian structure

p(R|X) = q(X|R)q(R)

q(X)
, q(X) = ∫

q(X|R)q(R)dR, (21)

the first term of d H(p‖q, k, �) actually leads to the updating flow of the M step in the EM
algorithm for the maximum likelihood learning [17], i.e., the gradient flow d L(X, R) under

3 y is simply denoted as y wherever it does not cause a confusion.
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all possible choices of R is integrated via the weighting of p(R|X). This updating flow is
modified by the second term of d H(p‖q, k, �) in a same format but with p(R|X)d L(X, R)

replaced by δL(R, X)d L(X, R). That is, we have

δL(R, X) = L(X, R) − ∫
p(R|X)L(X, R)dR,

d H(p‖q, k, �) = ∫ [p(R|X)[1 + δL(R, X)]d L(X, R)p(X)dXdR. (22)

Noticing that L(X, R) describes the fitness of an inner representation R on the observation
X, we observe that δL(R, X) indicates whether the considered R fits X better than the average
of all the possible choices of R. Each gradient flow d L(X, R) is integrated via weighting
not just by p(R|X) but also by a modification of a relative fitness measure 1 + δL(R, X).
If δL(R, X) > 0, updating goes along the same direction of the EM learning even with an
increased strength. If 0 > δL(R, X) > −1, i.e., the fitness is worse than the average and
the current R is doubtful, updating still goes along the same direction of the EM learning
but with a reduced strength. When −1 > δL(R, X), updating reverses the direction of the
EM learning and actually becomes de-learning. Therefore, δL(R, X) provides a mechanism
to seek appropriate inner representations for R and thus the corresponding complexity k.
Readers are referred to the end of Sect. 3.3 for a further insight on how this mechanism relates
to and improves RPCL learning with no need for pre-specifying a de-learning strength.

In implementation, it follows from the local convexity based derivation in the next sub-
section that H(p‖q, k, �) in Eq. 20 can be approximately turned into the following format:

H(p‖q, k, �) = H f (XN ,�∗, k, �) + �(�∗, k, �), �∗ = max
�

H f (X,�, k, �), (23)

where �(�∗, k, �) either involves no integral over � or an integral over a subset of � that is
analytically solvable. Thus, a best Ying Yang harmony by maximizing H(p‖q, k, �) can be
made via a two stage implementation in Fig. 5a, which is a process of Type-3 optimization
nested with a series of Type-2 optimizations implemented at Stage I.

Though it is difficult to precisely define, the scale k of an entire system is featured by the
scale or complexity for representing R, which is roughly regarded as consisting of the scale
kY for representing Y . Actually, the model selection problem in many typical learning tasks
[45,48] can be reformulated into a BYY system for selecting merely this kY part. Interest-
ingly, the kY part associates with a subset θ̃y ⊂ θy of parameters in q(Y|θy) in a sense that a
parameter ϑ ∈ θ̃y becoming zero indicates that its associated contribution to kY can be dis-
carded, and thus kY effectively reduces by one. The contribution of such a parameter ϑ → 0
to H f (X,�, k, �) is either 0 or −∞, and a number of such parameters make J̃ (k) in Fig. 5b
either get a flat (i.e., no change) range [k̂, k̃] or tend to −∞ beyond k̃ (i.e., H f (X,�, k, �)

Fig. 5 Implementation of Bayesian Ying-Yang Learning
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becomes singular). Initially, each parameter ϑ ∈ θ̃y is set at a value away from 0. Promisingly,
a gradient based updating flow that pushes H f (X,�, k, �) to increase will yield a force that
pushes each parameter in θ̃y towards 0. If one is really pushed to zero, its associated contri-
bution is regarded as extra and thus can be discarded. In such a way, as long as k is initialized
at one big enough value, k̂ in Fig. 5b can be determined as an upper bound estimate of k∗
during parameter learning on �∗ and �∗ by only implementing Stage I in Fig. 5a, which can
significantly reduce the computational cost needed for a two stage implementation [52]. How-
ever, the performance of this automatic model selection will deteriorate as the sample size
N reduces. In such a case, we implement both the two stages in Fig. 5a with a computational
cost similar to those conventional two stage implementations of model selection. Still differ-
ently, the contribution of kY to H(p‖q, k, �) is usually able to be addressed more accurately
and thus its corresponding J (k) provides an improvement over those typical model selection
criteria, though the contribution featured by the rest part of k is still roughly estimated along
a line similar to those typical criteria by the number n f (�) of free parameters in �.

3.2 Nested optimizations: local convexity based learning and local information
conservation

With p(X|θx ) given empirically from XN , i.e., δ(X − XN ), it follows from Eq. 20 that

H f (XN ,�, k, �)=
∑

L

∫
p(L|XN , θy|x )p(Yv|XN , L , θy|x )

×LL (XN , Y,�q)dYv − Z(�|�q),

LL(XN , Yv,�q)= ln [q(XN |Yv, L , θx |y)q(Yv|L , θy)q(L|θL)],
Z(�|�q)= − ln q(�|�q). (24)

There still remains an integral over Yv . Maximizing H(p‖q) with respect to a p(Yv|X,

L , θy|x ) that is free of structure leads to

p(Yv|X, L , θy|x ) = δ(Yv − Y∗
vL(�q)), Y∗

vL (�q) = max
Yv

LL(XN , Yv,�q),

H f (XN ,�, k, �) =
∑

L

p(L|XN , θy|x )LL(XN , Y∗
vL(�q),�q) − Z(�|�q). (25)

The computational difficulty incurred by the integral over Yv has been avoided. As a result,
learning � is nested with a series of Type-1 optimization for Y∗

vL .
However, it also incurs two problems. First, the above Y∗

vL(�q) may not have a differen-
tiable expression with respect to �q , or it even has no analytical expression. Thus, a gradient
based algorithm for max� H(p‖q,�) can not take the relation Y∗

vL(�q) in consideration,
which makes learning fragile to local optimal performance. Second, the mapping from a
set XN of random samples to the corresponding inner representations is probabilistic while
δ(Yv − Y∗

vL(�q)) can not take this uncertainty in consideration, since it only takes over
from the Ying machine the information of the first order statistics. To improve, we consider
a structure of p(Yv|X, L , θy|x ) in help of local convexity for a best Ying Yang harmony in
the front layer via approximately considering the second order statistics.

Considering a Taylor expansion of Q(ξ) around ξ̄ = ∫
ξp(ξ)dξ up to the second order,

we approximately have
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∫
p(ξ)Q(ξ)dξ ≈ Q(ξ̄ ) + 0.5T r [�HQ(ξ̄ )], HQ(ξ) = ∇2

ξ Q(ξ),

� = ∫
p(ξ)(ξ − ξ̄ )(ξ − ξ̄ )T dξ, (26)

where ∇u f (u) = ∂ f (u)/∂u and ∇2
u f (u) = ∂2 f (u)/∂u∂uT .

With Yv as ξ and L(XN , Yv,�q) as Q(ξ), from Eq. 24 we approximately have

H f (XN , L ,�, k, �) ≈
∑

L

[p(L|XN , θy|x )LL (XN , ȲvL (θy|x ),�q)

+ 0.5dY (L ,�)] − Z(�|�q),

dY (L ,�) = T r [�L(θy|x )HL (ȲvL(θy|x ),�q)], HL(Yv,�q) = ∇2
Yv

LL (XN , Yv,�q),

ȲvL (θy|x ) = ∫
Yv p(Yv|XN , L , θy|x )dYv,

�L(θy|x ) = ∫ [Yv − ȲvL (θy|x )][Yv − ȲvL(θy|x )]T p(Yv|XN , L , θy|x )dYv, (27)

which is handled via ȲvL(θy|x ) and �L(θy|x ), with no need of a structure for p(Yv|XN ,

L , θy|x ).
The integral for Ȳ(θy|x ) can be removed via a differentiable parametric function Ȳ(X , θy|x ),

e.g., a linear function of X followed by a nonlinear scale function in a variable by variable
manner. One example will be introduced later in Table 3.

In some applications, e.g., the Bernoulli case in Table 3(b), �L(θy|x ) is simply a parametric
function

�L(θy|x ) = �L [Ȳ(X , θy|x )] (28)

that is specified directly by a given parametric function Ȳ(X , θy|x ). In general, instead of
explicitly computing �L(θy|x ), we consider dY (L ,�) in Eq. 27 by the following instanta-
neous estimate:

dY (L ,�) = eT
vL(�)HL(Ȳ(X , θy|x ),�q)evL(�), evL(�) = Y∗

vL(�q) − ȲvL (θy|x ). (29)

with Y∗
vL(�q) obtained by Eq. 25 via Type-1 optimization.

Alternatively, we can also get Eq. 26 with ξ̄ replaced by ξ∗ = arg max Q(ξ). Similar to
Eq. 27, it follows from Yv − Y∗

vL(�q) = Yv − ȲvL(θy|x ) + ȲvL (θy|x ) − Y∗
vL(�q) that we

get

H f (XN , L ,�, k, �) ≈
∑

L

p(L|XN , θy|x ){LL (XN , Y∗
vL (θy|x ),�q)+0.5d∗

Y (L ,�)+0.5eT
vL

× (�)HL (Y∗
vL (�q),�q)evL(�)}, 0.5d∗

Y (L ,�) = T r [�L(θy|x )HL(Y∗
vL (�q),�q)],

(30)

where d∗
Y (L ,�) = dY = T r [IY ] becomes the dimension of Yv under a local informa-

tion conservation constraint that �L(θy|x ) = −H−1
L (Y∗

vL ,�q ). Moreover, L is discrete,
instead of basing on Hessian matrix this local information conservation becomes simply
p(L|X N , θy|x ) ∝ ln L L(X N , Y∗

vθy|x ), i.e., being proportional to the likelihood described by
the Ying machine, referring Table 3 (its 2nd line) for a detailed example.

Though the above studies come from Eq. 26 that involves the differentiable concept that is
applicable to � of real parameters and Yv of real variables. It deserves a particular remark that
these studies are still applicable to the cases with Yv consisting of vectors in binary variables,
simply regarding Yv as real when considering ∂/∂Yv and ∂2/∂Yv∂YT

v . Strict mathematical
proofs can also be obtained from a different perspective [52].

Next we return to Eq. 20 with p(X|θx ) = δ(X − XN ), i.e.,
∫

p(�|XN , �)H f (XN ,�,

k, �)d�. Regarding � as ξ and H f (XN ,�, k, �) as Q(ξ), from Eq. 26 we approximately
get
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ȳ t

−
μ

ol
d

j
,
g

R y,
j
=

(
A

T j
�

−1 j
A

j
+

�
−1 j

)ε
�
(x

t)
.

Fo
r

Ty
pe

i Y
=

0,
gπ y,

j
=

p
j,

t(
1

+
δ
h

j,
t)

D
s(

A
T j
�

−1 j
ex|y t

+
δ q

j)
,e

x|y t
=

x t
−

A
ol

d
j

s(
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H(p‖q, k, �)=H f (XN , �̄, k, �)+0.5T r [�HH (�̄)], HH (�)=∇2
� H f (XN ,�, k, �),

�̄ = ∫
�p(�|XN )d�, � = ∫

(� − �̄)(� − �̄)T p(�|XN )d�. (31)

Again, we do not need to specify a structure for p(�|XN ). In fact, getting to know p(�|XN )

is the aim of learning. Instead, for any learning process XN → �, the resulted estimate �∗
can be regarded as the above �̄ with � measuring the randomness of this estimation due to a
finite size of samples in XN . One typical example is to let �̄ = �∗ = max� H f (X,�, k, �)

from which we get Eq. 23 with �(�∗, k, �) = 0.5T r [�HH (�∗)] in two choices. One is
considering � = HH (�∗)−1 and thus getting

�(�∗, k, �) = −0.5dk, dk = n f (�), (32)

where n f (�) is the number of free parameters in � [44,49,50]. The other is considering �̄

and �∗ approximately by �(t),�(t−1) obtained in Fig. 5a, from which we get

�(�(t), k, �) = −0.5dk, dk = n f (�) + (�(t) − �(t−1))T HH (�(t))(�(t) − �(t−1)).

(33)

We further proceed to consider p(X|θx ) estimated from XN = {xt }N
t=1 with a unknown scalar

parameter θx = h. Replace X by X, h and notice that only X relates to h, we have

p(X, h) = p(X|h)p(h), p(X|h) = G(X|XN , h2 I ) =
N∏

t=1

G(x |xt , h2 I )

p(R|X, h) = p(R|X), q(X, h|R) = q(h|X, R)q(X|R), q(h|X, R) = q(h|X),

(34)

with q(R) remains unchanged. Put it into Eq. 20, we have

H(p‖q, k, �) = ∫
p(h)p(�|X, �)H f (X,�, h, k, �)d�dXdh (35)

Maximizing H(p‖q, k, �) with a p(h) that is free of constraint, we get

p(h) = δ(h − h∗), h∗ = arg max
h

= arg max
h

H f (X,�, h, k, �), (36)

H f (X,�, h, k, �) =
∑

L

∫
p(L|X, θy|x )p(Yv|X, L , θy|x )G(X|XN , h2 I )

× ln [q(X|Yv, L , θx |y)q(Yv|L , θy)q(L|θL)q(�|�q)]dYvdX.

Similar to Eq. 26 we also have
∫

G(ξ |μ,�)Q(ξ)dξ ≈ Q(ξ)ξ=μ + 0.5T r [�∇2
ξ Q(ξ)]ξ=μ.

Regarding X as ξ , and X as G(X|XN , h2 I ) as Q(ξ), H f (X,�, h, k, �) in Eq. 36 becomes

H f (X,�, h, k, �) = H f (XN ,�, k, �) + 0.5h2T r [�(XN )] − Z(h),

Z(h) = − ln q(h|XN ), �(X) = ∇2
X

∑

L

p(L|XN , θy|x ) ln q(X|Yv, L , θx |y), (37)

from which we modify the two stage implementation in Fig. 5a via replacing all the appear-
ances of � with {�, h}. With an appropriate h∗ learned together with �∗, a considerable
improvement can be obtained to reduce the deterioration caused by a small sample size N .

For a further insight via a detailed expression, we consider the cases that the elements of
X = {x} are i.i.d. by Eq. 11 and thus have q(X|Y, θx |y) = ∏

q(x |y, �, θx |y,�), q(Y|θy) =∏
q(y, �|θy), q(y, �|θy) = q(y|�, θy,�)α�, α� = q(�), p(Y|X, θy|x ) = ∏

p(y|x, �, θy|x,�)

p(�|x, θ�|x ). With �(�(t), k, �) given by Eq. 33 and H f (XN ,�, k, �) by H f (XN ,�,

h, k, �), further considering q(�|�q) = q(h)
∏

� q(��|�q), it follows from Eq. 37 and
Eq. 27 that we get
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H f (XN , h,�, k, �) =
∑

t

∑

�

p(�|xt )[Ht (��) + N−1 ln q(��|�q)], (38)

Ht (��) = L�(xt , η�(xt , θy|x;�),��) + 0.5T r [h2∏x
� + ∏y

��t,�]
+N−1 ln q(h|XN ),

L�(x, y,��) = ln [q(x |y, �, θx |y,�)q(y|�, θy,�)α�],
∏y

� = ∇2
y ln [q(x |y, �, θx |y,�)q(y|�, θy,�)],

∏x
� = ∇2

x ln q(x |y, �, θx |y,�),

�t,� =
{

��[η�(x, θy|x,�)], for i∏ = 0 & from Eq. 28,

ε�(xt )ε
T
� (xt ), for i∏ = 1 & from Eq. 29.

ε�(xt ) = y∗
t,� − η�(xt , θy|x,�), q(x |θ�) =

∫
q(x |y, �, θx |y,�)q(y|�, θy)dy,

p(�|xt ) = e−πt (��)

∑
j e−πt (� j )

, πt (��) =
{
ln [α�q(xt |θ�)], for iL = 0,

L�(xt , η�(xt , θy|x,�),��), for iL = 1,

where η�(xt , θy|x;�) is a parametric function, a typical example given in Table 3 is quasi-linear
function that consists of a linear function of xt followed by a nonlinear scale function in an
element by element manner.

In the implementation as in Fig. 5a, Stage II is a discrete optimization. Both Stages I(a)
& I(b) are featured by continuous optimization, based on ∇� H f (XN ,�(t), k, �(t−1)) and
∇�[H f (XN ,�(t), k, �) + �(�(t), k, �)]. To get an insight on how Stage I(a) is imple-
mented with an automatic model selection on kY , we give an adaptive algorithm in Table 3
for the previously examples q(x |y, �, θx |y) of Table 2c and q(y|θy) = q(y|�, θy,�)q(�) of
Table 2a (3) plus Table 2b (1)&(2). The algorithm bases on getting the differential updat-
ing flow d

∑
� p(�|xt , θ�|x )[Ht (��) + N−1 ln q(��|�q)]. For simplicity, we ignore a pri-

ori q(��|�q). Also, interested readers are further referred to algorithms for extensions of
supervised learning tasks (e.g., function approximation, pattern recognition) and temporal
modeling tasks [51].

In a summary, implementing the best harmony learning by Eq. 20 is a Type-3 optimization
that involves an integral over � and an optimization on searching a p(�|X, �). With the help
of local convexity, the problem is handled by searching {�k} via a series of Type-2 optimiza-
tions that involve an integral over Y and an optimization on searching a p(Yv|X, L , θy|x ).
Again with the help of local convexity based local information conservation, the problem is
handled by searching a series values of Y∗

vL via a series of Type-3 optimizations.

3.3 Best harmony, best matching, and related approaches

We start at observing how the best harmony learning degenerates as a BYY system degener-
ates to a conventional model q(X|�). We consider R = {�} without an inner representation
part Y, which leads us back to Fig. 1c and simplifies H(p‖q, k, �) in Eq. 20 into

H(p‖q) = ∫
p(�|X)p(X) ln [q(X|�)q(�)]dXd�. (39)

For p(X) = δ(X−XN ), maximizing H(p‖q) with respect to a free p(�|X) leads to the MB
type in Table 1, i.e., max� ln [q(XN |�)q(�)], while J (k) in Fig. 5 becomes

k∗ = arg min
k

J (k), J (k) = − max
�

ln [q(XN |�)q(�)] + 0.5dk, (40)
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which is a Bayesian learning based extension of AIC. For a non-informative q(�), it further
degenerates to exactly AIC [1,2]. For a general case with p(X, h) by Eq. 34, it follows from
Eq. 37 that Eq. 39 is extended into

H(p‖q) = ∫
p(h)p(�|XN )Hh(p‖q,�)d� ≈ max

�,h
Hh(p‖q,�) − 0.5dk,

Hh(p‖q,�) = ln [q(XN |�)q(�)] + 0.5h2T r [∇2
X ln q(X|�)] + ln q(h|XN ). (41)

With p(�|X) in a given structure, the BYY harmony learning is different from the con-
ventional Bayesian learning. E.g., we consider p(�|X) with the BI structure in Table 1 and
rewrite Eq. 39 into H(p‖q) = ∫

p(�|X)p(X) ln p(�|X)dXd�+∫
p(X) ln q(X |S)dX. Par-

ticularly, for p(X) = δ(X − XN ) it further becomes

H(p‖q) = ∫
p(�|XN ) ln p(�|XN )d� + ln q(XN |S). (42)

The maximization of its second term is exactly the MI (marginal likelihood) choice in Table 1.
As already discussed in Sect. 1, it has been previously studied under various names [14,16,
20,28]. Additionally, the first term in Eq. 42 is the negative entropy of p(�|XN ) and its
maximization is seeking an inverse inference XN → � with a least uncertainty.

Also, we let the structure S in place of R, and get a generalization of Eq. 39 as follows:

H(p‖q) =
∑

S

p(S|X)p(X) ln [q(X|S)q(S)]. (43)

When p(S|X) is free of structure, maximizing H(p‖q) with respect to p(S|X) leads to
maxS ln [q(XN |S)q(S)] for model selection, i.e., the BI choice in Table 1. In the special case
that q(S) is equal for each candidate S, it degenerates to maxS ln q(XN |S), i.e., the ML choice
in Table 1. Moreover, a generalized counterpart of Eq. 42 becomes

H(p‖q) =
∑

S

p(S|XN ) ln p(S|XN ) + ln q(XN ), q(XN ) =
∑

S

q(XN |S)q(S).

For a BYY system, in addition to making the best harmony learning by Eq. 20, an alterna-
tive has also been proposed and studied in [37] under the name of Bayesian Kullback Ying
Yang (BKYY) learning that performs the following best matching principle:

min KL(p‖q), KL(p‖q) = ∫
p(R|X)p(X) ln

p(R|X)p(X)

q(X|R)q(R)
dXdR

= ∫
p(�|X){∫ p(Y|X, θy|x )p(X)

× ln
p(�|X)p(Y|X, θy|x )p(X)

q(X|Y, θx |y)q(Y|θy)q(�)
dXdY}d�,

(44)

which reaches to the best matching K L(p‖q) = 0 if and only if p(R|X)p(X) = q(X|R)q(R).
As a BYY system degenerates to a conventional model q(X|�), the above Eq. 44 is

simplified into the following counterpart of Eq. 39:

min K L(p‖q), K L(p‖q) = ∫
p(�|X)p(X) ln

p(�|X)p(X)

q(X|�)q(�)
dXd�. (45)

Minimizing K L(p‖q) with respect to a p(�|X) that is free of structure leads to p(�|X) =
q(X|�) q(�)/q(X |S) and q(X |S) = ∫

q(X|�)q(�)μ(d�). As a result, Eq. 45 becomes

min K L(p‖q), K L(p‖q) = ∫
p(X) ln [p(X)/q(X |S)]dX, (46)
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or max
∫

p(X) ln q(X |S)dX if p(X) is an input irrelevant to q(X |S) and q(�). For p(X) =
δ(X − XN ), it further becomes equivalent to the MI (marginal likelihood) choice in Table 1.
For a more general case with p(X, h) by Eq. 34, Eq. 46 provides a data smoothing extension
with not only � but also h learned.

Alternatively we may also consider minq(�) K L(p‖q) when q(�) is free of constraint,
which leads to q(�) = p(�|X) and K L(p‖q) = ∫

p(�|X)p(X) ln [p(X)/q(X|�)]dXd�.
When p(X) is an input irrelevant to q(X|�), it is equivalent to max

∫
p(�|X)

p(X) ln q(X|�)dXd�, and further becomes max
∫

p(�|XN ) ln q(XN |�)d� if p(X) =
δ(X − XN ). A further maximization with a structural free p(�|X) leads to the classical
ML learning again. Moreover, in help of Eq. 26, we are lead to Eq. 40, i.e., the ML learning
based AIC [1,2].

Next, we return to Eq. 44 with its inner representation Y in consideration. When
p(Y|X, θy|x ) is free of constraint, minp(Y|X,θy|x ) K L(p‖q) leads again to Eq. 45 with

p(Y|X, θy|x ) = q(X|Y, θx |y)q(Y|θy)/q(X|�), q(X|�) =
∫

q(X|Y, θx |y)q(Y|θy)dY.

(47)

On the other hand, minq(�) K L(p‖q) with a free q(�) results in q(�) = p(�|X) and
also

min K L(p‖q) =
∫

p(�|X)K L(p‖q,�)d� ≥ min K L(p‖q,�).

K L(p‖q,�) =
∫

p(Y|X, θy|x )p(X) ln
p(Y|X, θy|x )p(X)

q(X|Y, θx |y)q(Y|θy)
dXdY. (48)

This min K L(p‖q,�) was originally proposed in 1995 under the name Bayesian Kullback
Ying Yang (BKYY) learning [37]. From minp(Y|X,θy|x ) K L(p‖q,�), we are lead to the above
discussed Eq. 47 again.

The difference between the best Ying Yang matching by Eq. 44 and the best Ying Yang
harmony learning by Eq. 20 can be better understood from the following relation:

K L(p‖q) = ∫
p(R|X)p(X) ln [p(R|X)p(X)]dXdR − H(p‖q). (49)

In addition to maximizing H(p‖q), minimizing K L(p‖q) also includes minimizing the first
term that is the negative entropy of the Yang representation, which cancels out the least
complexity nature that was discussed after Eq. 20. Recalling Eq. 22, we may also observe
this difference on the level of differential flow. It follows that Eq. 44 consists of getting
p(R|X) by Eq. 21, then fixing it and maximizing

∫
p(R|X)p(X) ln [q(X|R)q(R)]dXdR via

a differential flow
∫ [p(R|X)d L(X, R)p(X)dXdR [17]. As previously discussed after Eq. 22,

the best Ying Yang harmony learning by Eq. 20 is made via the differential flow by Eq. 22
with p(R|X) replaced by p(R|X)[1+δL (R, X)] that provides a model selection mechanism.

A summary of the BYY learning related approaches is provided in Fig. 6. The common
part of all the approaches is the shadowed center area, featured by using a probabilistic
model to best match a data set XN via determining three levels of its unknowns. The first two
levels are the ML learning for unknown parameter learning and model selection shown in the
ML row of Table 1, which has been widely studied from various perspective as previously
discussed in Sect. 1 [14,16,20,28]. The third level is evaluating or selecting an appropriate
meta structure ℵ via q(XN |ℵ), i.e., the second term in Eq. 44, for which few studies have
been made yet but may deserve to explore.

Outbound from this shadowed center we have two directions. One is to the left-side.
Priori probabilities are taken in consideration for determining three levels of its unknowns.
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Fig. 6 Best harmony, Best matching, and Typical learning approaches

The first two levels are the MB choices for parameter learning and model selection in Table 1.
As discussed in Sect. 1, studies have made under the name of Bayesian learning or Bayesian
approach [22,26], as well as MML [34]. The third level is again evaluating an appropriate
meta structure ℵ via q(XN |ℵ)q(ℵ) with a priori q(ℵ) in consideration. Moving forward even
left, we are lead to those areas of the best Ying Yang harmony learning by Eq. 20, which
includes but goes beyond the areas of the ML and MB approaches, as discussed earlier.

The second direction goes the right-side, the domain of the best Ying Yang matching by
Eq. 44. Out of the shadowed center, we enter the common area shared with the approach
of variational free energy or the Helmholtz machine [6,19]. Moving right still, we proceed
beyond and lead to a number of other cases, as discussed earlier.

The last but not least, we discuss a more detailed relation of the best Ying Yang harmony
learning by Eq. 20 to an early effort called RPCL, mentioned previously in Sect.2.3. RPCL was
proposed heuristically [56] with a rival penalized mechanism for automatic model selection.
Considering k individual substructures with each described by a parameter set θ�, as one
new sample xt comes, each individual has a fitness measure L(xt , θ�). A updating θnew

� =
θold
� + �θ� is made as follows [49]:

�θ� ∝ p�,t∇θ�
L(xt , θ�), p�,t =

⎧
⎪⎨

⎪⎩

1, if � = �∗with �∗ = arg max� L(xt , θ�),

−γ, if �∗ = arg max��=�∗ L(xt , θ�),

0, otherwise.

(50)

where γ > 0 is a small number. This is, the most fit one learns xt , while the second winner
(rival) de-learns, such that those extra substructures have been gradually discarded during an
iterating process of Eq. 50. In the sequel, we try to link Eq. 50 to H f (X,�, k, �) by Eq. 20
at p(X|θx ) = δ(X − XN ) via rewriting it into HL(�, k) + H(θy|x ) + ln q(�|�q) with

HL(�, k) =
∑

L

p(L|XN , θy|x ) ln [q(XN |L , θxy)q(L|θL)],
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H(θy|x ) =
∑

L

p(L|XN , θy|x )
[∫

p(Yv|XN , L , θy|x ) ln p(Yv|X, L , θy|x )dYv

]

,

q(X|L , θxy) =
∫

q(X|Yv, L , θx |y)q(Yv|L , θy)dYv. (51)

Following the line of Eq. 22, we get the differential updating flow of HL(�, k) as follows:

d HL(�, k) =
∑

L

p(L|XN , θy|x )[1 + δL(XN )]d L(XN ,�L ),

L(XN ,�L ) = ln [q(XN |L , θxy)q(L|θL)],
δL(XN ) = L(XN ,�L) −

∑

L

p(L|XN , θy|x )L(XN ,�L);
For the i.i.d. case by Eq. 38, it becomes L(x, θ�) = ln [q(x |θ�)α�],
d HL(�, k) =

∑

t

∑

�

p(�|xt )[1 + δ�(xt )]d L(xt , θ�), p(�|xt ) = eL(x,θ�)

∑
j eL(x,θ j )

, (52)

δ�(xt ) = L(xt , θ�) −
∑

j

p(�|xt , θ�|x )L(xt , θ j ),

q(x |θ�) =
∫

q(x |y, �, θx |y,�)q(y|�, θy)dy.

Similar to the discussion after Eq. 22, p(�|xt )[1 + δ�(xt )] may enhance learning, make
de-learning, and proceed with reservation, in comparison with the ML learning on a finite mix-
ture

∑
� α�q(x |θ�). Instead of getting p�,t via winner-take-all competition in Eq. 50, p(�|xt )

in Eq. 52 involves a soft competition while p(�|xt )[1+δ�(xt )] further uses the average fitness
as a reference.

In general, the updating flow also has contributions from d H(θy|x ) and d ln q(�|�q),
which provides certain regularization or modification on d HL(�, k) in Eq. 52. In the special
case that Y consists of only L without the part Yv , we have simply H(θy|x ) = 0.

4 Learning versus optimization: cross fertilization

4.1 Roles of convexity in learning

Now we are ready to go over the main points about the relations between learning and opti-
mization. First, the purpose of learning is building up a learning system to represent regularity
or dependence structure underlying training samples. The goal is achieved via an optimiza-
tion process. Second, learning is not just optimization. It consists of at least three basic tasks,
namely, getting an appropriate structure as the hardware of a learning system, finding a good
learning theory to guide a learning process for determining an appropriate structural com-
plexity of a learning system (called model selection) and all unknown parameters (called
parameter learning) in the learning system, and then implementing model selection and para-
meter learning effectively by an optimization process. Third, a major computational difficulty
comes from computing integrals. The integrals are usually avoided after being turned into a
summation plus optimizations in help of certain technique. Fourth, optimizations in a learning
process are hierarchically nested. The outmost one is a discrete optimization for model selec-
tion on k, during which each step consists of computations plus a continuous optimization
for parameter learning on �. Moreover, each parameter learning process may also be nested
with either or both of a discrete optimization and a continuous optimization for inferring
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inner representation Y . Beyond these, the interaction between learning and optimization can
also be viewed from studies on the nature of convexity. In the sequel, we discuss this issue
roughly from three directions.

The first direction is featured by a fact that a learning theory is actually implemented via
optimizing a cost function with certain convexity and learning algorithm is developed with
help of local convexity. The simplest one is minimizing a least square error

∑N
t=1 ‖yt −

f (xt , θ)‖2, which is convex with respect to f but is not necessary with respect to �. The
least square error is actually a special case of the likelihood function ln q(XN |�), which is
again convex with respect to q but not necessary with respect to �. The latter depends on
the function form of q(xt |�) and types of parameters within the set �. Also, the harmony
measure H(p‖q) by Eq. 20 and the Kullback measure K L(p‖q) by Eq. 44 are convex with
respect to either or both of p, q . Still, whether H(p‖q) or K L(p‖q) are convex with respect
to R (thus Y,�) depends on the specific function forms of p, q .

Moreover, use of convexity takes an important role in avoiding computational difficulty
of integrals and in developing an effective learning algorithms. Recalling Sect. 3.2, local
convexity acts as a major tool that makes the best harmony learning by Eq. 20 become
computationally implementable. In addition to such a use of local convexity, efforts have
also been made on avoiding computational difficulty of integrals by using convexity in a
global level. Maximizing the likelihood function q(X|�) = ∫

q(X|Y, θx |y)q(Y|θy)dY is
suggested to be replaced by maximizing one of its lower bound via the Helmholtz free energy
or variational free energy [6,19], which can also be understood from the formulation of
Eq. 47, that is, max� q(X|�) is replaced by maximizing the following cost

F = −
∫

p(Y|XN , θy|x ) ln
p(Y|XN , θy|x )

q(XN |Y,�)q(Y|θy)
dY

= −
∫

p(Y|XN , θy|x ) ln
p(Y|XN , θy|x )
q(Y|XN ,�)

dY + ln q(XN |�) ≤ ln q(XN |�),

q(Y|XN ,�) = q(XN |Y, θx |y)q(Y|θy)/q(XN |�). (53)

Instead of computing q(XN |�) and q(Y|XN ,�), a pre-specified parametric model is con-
sidered for p(Y|XN , θy|x ), and learning is made for determining the unknown parameters
θy|x together with � via maximizing F .

Actually, maximizing F by Eq. 53 is equivalent to min� K L(p‖q,�) by Eq. 48 with
p(X) = δ(X−XN ). In other words, two approaches coincide in this situation, while they were
motivated from two different perspectives. Maximizing F by Eq. 53 directly aims at approxi-
mating the ML learning on q(XN |�), with an approximation gap that trades off computational
efficiency via a pre-specified parametric p(Y|XN , θy|x ). This gap disappears if p(Y|XN , θy|x )
is able to reach the posteriori q(Y|XN ,�). However, minimizing K L(p‖q,�) by Eq. 48 is
not motivated from a purpose of approximating the ML learning though it was also shown
in [37] that minp(Y|X,θy|x ) K L(p‖q,�) for a p(Y|X, θy|x ) free from of constraints makes
min� K L(p‖q,�) become the ML learning when p(X) = δ(X −XN ). Instead, the motiva-
tion is determining all the unknowns in the Ying-Yang pair to make the pair best matched. The
approaches of the shadowed center in Fig. 6 are special cases of minimizing the Helmholtz free
energy −F by Eq. 53 and of minimizing K L(p‖q,�) by Eq. 48. In addition to being equiv-
alent to the ML learning and approximating the ML learning, studies on min� K L(p‖q,�)

by Eq. 48 further covers not only extensions to p(X, h) by Eq. 34, but also the problems of
minq(X|Y,θx |y) K L(p‖q,�) with respect to a free q(X|Y, θx |y), which leads to

min
∫

p(Y|�p) ln
p(Y|�p)

q(Y|θy)
dY, p(Y|�p) =

∫
p(Y|X, θy|x )p(X)dX. (54)
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Particularly, when q(Y|θy) is independent among its components and p(Y|X, θy|x ) has a
simple post-linear structure, Eq. 54 further becomes equivalent to the minimum mutual infor-
mation (MMI) base ICA learning [3]. The details are referred to [38,42,44,45].

The second direction is directly applying the existing results obtained from convex opti-
mization literature, tailored for a particular learning task. Typical ones are those featured by
support vectors [32]. One example is the following convex optimization:

max{α,C∗}W (α, C∗), α = {αt , t = 1, 2, . . . , N },
W (α, C∗) =

N∑

t=1

αt − 0.5
N∑

t=1

N∑

τ=1

αtατ yt yτ (xt · xτ ) − 0.5cnC∗,

subject to
N∑

t=1

αt yt = 0, 1 ≥ αt ≥ 0, t = 1, 2, . . . , N , C∗ ≥ 0, (55)

where cn > 0 is a given constant, {xt , yt } are a given set of paired samples, with xt being a
real vector and yt taking either −1 or 1. The optimal solution is used to build up a hyperplane
that classifies each sample into one of two classes. Also, extensions have been made with the
inner product (xt · xτ ) replaced by a kernel function K (xt , xτ ) that satisfies Mercer condition
[33].

In addition to this classification, studies have also been made on making an ε-insensitive
robust regression y = ∑N

t=1 βt K (x, xt ) by βt = (α∗
t − αt )/C∗, with α∗

t , αt , C∗ obtained
from the following optimization problem:

max{α,α∗,C∗}W (α, α∗, C∗), α = {αt , t = 1, 2, . . . , N }, α∗ = {α∗
t , t = 1, 2, . . . , N },

W (α, α∗, C∗) = −ε

N∑

t=1

(α∗
t + αt ) +

N∑

t=1

yt (α
∗
t − αt ) − 0.5cnC∗

+ 1

2C∗
N∑

t=1

N∑

τ=1

(α∗
t − αt )(α

∗
τ − ατ )K (xt , xτ ),

subject to
N∑

t=1

α∗
t =

N∑

t=1

αt , 1 ≥ α∗
t ≥ 0, 1 ≥ αt ≥ 0,

t = 1, 2, . . . , N , C∗ ≥ 0, (56)

where cn > 0, ε > 0 are given constants.
The third direction is featured by those extensive studies under the name of variational

approximation methods [12,13], which further puts the basic idea of the Helmholtz free
energy or variational free energy [6,19] in a general framework of approximation methods
rooting from techniques in the calculus of variations, and in a wide variety of uses such as
finite element analysis, quantum mechanics, statistical mechanics, and statistics [27]. The
key idea is turning a complex problem into a simpler one, featured by a decoupling of the
degrees of freedom in the original problem. This decoupling is achieved via an expansion
of the problem to include additional parameters (called variational parameters), in help of
convex duality [25].

We start at the following example [13]:

ln(x) = min
y

(yx − ln y − 1) ≤ yx − ln y − 1, (57)

which transfers a nonlinear function into a bound in a linear function, in help of a free
parameter y. We can recover the exact value of logarithm for the optimal choice of y.
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This type of variational transformation can be handled systematically in help of convex
duality studied in the optimization literature [11,25]. That is, a convex function f (x) can be
represented via a conjugate or dual function as follows:

f (x) = max
y

[yT x − f ∗(y)], with f ∗(y) = max
x

[yT x − f (x)], (58)

which includes the above Eq. 57 as a special case.
In general, the convex duality has been applied to the machine learning literature to obtain

upper or lower bounds on a function of interest such that the original computation is replaced
by a tractable approximation. If the function is already convex then we simply calculate the
conjugate function. If a function is not convex, an invertible transformation is sought such that
the function becomes convex after transformed. Then, the conjugate function is calculated in
the transformed space and transform back. Furthermore, it has been shown in Sect. 6 of [13]
that Eq. 53 can be reached directly in help of the convex duality by Eq. 58, which renders the
Helmholtz machine type learning [6,19] as a typical example of the variational methods for
probability distributions.

4.2 Combinatorial optimization from a BYY learning perspective

It is interesting to further discuss that learning may help to make optimization more
effectively too. Recalling Fig. 1b, Eq. 8 and 10, we may reexamine the combinatorial opti-
mization problems such as AGM, TSP from the perspective of inferring a best Y ∗ based
on the Ying machine q(X |Y ) and q(Y ). Particularly, we need an appropriate q(Y ) that is
able to limit each Y to distribute within the permutation matrix family �N , while q(X |Y )

describes a specific combinatorial optimization problem Eo(Y, X), which can be gener-
ally described as in Eq. 10. Without a priori preference, q(Y ) is equal for each Y ∈ �N .
We infer Y ∗ by Eq. 1 or equivalently Y ∗ = arg maxY∈�N

ln q(X |Y ), where ln q(X |Y ) =
− 1

λ
Eo(Y, X) − ln Zλ(X). That is, it is equivalent to the original combinatorial optimization

problem minY∈�N
Eo(Y, X). As discussed in Sect. 1, the probabilistic version of Eq. 1 is

P(Y |X) = q(X |Y )q(Y )/
∑

Y q(X |Y )q(Y ). The summation should goes over Y ∈ �N and
thus has a computational complexity same as the original problem.

Recalling the first column of Table 1, an effort towards this computational difficulty is
LPD. That is, we let P(Y |X) to be expressed by a parametric model P(Y |X, θp) to simplify
the computation. Then, the problem is turned to learn θp . Since the dimension of Y is known
and fixed by a specific problem, there is no need on model selection. We consider the best
Ying Yang matching by min K L(p‖q, θ) in Eq. 48. Since the input X is fixed and Zλ(X) is
irrelevant to learning, it follows from Eq. 10 that min K L(p‖q,�) is further simplified into

min
�

K L(p‖q,�), K L(p‖q,�) =
∑

Y

P(Y |X, θp) ln
P(Y |X, θp)

q(X |Y )q(Y on �N , θq)
, (59)

or min
�

[ ∑

Y

P(Y |X, θp) ln P(Y |X, θp) −
∑

Y

P(Y |X, θp) ln e− 1
λ

Eo(Y,X)+ln q(Y on �N ,θq )
]
.

where λ controls the strength of the role by q(Y on �N , θq). To make Eq. 59 works, we need
an appropriate q(Y on �N , θq) and an appropriate scheme for controlling the value of λ.
Then, we can alternatively make minθp K L(p‖q,�) and minθq K L(p‖q,�) such that the
iteration converges to a minimum as globally as possible.

In the sequel, we introduce some previous studies [4,5,36,38,47], actually on a special
case of the above Eq. 59. Considering q(Y on �N , θq) is equal for every Y ∈ �N and
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noticing q(X |Y ) by Eq. 10 with
∑

Y q(X |Y ) = ∑
Y e− 1

λ
Eo(Y,X)/Zλ(X) = 1, we can turn

Eq. 59 into

min
�, s.t. Y on �N

K L(p, q), K L(p, q) =
∑

Y

p(Y |X, θp) ln
p(Y |X, θp)

q(Y |X, λ)
,

q(Y |X, λ) = q(X |Y )q(Y on �N , θq)
∑

Y q(X |Y )q(Y on �N , θq)
= e− 1

λ
Eo(Y,X)

Zλ(X)
,

(60)

for which we have an intuitive interpretation. It is difficult to get the peak Y ∗ since Eo(Y, X)

has many local minimums or q(Y |X, λ) has many local maximums. We use a simple distribu-
tion p(Y |X, θp) to approximate q(Y |X, λ) such that the global peak of p(Y |X, θp) becomes
easier to find and that q(Y |X, λ) and p(Y |X, θp) share the same peak Y ∗.

Moreover, we consider a series of domains of q(Y |X, λ):

Dε(λ) = {Y : q(Y |X, λ) > ε, a small constant ε > 0} (61)

under the control of a parameter λ. For a sequence λ0 > λ1 · · · > λt , we have Dε(λt ) ⊂
. . . Dε(λ1) ⊂ Dε(λ0) that keep the global minimization solution of Eo(Y, X) included, since
the equivalence of maxY q(Y |X, λ) to minY Eo(Y, X) is irrelevant to λ. Therefore, we can
find a sequence p0(Y |X, θp), p1(Y |X, θp), . . . , pt (Y |X, θp) that approximates q(Y |X, λ)

on the shrinking domain Dε(λ). For a large λt , q(Y |X, λ) has a large support and thus
p(Y |X, θp) adapts the overall configuration of q(Y |X, λ) in a big domain Dε(λ). As λt

reduces, pt (Y |X, θp) becomes more and more concentrating on adapting the detailed config-
uration of q(Y |X, λ) around the global peak solution Y ∗ ∈ Dε . As long as λ0 is large enough
and λ reduces slowly enough towards to zero, we can finally find the global minimization
solution of Eo(Y, X). In implementation, this process is still made by Eq. 60 simply with∑

Y replaced by
∑

Y∈DY
. Alternatively, we can also consider the case with the positions of

p, q swapped minp K L(p, q), which leads us to a class of Metropolis sampling based mean
field approaches. Details are referred to Sect. II(B) in [41].

Here, we focus on Eq. 60 and consider p(Y |X, θp) in the following simple forms:

p1(Y |X, θp) = Z−1
1

∏

i, j

eyi j ln pi j , 0 ≤ pi j , Z1 =
∑

i, j

∏

i, j

eyi j ln pi j ,

p2(Y |X, θp) =
∏

i, j

p
yi j
i j (1 − pi j )

1−yi j , 0 ≤ pi j ≤ 1; (62)

and from the constraints of Y ∈ �N we have

Cc :
N∑

i=1

〈yi j 〉 = 1, j = 1, . . . , N , Cr :
N∑

j=1

〈yi j 〉 = 1, i = 1, . . . , N ;

〈yi j 〉 =
{

pi j
Zi j
Z1

, forp1(Y |X, θp),

pi j , forp2(Y |X, θp),
Zi j = ∑

k �=i,l �= j
∏

k,l eykl ln qkl ; (63)

where 〈y〉 denotes the expectation of the random variable y. When N is large, we have
Zi j ≈ Z1, and thus 〈yi j 〉 ≈ pi j for the case of p1(Y |X, θp).

Putting Eq. 62 into Eq. 60, we have K L(p, q) = HY |X − L X |Y with

HY |X=
∑

Y

p(Y |X, θp) ln p(Y |X, θp)=
{∑

i j pi j ln pi j , for p1,
∑

i j [pi j ln pi j + (1 − pi j ) ln (1 − pi j )], for p2.
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L X |Y =
∑

Y

p(Y |X, θp) ln q(Y |X, β) = − 1

λ

∑

Y

p(Y |X, θp)Eo(Y, X) − ln Zλ(X). (64)

Further noticing
∑

Y p(Y |X, θp)Eo(Y, X) ≈ Eo({pi j }, X), Eq. 60 becomes equivalent to

minpi j E({pi j }, X), subject to Eq. 63,

E({pi j }, X) = 1 + γ

λ
Eo({pi j }, X)

+ (1 − γ )

{∑
i j pi j ln pi j , for p1(Y |X, θp),∑
i j [pi j ln pi j + (1 − pi j ) ln (1 − pi j )], for p2(Y |X, θp),

(65)

where γ = 0 but it will be extended to take other values later in Eq. 67. The case for
p1(Y |X, θp) interprets the Lagrange-Transform approach with the barrier term

∑
i, j yi j ln yi j

in [36] and justifies the intuitive treatment of simply regarding the discrete yi j as an analog
variable between the interval [0, 1]. These analog variables are actually the parameters of a
simple distribution that we use to approximate the Gibbs distribution induced from the cost
E({pi j }, X) of the discrete variables.

Similarly, the case for p2(Y |X, θp) interprets and justifies the Lagrange-Transform or
Lagrange-Barrier approach with the barrier

∑
i, j [yi j ln yi j + (1 − yi j ) ln (1 − yi j )] in [38],

where this barrier is intuitively argued to be better than the barrier
∑

i, j yi j ln yi j because
it gives a U -shape curve. Here, this intuitive preference can also be justified from Eq. 63
since there is an approximation Zi j ≈ Z1 used for p1(Y |X, θp), but no approximation for
p2(Y |X, θp). Moreover, both the barriers are respectively the special cases (a) S(yi j ) = yi j

and (b) S(yi j ) = yi j/(1−yi j ) of a family of barrier functions that are equivalent to minimizing
the leaking energy in the classical Hopfield network [38].

In the implementation of Eq. 65, a set of iterative updating equations in a parallel imple-

mentation is obtained in [38] from
∂ E({pi j },X)

∂pi j
= 0 to replace those dynamic equations in

the Hopfield network [10], with an improved stability. Moreover, the constraints Cc, Cr are
handled by updating the Lagrange coefficients in help of another set of dynamic equations
for maximization or iterative equations [4,5,47].

The solution from the above approaches will be {pi j } with 0 ≤ pi j ≤ 1, instead of a
permutation matrix Y ∈ �N . We can approximately turn pi j into either 1 if pi j is larger than
a threshold or 0 otherwise.

Alternatively, we may consider the best harmony learning by Eq. 20. The counterpart of
Eq. 59 is

max H(p‖q,�), H(p‖q,�) =
∑

Y

P(Y |X, θp) ln [q(X |Y )q(Y on �N , θq)]. (66)

For P(Y |X, θp) given by Eq. 62, max H(p‖q,�) will push pi j to be 1 or 0, which avoids the
above problem. However, this max H(p‖q,�) is vulnerable due to many local maximums.

As previously suggested in [45] and further elaborated in Sect. 23.4.2 of [39], one solution
is minimizing a combination K L(p‖q,�) − γ H(p‖q,�). We start at γ = 0 or gradually
increase γ in certain way similar to simulated annealing [15]. Also, we may approximately
regard q(Y on �N , θq) is free, and making max H(p‖q,�) with respect to it results in
q(Y on �N , θq) = P(Y |X, θp) and H(p‖q,�) = −HY |X − L X |Y . It follows from Eq. 64
that

K L(p‖q,�) − γ H(p‖q,�) = (1 − γ )HY |X − (1 + γ )L X |Y . (67)
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Therefore, it is implemented still by Eq. 65 as above discussed with γ starting from 0 and
gradually increasing. As γ goes beyond 1, max H(p‖q,�) dominates and pi j will be pushed
to be either 1 or 0.

In addition to the Lagrange type algorithms [4,5,38,47], recently it is proposed in [46,47]
that the constraints Cc : ∑N

i=1 pi j = 1, j = 1, . . . , N , Cr : ∑N
j=1 pi j = 1, i = 1, . . . , N ,

and 0 ≤ pi j ≤ 1 are jointly considered by letting yi j = r2
i j , which induces a matrix

R = {ri j }i=N , j=N
i=1, j=1 that satisfies R RT = I . As a result, the problem minpi j E({pi j }, X)

in Eq. 65 is relaxed into minR RT =I E({r2
i j }, X), handled by a gradient flow on the Stiefel

manifold R RT = I with all the constraints guaranteed automatically. One example of such a
flow is Rnew = Rold +�R with �R ∝ G R(I − RT R) and G R = ∇V E({pi j }, X)pi j =r2

i j
◦ R

for E({pi j }, X) in Eq. 65, where the notation ◦ denotes the Hadamard product. A general
technique for optimization on the Stiefel manifold was elaborated in [7] and can be adopted
for our purpose.

5 Concluding remarks

Based on a set of evidences or samples, the purpose of learning consists of providing a
learning system with a pre-specified structure in an appropriate scale or complexity, and then
determining all the unknown parameters within this structure, as well as enabling the learning
system to perform inference and to make various reactions upon observed evidences or sam-
ples. Aiming at this purpose, we need one learning theory to evaluate what is an appropriate
structure and which performance is good. As introduced in this paper, such a theory could
be developed from one of two major principles. One is called best matching. That is, making
the learning system best match a given set of samples, in a sense of max� ln q(XN |�) or
max� ln [q(XN |�)q(�)] for determining parameters � in a pre-specified structure and in a
sense of max ln q(XN ), q(X) = ∫

q(X|�)q(�)μ(d�) for selecting a best structure as well.
The other is called best harmony, associated with the BYY system. Instead of simply consid-
ering the learning system as a part to match the observed data as the other part, we consider
a learning system that consists of a Ying machine and a Yang machine, with data considered
as a part of the Yang machine. Not only all the unknown parameters but also the scales of
structures are determined such that the Yang-Yang pair reaches a best harmony in a sense of
a best matching with structures in a least complexity, which is different from best matching
in nature. It degenerates to becoming equivalent to best matching in two special cases. One
is that the Yang machine degenerates into consisting of data only while the Ying machine
degenerates into a single structure q(X|�) without considering any inner representations.
The other case is that the Yang machine consists of data p(X) = δ(X − XN ) and a Yang
pathway that is free to be determined in a best matching by Eq. 44 or 45.

For whatever a theory, an effective implementation is needed, which is usually featured
by two competing mechanisms. One is integrating evidences from all the possible scenarios
in a broad scope via integrals of types

∫ [·]d� and
∫ [·]dY, while the other mechanism

is optimal searching with focuses on one or more best values of � and Y. Optimization
approaches take their roles not only in an effective implementation of optimal searching,
but also in an approximate implementation of integrating evidences to avoid the difficulty of
handling integrals. Corresponding to the problems of determining three levels of unknowns
in a learning system, there are three types of optimization tasks as previously introduced
in Sect.2. The nature of convexity takes important roles in machine learning, either directly
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towards a convex programming or approximately transferring a difficult problem into a
tractable one in help of local convexity or convex duality. Therefore, new developments from
the optimization literature will always thrust the advances of machine learning. Furthermore,
learning versus optimization has also been examined from a Ying-Yang perspective, with
combinatorial optimization made more effectively.
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