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Abstract

One important feature of Bayesian Ying–Yang (BYY) harmony learning is that model selection
can be made automatically during parametric learning. In this paper, BYY harmony learning with
a bi-directional architecture is studied for Gaussian mixture modelling via a gradient learning
rule. It has been demonstrated by simulation experiments that the number of Gaussians can be
determined automatically during learning the parameters of the Gaussian mixture.
c© 2003 Published by Elsevier B.V.
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1. Introduction

Gaussian mixture modelling is a powerful approach for data analysis. Although there
have been several statistical methods for implementing this task, e.g., maximum like-
lihood estimation and the EM algorithm, it is usually assumed that the number k of
Gaussians in the mixture is pre-known. However, in many cases this key information
is not available and the selection of an appropriate number of Gaussians must be made
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with the estimation of the parameters. One possible approach is to choose a best k∗ by
the Akaike’s information criterion [1] or its extensions. But the process of evaluating a
criterion incurs a large computational cost since we need to repeat the entire parameter
learning process at a number of diIerent values of k.
Proposed in 1995 [2] and systematically developed in past years [3–5], Bayesian

Ying–Yang (BYY) harmony learning acts as a general statistical learning framework
not only for understanding several existing major learning approaches but also for
tackling the learning problem with a new learning mechanism that makes model se-
lection automatically during parameter learning. In the following, we implement this
mechanism on a bi-directional architecture (BI-architecture) of the BYY system via a
gradient learning rule to solve the Gaussian mixture modelling problem.

2. Gradient learning rule

A BYY system describes each observation x∈X ⊂ Rn and its corresponding inner
representation y∈Y ⊂ Rm via the two types of Bayesian decomposition of the joint
density p(x; y) = p(x)p(y|x) and q(x; y) = q(x|y)q(y), being called Yang and Ying
machine, respectively. In this paper, y is only limited to be an integer variable, i.e.,
y∈Y={1; 2; : : : ; k} ⊂ R with m=1. Given a data set Dx={xt}Nt=1, the task of learning
on a BYY system consists of specifying all the aspects of p(y|x); p(x); q(x|y); q(y)
with a harmony learning principle implemented by maximizing the functional

H (p‖q) =
∫
p(y|x)p(x) ln[q(x|y)q(y)] dx dy − ln zq; (1)

where zq is a regularization term. The details are referred to [3].
If both p(y|x) and q(x|y) are parametric, i.e., from a family of probability densities

with a parameter �∈Rd, the BYY system is called to have a Bi-directional Architec-
ture (BI-Architecture). For Gaussian mixture modelling, we use the following speciLc
BI-architecture of the BYY system. q(j) = �j with �j ¿ 0 and

∑k
j=1 �j = 1. Also,

we ignore the regularization term zq (i.e., set zq = 1) and let p(x) be the empirical
density p0(x)=(1=N )

∑N
t=1 �(x− xt), where x∈X=Rn. Moreover, the BI-architecture

is constructed with the following parametric form:

p(y = j|x) = �jq(x|�j)
q(x|�k)

; q(x|�k) =
k∑
j=1

�jq(x|�j); (2)

where q(x|�j)=q(x|y= j) with �j consisting of all its parameters and �k={�j; �j}kj=1.
Substituting these component densities into Eq. (1), we have

H (p‖q) = J (�k) =
1
N

N∑
t=1

k∑
j=1

�jq(xt |�j)∑k
i=1 �iq(xt |�i)

ln[�jq(xt |�j)]: (3)
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That is, H (p‖q) becomes a harmony function J (�k) on the parameters �k of a Lnite
mixture model, which was originally introduced in [2] as J (k) and developed into
this form in [3] using as a selection criterion of the number k. Letting q(x|�j) be a
Gaussian density given by

q(x|�j) = q(x|mj; �j) = 1
(2�)n=2|�j|1=2 e

−(1=2)(x−mj)T�−1
j (x−mj); (4)

where mj is the mean vector and �j is the covariance matrix, and �j = e�j =
∑k

i=1 e
�i

for j = 1; 2; : : : ; k with −∞¡�1; : : : ; �k ¡ +∞. By the derivatives of J (�k) with
respect to �j, mj and �j, we have the following gradient learning rule:

O �j = �
�j
N

k∑
i=1

N∑
t=1

h(i|xt)U (i|xt)(�ij − �i); (5)

Omj = �
�j
N

N∑
t=1

h(j|xt)U (j|xt)�−1
j (xt − mj); (6)

O�j = �
�j
2N

N∑
t=1

h(j|xt)U (j|xt)�−1
j [(xt − mj)(xt − mj)T − I ]�−1

j ; (7)

where

U (i|xt) =
k∑
r=1

(�ri − p(r|xt)) ln �rq(xt |�r) + 1; (8)

h(i|xt) = q(xt |�i)∑k
r=1 �rq(xt |�r)

; p(i|xt) = �ih(i|xt) (9)

and �ij is the Kronecker function, and � is the learning rate which is usually a small
positive number.
In the same way, we can construct such a gradient learning rule for the other kind

of Lnite mixture model by considering the harmony function in Eq. (3) with q(x|�j)
being changed into the other probability distribution instead of Gaussian one.

3. Simulation results

We conducted experiments on seven sets Si ; i = 1; 2; : : : ; 7 of samples drawn from
a mixture of four or three bivariate Gaussians densities (i.e., n = 2). As shown in
Fig. 1, each data set of samples is generated at diIerent degree of overlap among
the clusters(Gaussians) in the mixture by controlling the mean vectors and covariance
matrices of the Gaussian distributions, and with equal or unequal mixing proportions of
the clusters in the mixture by controlling the number of samples from each Gaussian.
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Fig. 1. Seven sets of sample data used in the experiments (a) set S1; (b) set S2; (c) set S3; (d) set S4;
(e) set S5; (f) set S6; (g) set S7.

Using k∗ to denote the number of Gaussians in the original mixture, we implemented
the gradient learning rule on those seven sample data sets always with k¿ k∗. To
speed up and stabilize the algorithm, we replaced the learning rate � with �|�j|=�j
in Eqs. (5–7) and set � to be 0.1. Moreover, the other parameters were initialized
randomly within certain intervals. In all the experiments, the learning was stopped
when |J (�new

k )− J (�old
k )|¡ 10−7.

The experimental results on S2 and S4 are given in Figs. 2 and 3, respectively, with
case k = 8 and k∗ = 4. We observe that four Gaussians are Lnally located accurately,
while the mixing proportions of the other four Gaussians were reduced to below 0:001,
i.e, these Gaussians are extra and can be discarded. That is, the correct number of the
clusters have been detected on these data sets. Moreover, the experiment has been made
on S5 with k = 8; k∗ = 3. As shown in Fig. 4, clusters are far from spherical shapes
(actually they are very Pat). Again, three Gaussians are located accurately, while the
mixing proportions of the other Lve extra Gaussians become less than 0.001. That is,
the correct number of the clusters can still be detected on such a special data set.
Furthermore, the gradient learning rule was also implemented on S6 with k=8; k∗=4.
As shown in Fig. 5, even each cluster has a small number of samples, the correct
number of clusters can still be detected, with the mixing proportions of other four
extra Gaussians reduced below 0.001.
The further experiments on the other sample sets had been also made success-

fully for the correct number detection in the similar cases. Actually, in many ex-
periments, a failure on the correct number detection rarely happened when we initially
set k∗6 k6 3k∗. However, the gradient learning may lead to a wrong detection when
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Fig. 2. The experimental result on S2 (stopped after 180 iterations).
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Fig. 3. The experimental result on S4 (stopped after 543 iterations).

k ¿ 3k∗. Also, it is observed that the gradient learning rule enforces a mechanism of
rewarding and penalizing competitive learning among the Gaussians through their mean
vectors, which is very similar to that of rival penalized competitive learning (RPCL)
[6]. Therefore, the theory may provide BYY harmony learning a new approach to the
theoretical analysis of RPCL.
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Fig. 4. The experimental result on S5 (stopped after 33 000 iterations).
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Fig. 5. The experimental result on S6 (stopped after 1216 iterations).

In addition to the correct number detection, we further compared the converged
values of parameters (discarding the extra Gaussians) with those parameters in the
mixture from which the samples come from. We checked the results in all the above
empirical experiments and found that the gradient learning converges with a lower
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average error between the estimated parameters and the true parameters being less
than 0.1.
Furthermore, we tested the gradient learning rule for clustering on some sample data

sets in which each cluster is not subject to a Gaussian. The experiment results have
shown that the correct number of clusters can be still detected when those clusters can
be separated in the similar degree as above. Also, under the principle of the maximum
posteriori probability p(j|xt) of the converged parameters �k , the clustering result is
generally as good as the k-means algorithm with k = k∗. However, when two or more
clusters are joined together like iris data, the gradient learning rule can only Lnd out
the separated clusters in the sample data set.

4. Conclusions

The automatic model selection feature of BYY harmony learning has been demon-
strated on Guassian mixture modelling with a BI-architecture of the BYY system. In
help of the gradient learning rule derived, a number of experiments have demonstrated
that as long as the overlap among the Gaussians or clusters in a data set is not too se-
rious, the number of Gaussians can be correctly detected automatically during learning
with a good estimation on parameters of each Gaussian component density, even on a
data set of a small sample size.
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