
SIAM J. DISC. MATH.
Vol. 8, No. 3, pp. 359-387, August 1995

() 1995 Society for Industrial and Applied Mathematics
OO2

TREE SPANNERS *

LEIZHEN CAI AND DEREK G. CORNEIL$

Abstract. A tree t-spanner T of a graph G is a spanning tree in which the distance between
every pair of vertices is at most times their distance in G. This notion is motivated by applications
in communication networks, distributed systems, and network design.

This paper studies graph-theoretic, algorithmic, and complexity issues about tree spanners. It is

shown that a tree 1-spanner, if it exists, in a weighted graph with m edges and n vertices is a minimum
spanning tree and can be found in O(mlog(m,n)) time, where (m,n) min{il log(i) n <_ m/n}.
On the other hand, for any fixed 1, the problem of determining the existence of a tree t-spanner in
a weighted graph is proven to be NP-complete. For unweighted graphs, it is shown that constructing
a tree 2-spanner takes linear time, whereas determining the existence of a tree t-spanner is NP-
complete for any fixed >_ 4. A theorem that captures the structure of tree 2-spanners is presented
for unweighted graphs. For digraphs, an O((m 4- n)c(m, n)) algorithm is provided for finding a tree
t=spanner with as small as possible, where c(m, n) is a functional inverse of Ackerman’s function.
The results for tree spanners on undirected graphs are extended to "quasi-tree spanners" on digraphs.
Furthermore, linear-time algorithms are derived for verifying tree spanners and quasi-tree spanners.

Key words, graph algorithm, NP-complete, tree spanner, spanning tree, distance

AMS subject classifications. 05C05, 05C12, 05C85, 68Q25, 68R10

1. Introduction.

1.1. Motivation. A t-spanner of a graph G is a spanning subgraph H in which
the distance between every pair of vertices is at most t times their distance in G. This
notion was introduced in 1987 by Peleg and Ullman [27], who showed that spanners
can be used to construct synchronizers for transforming synchronous algorithms into
asynchronous algorithms. A similar notion appeared in 1986 when Chew [16] studied
approximations of complete Euclidean graphs by their planar subgraphs.

The key idea behind the notion of spanners is the approximation of pairwise
vertex-to-vertex distances in the original graph by spanning subgraphs. The quality of
the distance approximation by a t-spanner is measured by the parameter t _> 1, which is
referred to as the stretch factor of the t-spanner. This distance approximation property
makes spanners quite useful in areas such as communication networks, distributed
systems, motion planning, network design, and parallel machine architectures [5], [a],
[6], [16], [27]-[29], [25]. For example, a sparse spanner (a spanner with few edges) of
small stretch factor can be used to plan efficient routing schemes in a communication
network while maintaining succinct routing tables [28]. Such a spanner can also be
used as a substitute for its original network to reduce the construction cost of the
network while keeping similar communication costs [29], [23]-[25]. In motion planning,
when the input of a simple polygon is inaccurate, a special spanner of the visibility

* Received by the editors September 24, 1992; accepted for publication (in revised form) August
30, 1994. This research was supported in part by a grant from the Natural Sciences and Engineering
Research Council of Canada.

Department of Computer Science, University of Toronto, Toronto, Ontario M5S 1A4, Canada.
Current address: Department of Computer Science, The Chinese University of Hong Kong, Shatin,
New Territories, Hong Kong (lca+/-cs.cuhk.hk).

: Department of Computer Science, University of Toronto, Toronto, Ontario M5S 1A4, Canada.
(dgc@cs. toronto, edu).

359

D
ow

nl
oa

de
d

10
/2

6/
15

 to
 1

37
.1

89
.8

8.
22

9.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

360 LEIZHEN CAI AND DEREK G. CORNEIL

graph of the input polygon, called the visibility skeleton, can be used to plan collision-
free paths inside the real polygon [14].

In most applications, the sparseness of a spanner is the main concern; the sparsest
t-spanner in a connected graph is a tree t-spanner, that is, a t-spanner that is a tree.
Therefore, as far as sparseness is concerned, tree t-spanners are the best possible t-
spanners. Furthermore, tree spanners have other interesting applications besides those
mentioned for general graph spanners. Tree spanners of small stretch factors can be
used to perform multisource broadcasts in a network [5], which can greatly simplify the
message routing at the cost of only small delays in message delivery. The existence of a
tree 2-spanner in a 2-connected network guarantees that the communication between
operative sites will not be affected by any isolated failure of communication sites and
lines [10]. There are also some surprising connections between tree 2-spanners and
cycles in graphs. Certain cycle-extremal weighted graphs can be represented as a

weighted union of tree 2-spanners ([8], where they were called tritrees), and graphs
that contain tree 2-spanners ([7], where they were called trigraphs) appear to be the
only graphs that require a large number of cycles to cover the edges of the graph
exactly twice.

In this paper we consider graph-theoretic, algorithmic, and complexity issues
about tree spanners. We study tree spanners in weighted, unweighted, and directed
graphs, as well as "quasi-tree" spanners in directed graphs. By exploring graph-
theoretic characterizations, we obtain several efficient algorithms for finding tree and
quasi-tree t-spanners for some values of t. On the other hand, we show the intractability
of determining the existence of tree and quasi-tree t-spanners for almost all other values
of t. Furthermore, we present linear-time algorithms for verifying tree and quasi-tree
t-spanners for all values of t.

1.2. Notation and definitions. We use the terminology of Bondy and Murty
[9]. Graphs in this paper can be either weighted or unweighted, directed or undirected;
they are connected graphs without loops, multiedges, and multiarcs. For any graph
G, V(G) denotes the vertex set of G; if G is undirected then E(G) denotes the edge
set of G, and if G is directed then A(G) denotes the arc set of G. For a subset V of
vertices of G, G[V] denotes the induced subgraph of G on V; for a subset E of edges
of G, G[E] denotes the edge-induced subgraph of G on E. The induced subgraph
G[V(G) \ Y’] is denoted by G- Y’, and the edge-induced subgraph G[E(G) \ E’] is

denoted by G- E. For any subgraph H of G, G- H denotes the subgraph obtained
from G by deleting edges (or arcs) of H from G. Throughout this paper, unless specified
otherwise, m denotes the number of edges (or arcs) of G and n denotes the number
of vertices of G. For any real number x, [xJ denotes the largest integer _< x and [x
denotes the least integer >_ x.

We shall nssume that the weight w(e) of an edge (or rc) e is a positive real
number and regard an unweighted graph as a weighted graph where each edge (or
arc) has unit weight. Given a subgraph H of G, w(H) denotes the weight of H, i.e.,
the sum of the weights of all edges in H; when H is a (directed) path, w(H) is the
length of H. For any two vertices x and y of G, a path from x to y is an (x, y)-path and
an (x, y)-path of minimum length is a shortest (x, y)-path. We use d(x, y) to denote
the weighted distance in G from x to y, i.e., the length of shortest (x, y)-path in G.
Note that d(x, y) if there is no (x, y)-path in G and d(x, y) d(y, x) if G is
undirected.

For any real number t _> 1, a spanning subgraph H of G is a t-spannerif dH(x, y) <_
t. d(x, y) for every pair of vertices x and y of G. The parameter t is called the stretch

D
ow

nl
oa

de
d

10
/2

6/
15

 to
 1

37
.1

89
.8

8.
22

9.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

TREE SPANNERS 361

factor of H. The stretch index of a spanner H is the minimum number t for which H is
a t-spanner. A t-spanner H is a minimal t-spanner if no subgraph of H is a t-spanner
of G, a minimum t-spanner if it has the least number of edges among all t-spanners
of G, and an optimal t-spanner if H has the least weight among all t-spanners of G.

For an undirected graph G, a spanning subgraph T of G is a tree t-spanner if T
is both a t-spanner and a tree; in this case G is tree t-spanner admissible. A spanning
subgraph T of G is a tree spanner if it is a tree t-spanner for some t >_ 1 and a minimum
tree spanner if it has the smallest stretch factor among all tree spanners of G. Thus a

spanning tree of G is always a tree spanner.
For a directed graph (digraph) G- (V, A; w), we use ((V, E;) to denote its

underlying undirected graph, i.e., xy E E iff either (x, y) e A or (y, x) A or both,
and

w((x,y)) if (x,y) e A, (y,x) A,
(x, y)- w((y, x)) if (y, x) e A, (x, y) A,

min{w((x,y)),w((y,x))} if (x,y), (y,x) e A.

A vertex x reaches vertex y(y is reachable from x) in G if there is a directed (x, y)-path
in G. It follows that dG(x, y) c if y is not reachable from x in G.) A spanning tree
of G is a spanning subgraph T that contains no directed cycle and such that T is a

tree. Then, as with undirected graphs, a tree t-spanner of a digraph is a spanning
tree that is a t-spanner. A quasi tree of G is a spanning subgraph T such that T is a

tree; T is a quasi-tree t-spanner if it is a t-spanner of G. Note that a quasi tree may
contain a cycle consisting of two arcs (x, y) and (y, x). Other terms on tree spanners
of undirected graphs are naturally extended to tree spanners and quasi-tree spanners
of digraphs. However, a spanning tree (quasi tree) of a digraph is not necessarily a
tree (quasi tree) spanner.

A few more definitions are in order for undirected graphs. (For simplicity, we
will use these definitions for digraphs as well; it is understood that whenever we do
so, we either refer to the underlying graphs or mean that the underlying graphs have
the property.) For a connected graph, a k-cut is a set of k vertices whose deletion
disconnects the graph. A graph G is nonseparable if it has no 1-cut and triconnected if
it has no k-cut for k _< 2. A block of a graph is a maximal nonseparable subgraph, and
a triconnected component of a graph is a maximal triconnected subgraph. A vertex is
universal if it is adjacent to all other vertices of the graph. An edge e is a binding edge
if its two ends form a minimal cut set. Two disjoint subgraphs S and S’ of G are fully
joined if every vertex in S is adjacent to every vertex in S’. A star is any complete
bipartite graph KI,n with n >_ 1.

Finally, by the tree t-spanner problem, we usually mean the problem of finding
a tree t-spanner in a graph, but it may refer to the problem of determining whether
a graph contains a tree t-spanner when we talk about NP-completeness. Its mean-

ing should be clear from the context. The meanings of other spanner problems are
similarly defined.

1.3. Observations. We gather here some fundamental results on spanners in
a graph. For simplicity, we will state our results only in terms of undirected graphs.
These results also hold for digraphs and will be used in our discussions throughout
the paper.

First, because edge weights are assumed to be positive, each of the following
statements gives an equivalent definition of a t-spanner in a weighted graph.

THEOREM 1.1. Let H be a spanning subgraph of a weighted graph G (V, E; w).
The following statements are then equivalent:

D
ow

nl
oa

de
d

10
/2

6/
15

 to
 1

37
.1

89
.8

8.
22

9.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

362 LEIZHEN CAI AND DEREK G. CORNEIL

(1) H is a t-spanner of G (i.e., dH(x, y)

_
t dG(x, y) for every pair x, y e V).

(2) xu E, d.(x, <_ t da(,
(3) For every edge xy E E \ E(U), dH(x, y) <_ t da(x, y).
(4) For every edge xy E, dH(x, y) <_ t. w(xy).
(5) For every edge xy e E \ E(H), dH(x, y) <_ t w(xy).
Proof. The implications (1) =: (2), (2) = (3), and (4) = (5) are trivial. To see

that (3) =v (4), we need only note that, for any edge xy e E, we have dG(x, y) <_ w(xy)
and that dH(x, y) <_ w(xy) <_ t w(xy) if xy E(H), since t >_ 1 and w(xy) > O.

We now show that (5) = (1). It suffices to show that dg(x, y) <_ t. dv(x, y) for
two arbitrary vertices x, y of G. Let P be a shortest (x, y)-path in G. Then for each
edge uv on P, if uv E(H), then dH(u, v) <_ w(uv) <_ t. w(uv), since t _> 1 and
w(uv) > 0; otherwise, dH(u, v) <_ t. w(uv) by statement (5). Therefore,

<_ <_
uvEP eEP

Since dG(x, y) EeeP w(e) by the choice of P, we obtain

dH(x, y) <_ t dG(x, y)

This completes the proof. [:]

Quite often we will use statement (5) in the above theorem as the definition of a
t-spanner, since it is easy to handle in most cases. Based on the above theorem, we
can easily observe the following facts.

Observation 1.2. Let F be a t-spanner of G and H be a k-spanner of F. Then H
is a kt-spanner of G.

Observation 1.3. For any k > 1, H (V, E’; w) is a t-spanner of G (V, E; w)
iff H’= (V, E’; w’) is a t-spanner of G’= (V, E; w’), where w’(e) k. w(e) for every
eEE.

It is easy to see that we can consider each block separately in dealing with most
spanners, such as minimal, minimum, and optimal t-spanners. In particular, we can
restrict our attention to nonseparable graphs when we deal with tree spanners.

Observation 1.4. Let T be a spanning tree of a graph G. Then T is a tree t-spanner
of G iff for every block H of G, T N H is a tree t-spanner of H.

Finally, for an. unweighted graph G, the distance between any two vertices in G is

always an integer. Therefore, in light of statement (4) of Theorem 1.1, we need only
consider t-spanners for integral t.

Observation 1.5. Let H be a spanning subgraph of an unweighted graph G. Then
H is a t-spanner iff H is a [tJ-spanner.

1.4. Outline of the paper. We begin by discussing the verification of tree
spanners and quasi-tree spanners in 2. We present O(m) time algorithms for verifying
tree t-spanners in graphs and in digraphs as well as quasi-tree t-spanners in digraphs.

In 3, we consider tree spanners in weighted graphs. We show that a tree 1-
spanner, if it exists, is a minimum spanning tree and can be found in O(m log/(m, n))
time, where /(m, n) min{i log(i) n _< m/n}. On the other hand, we prove that,
for any fixed t > 1, the problem of finding a tree t-spanner in a weighted graph is
intractable.

In 4, we investigate tree spanners in unweighted graphs. We show that a tree
2-spanner can be constructed in linear time and that the tree t-spanner problem is

D
ow

nl
oa

de
d

10
/2

6/
15

 to
 1

37
.1

89
.8

8.
22

9.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

TREE SPANNERS 363

NP-complete for any fixed integer t >_ 4. We also present a skeleton tree theorem,
which captures the structure of tree 2-spanners.

We deal with tree spanners of digraphs in 5. We present an O((m + n)a(m +
n, n)) algorithm for finding a minimum tree spanner in a digraph, where c(m, n) is a
functional inverse of Ackerman’s function. For general digraphs, we extend the results
of 3 and 4 to quasi-tree spanners.

We conclude the paper with a short summary and some open problems in 6.

2. Verifying a tree t-spanner. Given a graph G, a spanning tree T, and a
positive number t, we wish to verify whether T is a tree t-spanner of G. We may
also wish to know if T is a tree spanner and, if it is, determine its stretch index, i.e.,
the smallest t for which T is a-t-spanner. Similar problems can also be explored for
quasi-tree spanners. These problems will come forth naturally in later sections, and,
for convenience, we will refer to these problems as tree spanner verification problems.

In this section, we will provide linear-time algorithms for the above verification
problems. The main results of this section are summarized in the following theorem,
which will be used in later sections.

THEOREM 2.1. Let D and G be directed and undirected weighted graphs, respec-
tively. Let S and T be spanning trees of D and G, respectively. Let Q be a quasi tree
of D. Then the following problems can be solved in O(m) time:

(a) Determine the stretch index of T.

(b) Is S a tree spanner? If it is, determine its stretch index.

(c) Is Q a quasi-tree spanner? If it is, determine its stretch index.

2.1. A verification algorithm paradigm. We first describe an algorithm
paradigm for tree spanner verification problems. Clearly, statement (5) of Theorem
1.1 provides us with a simple method for solving these problems. By taking this ap-
proach, we need to compute the distances in T of all rn- n + 1 vertex pairs defined
by nontree edges. Thus the cost of distance computation dominates the running time
of verification algorithms based on this approach. If we compute the distance of each
vertex pair directly and independently, it may take O(mn) time to compute these
distances, since each distance may take O(n) time to compute. We can reduce the
cost to O(n2) by computing all pairwise distances in T together. Unfortunately, this
is not satisfactory for sparse graphs. To speed up the verification, we need a better
way to compute the distances of these m- n + 1 vertex pairs.

For simplicity, we will describe an algorithm for verifying a tree t-spanner in an
undirected graph. The algorithm is easily extended to other verification problems.
Several definitions are in order. A rooted tree T is a tree with a distinguished vertex r,
called the root. For any two vertices x and y in T, if x is on the path from r to y, then
x is an ancestor of y. The least common ancestor of x and y, denoted by LCA(x, y),
is the common ancestor z of x and y such that for any common ancestor z of x and
y, z is an ancestor of z. We will take advantage, of the structure of a tree to compute
distances more efficiently. To achieve this, we arbitrarily choose a vertex r to be the
root of T and then label vertices of T in such a way that distance dT(x, y) of any
vertex pair (x,y) can be quickly computed from the labels of x,y, and LCA(x,y).
Notice that dT(x, y) dT(x, LCA(x, y)) + dT(LCA(x, y), y).

D
ow

nl
oa

de
d

10
/2

6/
15

 to
 1

37
.1

89
.8

8.
22

9.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

364 LEIZHEN CAI AND DEREK G. CORNEIL

ALGORITHM VERIFICATION(G, T, t){Verify if T is a tree t-spanner of G.}
Input: A graph G, a spanning tree T and a positive number t;
Output: "Yes" if T is a tree t-spanner; "No" otherwise.

begin

1. Arbitrarily choose a vertex r as the root of T;
2. Compute a label label(x) for each vertex x of T;
3. Compute LCA(x, y) for every nontree edge xy of G;
4. for each nontree edge xy do

begin
4.1. Compute tiT(X, y) by using the labels of x, y and LCA(x, y);
4.2. if dT(x, y) > t. w(xy) then output "No" EXIT;

end;
5. output "Yes";
end.

By statement (5) of Theorem 1.1, we note that the stretch index of T equals

max(1, dT(x,y)/w(xy)lxy e E(G) \ E(T)).

The above algorithm can thus be modified (line (4.2)) to compute the stretch index of
T as well. To apply this algorithm to a digraph D, we take the underlying tree of
D’s spanning tree (quasi tree) T to define a rooted tree and carry out the computation
of the algorithm with respect to this rooted tree. In this case, when we notice that x
reaches y in T iff dT(x, y) is finite, we can use the algorithm to check the teachability
from x to y in T as well.

Regarding the complexity of the algorithm, we see that line (1) is trivial. To
carry out the computation of line (3), we use a linear-time least common ancestor
algorithm of Sarel and Tarjan [21]. Clearly, line (4.2) takes O(1) time. In the next
two subsections, we will discuss efficient implementations of line (2) and line (4.1) for
undirected graphs and digraphs so as to obtain the results in Theorem 2.1.

2.2. Undirected case. Let G be an undirected weighted graph and T be a
spanning tree of G. Arbitrarily choose a vertex r in T as the root of T. For each vertex
x in T, label x by the root-to-vertex distance of x, i.e., label(x) tiT(r, x). See Fig. 1
for an exampIe.

We show that for any two vertices x and y, their distance dT(x, y) in T can be
computed in constant time from label(x), label(y), and label(LCA(x, y)). Notice that

label(x) dT(r, x) dT(r, LCA(x, y)) + dT(LCA(x, y), x)

and
label(y) dT(r, y) dT(r, LCA(x, y)) -t- dT(LCA(x, y), y).

We obtain
dT(x, y) label(x) + label(y) 2. label(LCA(x, y)).

Therefore dT(x, y) can be determined in O(1) time.
It is easy to see that by either a depth-first or a breadth-first search from the

root r, we can obtain the labels for all vertices of T. Thus line (2) of algorithm
VERIFICATION can be carried out in O(n) time. Furthermore, line (4.1) can be
done in O(1) time; thus step (4) takes O(m- n) time. Therefore, the overall time

D
ow

nl
oa

de
d

10
/2

6/
15

 to
 1

37
.1

89
.8

8.
22

9.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

TREE SPANNERS 365

FIG. 1. Labeling the vertices of T by their root-to-vertex distances.

of the algorithm is linear. Thus verifying a tree t-spanner takes linear time. Once
dT(x, y) is obtained for every nontree edge xy, we can easily determine the stretch
index of T in linear time, thereby establishing Theorem 2.1(a).

2.3. Directed case. Let D be a weighted digraph and S be a spanning tree of
D. Then by statement (5) of Theorem 1.1, it is easy to see that S is a tree spanner
of D iff x reaches y in S for any nontree arc (x, y) of D. Therefore, in order to verify
that S is a tree spanner of D, we need to verify that S preserves reachability for each
nontree arc of D. We apply VERIFICATION to D and S together with the underlying
tree S of S.

Arbitrarily choose a vertex r in as the root of . An edge xy of , where x is
an ancestor of y, is a forward edge if (x, y) is an arc of S and a backward edge if (y, x)
is an arc of S. For an arbitrary vertex x in , let P(x) be the unique (r, x)-path in S.
Label x by a triple (b(x), f(x), /(x)), where

b(x) is the number of backward edges on P(x),
f(x) is the number of forward edges on P(x), and
l(x) is the total weight of forward edges on P(x) minus the total weight of back-

ward edges on P(x).
The first two components in the triple are used for verifying reachability; the third one
is used for computing distances. It is easy to see that all vertex labels can be computed
in O(n) time by either a depth-first or breadth-first search of from the root r. See
Fig. 2 for an example. Backward and forward edges are indicated by upward and
downward arrows, respectively.

For any two vertices x and y of S, it is easy to see that x reaches y in S iff

f(x) f(LCA(x, y)) and b(y) b(LCA(x, y)).
Since these two conditions can be easily checked in O(1) time, the overall cost of
verifying a tree spanner is linear. Furthermore, it is not difficult to see that if x
reaches y in S, then

ds(x, y) l(y) -l(x).
Thus ds(x, y) can be computed in O(1) time. Therefore, it takes linear time to

compute the stretch index of a tree spanner of D. This also implies that verifying a
tree t-spanner of D takes linear time. Hence, we have Theorem 2.1(b).

We now turn our attention to quasi-tree spanners. Let Q be a quasi tree of D.
Like the situation for tree spanners in digraphs, in order to verify that Q is a quasi-tree

D
ow

nl
oa

de
d

10
/2

6/
15

 to
 1

37
.1

89
.8

8.
22

9.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

366 LEIZHEN CAI AND DEREK G. CORNEIL

y (0,3,6)

(1,1,-1)

FIG. 2. Labeling the vertices of by triples.

(2,1,1,4,1)

FIG. 3. Labeling the vertices of (by quintuples.

spanner of D, we need to verify that Q preserves reachability for each arc of D that is
not in Q. We apply VERIFICATION to D and Q together with the underlying tree
QofQ.

Arbitrarily choose a vertex r in (as the root of (. An edge xy of (is a double
edge if both (x, y) and (y, x) are arcs in Q. Note that a double edge is also a forward
edge and a backward edge. For an arbitrary vertex x in (, let P(x) be the unique
(r, x)-path in Q. Label x by a quintuple (b(x),f(x),d(x),tb(x),tf(x)), where

b(x) is the number of backward edges on P(x),
f(x) is the number of forward edges on P(x),
d(x) is the number of double edges on P(x),
lb(x) is the total weight of arcs of Q corresponding to backward edges on P(x),

and
lf(x) is the total weight of arcs of Q corresponding to forward edges on P(x).

The first three components in the quintuple are used for verifying reachability; the
last two are used for computing distances. Again all vertex labels can be computed
in O(n) time by either a depth-first or breadth-first search of (from the root r. See
Fig. 3 for an example. Each double edge is .shown with both an upward and downward
arrow; the numbers beside the arrows indicate the weights of the corresponding arcs
of Q.

For any two vertices x and y, it is easy to see that x reaches y iff

f(x) f(LCA(x, y)) d(x) d(LCA(x, y))

D
ow

nl
oa

de
d

10
/2

6/
15

 to
 1

37
.1

89
.8

8.
22

9.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

TREE SPANNERS 367

and
b(y) b(LCA(x, y)) d(y) d(LCA(x, y)).

We can check these two conditions in O(1) time and thus verify a quasi-tree spanner
in linear time. Furthermore, if x reaches y, then we have

dQ(x, y) lb(x) -lb(LCA(x, y)) + f(y) -If(LCA(x, y)).

Thus dQ(x,y) can be computed in O(1) time. Therefore, it takes linear time to
compute the stretch index of a quasi-tree spanner of D, which implies that verifying
a quasi-tree t-spanner takes linear time. This establishes Theorem 2.1(c), and thus
completes the proof of Theorem 2.1.

3. Tree spanners in weighted graphs. In this section, we consider the com-
plexity of tree spanner problems on weighted graphs. By statement (5) of Theorem
1.1, a spanning subgraph H of a weighted graph G (V, E; w) is a t-spanner iff for ev-
ery edge xy e E\ E(H), we have dH(x,y) <_ t.w(xy). We present an O(mlog(m,n))
algorithm for finding a tree 1-spanner in a weighted graph; on the other hand, we
show that for any fixed t > 1, the tree t-spanner problem is NP-complete on weighted
graphs. This completely settles the issue of complexity of tree spanner problems for
weighted graphs. Henceforth in this section, by a graph we mean a weighted graph.

3.1. Finding a tree 1-spanner. Let G (V, E; w) be a weighted graph, and let
H be a 1-spanner of G. Since H is a subgraph of G, it is clear that du(x, y)

_
dG(x, y)

for any two vertices x, y E V. Therefore, dH(x, y) riG(X, y) for any x, y E V, i.e., H
preserves pairwise distances in G.

The distance-preserving property of a 1-spanner is useful in many applications.
For example, a 1-spanner of a communication network can be used as a substitute
for the original network without introducing any extra delay in communication. It
is also closely related to the metric realization problem [2], [31], [20] (to construct a
graph with a minimum total weight that realizes an n-by-n symmetric distance matrix
U (mi,j)). To see this, we construct a complete graph G(M) on n vertices such that
w(ij) mi,j for each edge ij of G(M); then the optimal 1-spanner of G(M) gives an
optimal realization of G if we allow only n vertices. Regarding tree 1-spanners, we see
that a tree 1-spanner is a distance-preserving spanning tree. Therefore, using a tree
1-spanner of a network to perform broadcast in the network guarantees the minimum
delay. Furthermore, a tree 1-spanner can also be used as a compact encoding of the
distance information of G.

Remark. Because of the connection between 1-spanners and metric realizations,
some results in this subsection regarding minimal 1-spanners have appeared in the
literature on metric realizations. In particular, Corollary 3.3 has been previously
obtained by Hakimi and Yau [20].

We shall first explore the properties of 1-spanners of G. These properties lead us
to polynomial algorithms for constructing a minimum or an optimal 1-spanner in G,
and these algorithms can be used to find a tree 1-spanner in G. We then establish
a relationship between a tree 1-spanner and a minimum spanning tree and use this
relationship to derive a more efficient algorithm for finding a tree 1-spanner.

LEMMA 3.1. Let H be a 1-spanner of a weighted graph G. Then H is minimal
dH-xu(x, y) > w(xy) for every edge xy of U.

Proof. If there is an edge xy of H such that dH_xu(x, y)

_
w(xy), then H- xy

is a 1-spanner of H by statement (5) of Theorem 1.1, and thus H- xy is a 1-spanner
of G by Observation 1.2. Hence, H is not minimal. Conversely, if H is not minimal,

D
ow

nl
oa

de
d

10
/2

6/
15

 to
 1

37
.1

89
.8

8.
22

9.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

368 LEIZHEN CAI AND DEREK G. CORNEIL

then there is an edge uv of H such that H- uv is a 1-spanner of G. This implies that
v) <_ D

We are now ready to present necessary and sufficient conditions for an edge of G
to be in a minimal 1-spanner. Bear in mind that edge weights of G are positive.

THEOREM 3.2. Let H be a minimal 1-spanner of a weighted graph G, and let xy
be an edge of G. Then the following statements are equivalent:

(1) Edge xy belongs to H.
(2) For every vertex z e V \ (x, y}, dG(x, z)+ dG(z, y) > w(xy).
(3) Distance dG-xy(x, y) > w(xy).
Proof. (1) = (2). Let z be an arbitrary vertex in V \ (x, y}. If dH(x, z) + dH(z,

y) <_ w(xy), then dH(x,z) < w(xy), since edge weights are positive, and thus any
shortest (x, z)-path P in H avoids edge xy. Let H’ H- xy. Then dH,(X,Z)
dH(x, z), since P is in H’. Similarly, dH,(Z, y)--dH(z, y).

By the definition of distance, we have

dH,(X, y) <_ dH,(X, z) + dH,(Z, y).

Therefore,
dH,(X, y) <_ dH(x, z) + dH(z, y) <_ w(xy).

Then by Lemma 3.1, H is not a minimal 1-spanner, which is a contradiction. Hence,

dH(x, z) + dH(z, y) > w(xy).

Since H is a 1-spanner of G, we now have dH(x, z) da(x, z) and dH(z, y) dG(z, y).
Therefore, dG(x, z) + dG(z, y) > w(xy).

(2) (3). Let G’ G- xy. By the definition of distance, we have

dG,(x,y) min {dG,(x,z) + dG,(z,y)}

It follows from statement (2) that dG,(x, y) > w(xy).
(3) = (1). Because edge weights are positive, statement (3) implies that xy is

the only (x, y)-path in G with length _< w(xy). Since H is a l-spanner of G, we have
dH(x, y) <_ w(xy). Therefore, xy must appear in H. [:1

COROLLARY 3.3 (Hakimi and Yau [20]). Every weighted graph G has a unique
minimal l-spanner.

Proof. By Theorem 3.2, each edge of a minimal l-spanner of G is uniquely deter-
mined.

Since both a minimum and an optimal 1-spanner of G are minimal 1-spanners,
Corollary 3.3 implies the following result.

COROLLARY 3.4. For any weighted graph G, the following statements are equiv-
alent:

(1) H is a minimal 1-spanner of G.
(2) H is a minimum 1-spanner of G.
(3) H is an optimal 1-spanner of G.
If G contains a tree 1-spanner T, then T is also a minimal 1-spanner. Thus

Corollary 3.3 also implies the uniqueness of a tree 1-spanner.
COROLLARY 3.5. A weighted graph can contain at most one tree 1-spanner.
In light of Theorem 3.2 and Corollary 3.4, we see that the minimum (or optimal)

1-spanner of a weighted graph can be constructed in polynomial time, since for each

D
ow

nl
oa

de
d

10
/2

6/
15

 to
 1

37
.1

89
.8

8.
22

9.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

TREE SPANNERS 369

edge of G, we can use either statement (2) or statement (3) of Theorem 3.2 to decide if
the edge belongs to the minimal 1-spanner H of G. For a single edge, it is more efficient
to use statement (3) to determine whether the edge is in H if pairwise distances are
not given. However, it seems that the algorithm using statement (2) is more efficient
for constructing H, especially when pairwise distances are given; using the fastest
known algorithm to compute pairwise distances [17], we can implement the algorithm
in O(mn + n2 log n) time.

THEOREM 3.6. The minimum (or optimal) 1-spanner of a weighted graph can be
found in O(mn + n2 log n) time.

Clearly, we can find the tree 1-spanner (if it exists) of G in O(mn + n2 log n)
time by first computing the minimal 1-spanner of G and then checking if it is a
tree. However, this approach is not efficient. To obtain a more efficient algorithm
for computing the tree 1-spanner, we will establish a relationship between the tree
1-spanner of G and a minimum spanning tree of G.

THEOREM 3.7. The tree 1-spanner of a weighted graph G is a minimum spanning
tree. Moreover, every tree 1-spanner admissible weighted graph contains a unique
minimum spanning tree.

Proof. Let T be a minimum spanning tree of G. We first claim that T is contained
in any 1-spanner H of G. To see this, let xy be an arbitrary edge of T and P be a
shortest (x, y)-path in G- xy. Then there is an edge e on P that is not in T. If
w(P) <_ w(xy), then w(e) < w(xy), since edge weights are positive and P contains at
least two edges. This implies that T + e xy is a spanning tree whose weight is less
than w(T), contrary to T being a minimum spanning tree. Therefore, dG_y(X, y)
w(P) > w(xy), and, by Theorem 3.2, xy is an edge of H.

Now let T be the tree 1-spanner of G. By the above claim, T is a subgraph of T.
Since both T and T are spanning trees of G, we have T T. The theorem follows
immediately. [:]

In light of the above theorem, we have the following algorithm for constructing
the tree 1-spanner of G: we first find a minimum spanning tree T of G and then
verify whether T is a 1-spanner of G. A minimum spanning tree can be found in
O(mlog(m,n)) time [18], where (m,n) min{illog(i)n <_ m/n} and log()n is

defined by log() n n, log(i) n log log(i-1) n for i _> 1. Since verification takes linear
time by Theorem 2.1(a), we have the following result.

THEOREM 3.8. The tree 1-spanner of a weighted graph can be found in

O(m log (m, n) time.
Remark. The above algorithm can be applied to find tree l-spanners in a weighted

graph G where zero weight is allowed. Let Go be the subgraph of G induced by zero-
weighted edges of G and Z1,..., Zk be the connected components of Go. We construct
a new weighted graph G as follows: contract such Zi to a single vertex zi, remove all
loops, and, for all parallel edges (formed from the contraction) between two vertices,
delete all but one with the lightest weight. Then G is a weighted graph with no
zero weight on edges, and its tree l-spanner can be found by the algorithm in this
subsection. It is not hard to see that G admits a tree l-spanner iff G admits one.
Actually, a tree l-spanner of G can be obtained from the tree l-spanner of G by
"replacing" each z with a spanning tree of Z. However, G may contain many tree
l-spanners when it has zero-weighted edges. In fact, the number of tree l-spanners
in G equals the product of the number of spanning trees of Zi, 1 _< _< k. Figure 4
illustrates the above construction.D

ow
nl

oa
de

d
10

/2
6/

15
 to

 1
37

.1
89

.8
8.

22
9.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

370 LEIZHEN CAI AND DEREK G. CORNEIL

G’

FIG. 4. Graphs G, G’ and their tree 1-spanners (solid edges).

TABLE 1
Bridge length (number of edges) and edge weights of G (note 1 + e).

Edge weights w(e)

Bridge length Bridge edge Literal edge Clause edge

1 < < 2 1 1 tl/el F(1 + 2pl/e])/el
2 _< < 4 2LeJ 1 2 r(4 + 2LeJ)/e]

3.2. NP-completeness for t > 1. We now consider the complexity of finding
tree t-spanners (t > 1) in a weighted graph. It turns out that the tree t-spanner
problem on weighted graphs is intractable for any fixed rational number t > 1. As a
consequence, the minimum t-spanner problem on weighted graphs is intractable for
any fixed rational number t > 1. Furthermore, we deduce that the optimal t-spanner
problem on weighted graphs is also intractable for any fixed rational number t > 1.
In this subsection, we assume that all edge weights are positive rational numbers and
that t > 1 is a fixed rational number.

Recall that an instance (U, C) of 3SAT (cf. [LO2] in [19]) consists of a set U of n
distinct Boolean variables and a collection C of rn 3-element clauses over U. For any
variable u E U, both u and fi are literals; for a truth assignment , a literal is true if
(1) 1 and false otherwise.

THEOREM 3.9. For any fixed rational number t > 1, it is NP-complete to deter-
mine whether a weighted graph contains a tree t-spanner, even if all edge weights are
positive integers.

Proof. It is clear that the problem is in NP. To establish the NP-completeness of
the problem, we present a polynomial transformation from 3SAT. Here we will only
consider the case 1 < t < 4; the proof for t _> 4 is the same as that for unweighted
graphs (see Theorem 4.10 of 4.3), where a more complicated construction is employed.

Let t E (1, 4) be a fixed rational number, and, for convenience, let e t- 1; then
0 < e < 3. For an arbitrary instance (U, C) of 3SAT, we construct a weighted graph
G such that C is satisfiable iff G admits a tree t-spanner. Graph G is constructed as
follows:

1. Take a vertex x and vertices U’ {ul, 1,..., un,n}, where n Ui, and
construct a star H centered at x by joining x to each vertex in U’. Each vertex in U’
is a literal vertex and each edge in H is a literal edge.

D
ow

nl
oa

de
d

10
/2

6/
15

 to
 1

37
.1

89
.8

8.
22

9.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

TREE SPANNERS 371

2 2

u
2

2

4

Ul ’U2 ’if3 ,U3,U

FIG. 5. The graph g for 2.5 and C {(ul, u2, fi3 }, {u2, u3, u4 }}.

2. Create a new vertex c for each clause in C and add an edge between c and
each of its three distinct literal vertices in H. These new vertices and edges are called
clause vertices and clause edges, respectively.

3. Connect each pair ui, fii of literal vertices by a distinct path (whose length is

specified in Table 1), called a bridge, to complete the construction of G. Each edge on
the bridge is called a bridge edge.

4. For each edge e of G, assign it weight w(} according to Table 1.

Figure 5 shows an example of G. It is easy to see that G can be constructed in

polynomial time.

Now, for any tree t-spanner T of G (Remember that 1 < t < 4 and t- 1), we
note the following two important properties:

P1. Every bridge is contained in T.
P2. For every pair xui, xzi of literal edges, exactly one of them belongs to T.
To see property P1, let ab be an arbitrary bridge edge and Pab be an (a, b)-path in

T. Suppose that ab is not in T. If 0 < < 1, then Pab contains either two literal edges
or at least two clause edges; otherwise 1 < e < 3 and Pab contains all other 2L 1
bridge edges on the bridge containing ab and either two literal edges or at least two
clause edges. It is readily checked that we would then have dT(a, b) > t. w(ab) in both
cases, which contradicts T being a t-spanner. Hence ab belongs to T.

To see property P2, without loss of generality, we consider edge xui. If the (x, ui)-
path in T contains neither edge xui nor xfii, then it must contain a literal edge and
at least two clause edges. It is easy to see that dT(X, u) > t. w(xu) if 0 < e < 1;
otherwise 1 < e < 3 and

It can be shown that

[4+2[eJ 1 >s for 1_<<3

(consider e [1, 2) and [2, 3) separately). Thus it follows that dT(x, ui) > t. w(xui)
for 1 < t < 4, which contradicts T being a tree t-spanner. So at least one of xui, xfti
is in T. Since T is a tree, it can be deduced from property P1 that exactly one of them
is in T.

D
ow

nl
oa

de
d

10
/2

6/
15

 to
 1

37
.1

89
.8

8.
22

9.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

372 LEIZHEN CAI AND DEREK G. CORNEIL

We now prove that C is satisfiable iff G contains a tree t-spanner. Suppose that
C is satisfiable and let be a satisfying truth assignment for C. Call a literal vertex
of G a true vertex if its corresponding literal is a true literal under . Construct a
spanning tree T of G by taking all bridge edges, all literal edges incident with true
vertices, and, for each clause, an arbitrary clause edge that is incident with a true
vertex. Since C is satisfied by , it is clear that T is a spanning tree and each clause
vertex is a leaf.

To see that T is a t-spanner, we note that, for any literal edge xl not in T, the
(x,/)-path in T consists of a literal edge and a bridge and that, for any clause edge
cl not in T, the (c,/)-path in T consists of a clause edge, two literal edges, and
at most one bridge. It is a routine matter to check that dT(x, 1) <_ t. w(xl) and
dT(c, l’) <_ t. w(cl’). Therefore, it follows from statement (5) of Theorem 1.1 that T
is a tree t-spanner of G.

Conversely, suppose that T is a tree t-spanner of G. Then by property P2, exactly
one of the two literal edges xui, xi is contained in T. Therefore we can define a truth
assignment T be setting T(Ui) 1 if xui E E(T) and T(Ui) 0 if xi E(T). It
remains to be shown that T satisfies C.

It is easy to see by property P1 that any two literal vertices are connected by a
path in T that avoids clause vertices. Thus each clause vertex is a leaf of T. Suppose
that there is a clause vertex c which contains only false literals under T. Then for
a clause edge cl not in T, the (c,/)-path in T consists of a clause edge, two literal
edges, and two bridges. If 0 < < 1, then it is easy to check that dT(c, l)

_
t. w(cl)

(notice 1/ > 1). Otherwise 1 _< < 3, and again it is a routine matter to check that
dT(c, l)

_
t. w(cl) (notice 2J >); this contradicts T being a t-spanner. Therefore,

each clause in C contains at least one true literal under T, and thus C is satisfiable.
The proof is complete. [:]

Since a tree t-spanner has the least number of edges among all t-spanners, Theo-
rem 3.9 implies that finding a minimum t-spanner in a weighted graph is intractable
for any fixed rational number t > 1.

COROLLARY 3.10. For any fixed rational number t > 1, it is NP-complete to
determine, given a weighted graph G and a positive integer K, whether G contains a

t-spanner with at most K edges, even if all edge weights are positive integers.
Furthermore, the tree t-spanner T in the proof of Theorem 3.9 also achieves the

minimum total weight (sum of weights of all edges in the spanning subgraph) over all
t-spanners of G. Therefore, Theorem 3.9 also implies the following result.

COROLLARY 3.11. For any fixed rational number t > 1, it is NP-complete to
determine, given a weighted graph G and a positive rational number W, whether G
contains a t-spanner Of total weight at most W, even if all edge weights are positive
integers.

4. Tree spanners in unweighted graphs. We now consider tree spanners
in unweighted graphs, which can be considered as a special case of tree spanners in
weighted graphs, i.e., tree spanners in unit-weighted graphs. Henceforth in this section,
by a graph we always mean an unweighted graph. By statement (5) of Theorem
1.1, a spanning subgraph H is a t-spanner of a graph G (V, E) iff for every edge
xy e E \ E(H) we have dH(x, y) <_ t.

In light of Observation 1.5, we need to consider only tree t-spanners for integral
t. Clearly, a graph contains a tree 1-spanner iff it itself is a tree. We show that a
tree 2-spanner in a graph can be found in linear time. We also study the structure
of tree 2-spanners and give a characterization of tree 2-spanner-admissible graphs.

D
ow

nl
oa

de
d

10
/2

6/
15

 to
 1

37
.1

89
.8

8.
22

9.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

TREE SPANNERS 373

In particular, we present a structural theorem for tree 2-spanners in terms of the
"skeleton tree" of a graph. This structural theorem is useful in dealing with various
tree 2-spanner problems. On the other hand, we show that the tree t-spanner problem
is NP-complete for any fixed t _> 4. The complexity of the tree 3-spanner problem
remains an open issue.

4.1. Finding a tree 2-spanner. Our main concern is to find a tree 2-spanner
in a graph. In order to design an efficient tree 2-spanner-finding algorithm, we first
investigate the structUre of tree 2-spanners in a graph. We then describe a linear-
time algorithm. Furthermore, we give a characterization of tree 2-spanner-admissible
graphs in terms of decomposition. Because of Observation 1.4, we can restrict our
attention to nonseparable graphs.

Remark. It is interesting to note that tree 2-spanner-admissible graphs coincide
with trigraphs introduced by Bondy [7] in his work on cycle double covers; our char-
acterization results are quite similar to his. In particular, our decomposition theorem
(Theorem 4.4) for tree 2-spanner-admissible graphs and Lemma 4.1 have been previ-
ously obtained by Bondy. They are reformulated here in our terminology for the sake
of completeness.

LEMMA 4.1 (Bondy [7]). Let G be a nonseparable graph and T be an arbitrary
tree 2-spanner of G. Then for every 2-cut {u, v} of G, uv e E(T).

Proof. Let {u, v} be a 2-cut of G. Let H1 be a connected component of G-{u, v}.
Let G1 G[V(HI) U {u, v}] and G2 G- V(H1). Then each Gi, 1, 2, contains a

(u, v)-path Pi of length at least two. If uv E(T), then for each edge in E(P) \ E(T),
there is a path of length two in T N Gi between its two ends. Thus there is a (u, v)-
path Qi in T t Gi. Q and Q2 would then be a cycle in T, which is a contradiction.
Hence uv E E(T). D

THEOREM 4.2. Let G be a nonseparable graph. Then a spanning tree T of G is
a tree 2-spanner iff for each triconnected component H of G, T H is a spanning star

of H.
Proof. If T H is a spanning star of H for each triconnected component H of G,

then T H is a tree 2-spanner of H. Since each edge of G belongs to some triconnected
component, it follows that T is a 2-spanner of G.

Conversely, suppose that T is a tree 2-spanner of G. We first show that for each
triconnected component H of G, T’ T H is a tree 2-spanner of H. It is trivial if
H consists of a single edge. Thus we may sume that IV(H)I

_
3. Then H contains

at let one edge v E(T), since H contains a cycle. Because T is a tree 2-spanner,
there exists a vertex z0 such that zo, vw E E(T). If w is not in H, then and v
are the only vertices in H adjacent to zo, since H is a triconnected component and
IY()l >_ a. This implies that (, v) is a 2-cut. By Lemma 4.1, v would be an edge
in T, which is a contradiction. Therefore, w is in H and thus w, vw are in T’. This
implies that T is a tree 2-spanner of H.

It remains to be shown that T is a star. Suppose that T is not a star; then
there is an edge y E(T’) that is not incident to any leaf. Let T and T be the two
connected components of T xy containing vertices and y, respectively. Note that
both T and T contain at least two vertices. For two arbitrary vertices V(T)\(x)
and v V(T[) \ y}, it is easy to see that dT,(U, v)

_
3. This implies uv E(H).

Then (x, y} would be a 2-cut of H, contrary to H being a triconnected component.
Therefore, T is a spanning star of H. D

COROLLARY 4.3. A triconnected graph G admits a tree 2-spanner iff it contains
a universal vertex.

D
ow

nl
oa

de
d

10
/2

6/
15

 to
 1

37
.1

89
.8

8.
22

9.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

374 LEIZHEN CAI AND DEREK G. CORNEIL

Lemma 4.1 and Theorem 4.2 can be used to obtain a characterization of tree
2-spanner-admissible graphs in terms of decomposition. A graph G is an edge bonding
of two graphs G1 and G2 if G G1 (2 G2 and G1 N G2 is an edge.

THEOREM 4.4 (Bondy [7]). A graph G is tree 2-spanner admissible iff each block
H of G is either

(1) a triconnected graph with a universal vertex or

(2) an edge bonding (on edge e) of two tree 2-spanner-admissible graphs where e
is a tree edge in both graphs.

Proof. Because of Observation 1.4, we only need to consider a block H of G. If
H contains a universal vertex u, then the set of edges incident with u induces a tree
2-spanner of H. If H is an edge bonding of two tree 2-spanner-admissible graphs H1
and H2 on a tree edge e, then the edge bonding of a tree 2-spanner T1 of H1 and a
tree 2-spanner T2 of H2 on edge e yields a tree 2-spanner of H.

Conversely, suppose that H is tree 2-spanner admissible. If H has no 2-cut, then
it is triconnected and by Corollary 4.3 contains a universal vertex. Otherwise, H has
a 2-cut {x, y}; by Lemma 4.1, then, xy is an edge of H and belongs to every tree
2-spanner of H. Let H be a connected component of H- {x, y},Hi H[V(H’)
{x,y}], and H2 H- V(H). It can then be deduced from Theorem 4.2 that T N
H1 and T H2 are tree 2-spanners of HI and H2, respectively. Hence, H is an
edge bonding of two tree 2-spanner-admissible graphs H1 and H2 on edge xy. This
completes the proof. [:]

We now use the above results to derive an algorithm for finding a tree 2-spanner
T (if it exists) in a graph G. The algorithm can be outlined as follows (details are
left to the reader). First, find all blocks of G. Then, for each block, find all 2-cuts
(if there is a 2-cut that does not induce a binding edge, then G contains no tree 2-
spanner, by Lemma 4.1) and triconnected components. Put all binding edges in T.
Now, for each triconnected component H, find a spanning star containing all edges of
H that have been put into T so far and put it in T (if such a spanning star does not
exist, then G contains no tree 2-spanner by Lemma 4.1 and Theorem 4.2). Finally,
if T is a spanning tree, then it is a tree 2-spanner; otherwise, G contains no tree 2-
spanner. This algorithm can be implemented in linear time by using the triconnected
component-finding algorithm of Hopcroft and Tarjan [22] and standard techniques.

THEOREM 4.5. A tree 2-spanner (if it exists) of a graph can be found in O(m +
n) time.

4.2. The skeleton tree. A tree spanner may be required to have some addi-
tional properties, such as a degree constraint, a bound on the diameter, or a limit on
the number of leaves. Here we conduct a further investigation of the structure of tree
2-spanners to provide a useful tool in dealing with the construction of tree 2-spanners
with additional properties. Henceforth, we assume that all graphs in this subsection
are tree 2-spanner-admissible.

By Theorem 4.2, every tree 2-spanner of a triconnected graph is a spanning star.
Thus there is nothing more to be said about the structure of tree 2-spanners in a
triconnected graph. In light of Lemma 4.1, we can restrict our attention to non-
separable graphs with binding edges. We show that any tree 2-spanner of such a
graph can be obtained from a "skeleton tree" of the graph by properly adding "com-
pound leaves" to the skeleton tree. This result also gives another clear picture of
the structure of tree 2-spanner-admissible graphs. In the rest of this subsection, we
assume that G is a tree 2-spanner-admissible graph that is nonseparable and contains

D
ow

nl
oa

de
d

10
/2

6/
15

 to
 1

37
.1

89
.8

8.
22

9.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

TREE SPANNERS 375

at least one binding edge. We start with the subgraph of G induced by the set of its
binding edges.

LEMMA 4.6. The set of binding edges of G induces a tree.
Proof. Let B be the set of binding edges and TB G[B]. Clearly, TB is a forest,

since G admits a tree 2-spanner T and every edge in B belongs to T by Lemma 4.1.
We need to show only that Tt is connected.

Let T/be the set of triconnected components of G. Construct a bipartite graph
F with vertex set B t2 7-/in which e E B and H E 7-/are adjacent iff edge e is in the
triconnected component H. Since G is connected, it is clear that F is connected.

Let v and v be two arbitrary vertices of TB and e and e be two binding edges inci-
dent with v and v, respectively. Consider the bipartite graph F. Since F is connected,
there is an (e,e’)-path P elHle2...Hk-lek in F, where e B, Hi -,el e,
and ek e. Thus for any two elements ei, ei+l B, Hi is a triconnected component
of G that contains edges ei and ei+. By Theorem 4.2, ei and ei+l share a vertex. It
is now easy to deduce that there is a (v, v)-path in TB, since each ei is an edge in T.
Therefore, TB is connected and the proof is complete.

Let T(G) denote the set of tree 2-spanners of G and $(G) denote the set of edges
of G contained in every tree 2-spanner of G, i.e., E(G) TeqZ(G)E(T). Note that a
nontrivial tree is a tree with at least one edge.

LEMMA 4.7. G[$(G)] is a nontrivial tree.
Proof. Obviously, G[$(G)] is a forest. Since G is tree 2-spanner admissible, by

Lemma 4.1, every binding edge of G is contained in G[$(G)]. Furthermore, for any
edge e 6 E(G), if e is not a binding edge of G, then it belongs to a unique triconnected
component H of G. Since H contains at least one binding edge of G, it follows from
Theorem 4.2 that edge e shares a vertex with at least one bindingedge of G. By
Lemma 4.6 and the assumption that G contains a binding edge, we see that G[$(G)]
is connected and hence a nontrivial tree. [:]

Because G[(G)] induces a nontrivial tree that belongs to every tree 2-spanner of
G, we call it the skeleton tree of G and denote it by S(G). Let us now examine the
structure of G- V(S(G)). Recall that two disjoint subgraphs are fully joined iff every
vertex in one subgraph is adjacent to every vertex in the other.

LEMMA 4.8. Each connected component C of G-V(S(G)) is fully joined with a
unique edge of S(G). Moreover, for any tree 2-spanner T of G, each vertex in C is a

teaI oI T.
Proof. By Lemma 4.1, the skeleton tree S(G) contains the subgraph S induced by

the set of binding edges of G. Therefore, each connected component C of G- V(S(G))
is a subgraph of a connected component C of G- V(S). Since C belongs to a unique
triconnected component H of G, so does C. If H contains more than one edge of S(G),
say e and e2, then it follows from Theorem 4.2 that e and e2 must share a vertex
u and all the edges between u and C belong to T. This implies that every vertex of
C is in S(G), which contradicts the choice of C. Therefore, H contains a unique edge
e of ,(G). If one end of e is not a universal vertex of H, then by Theorem 4.2, all
the edges between the other end of e and C belong to T. Again, this contradicts the
choice of C. Therefore, C is fully joined with a unique edge e of ,(G). By Theorem
4.2, each vertex of C is a leaf of T.

Because of the above lemma, we call each connected component of G-V(,(G)) a
compound leaf. Then every edge e of the skeleton tree S(G) has a set (possibly empty)
of compound leaves fully joined with it. Let the two ends of e be x and y. Then for any
compound leaf C fully joined with e, V(C) U {x, y} induces a triconnected component
H of G. Note that both x and y are adjacent to every vertex in C. The set of edges

D
ow

nl
oa

de
d

10
/2

6/
15

 to
 1

37
.1

89
.8

8.
22

9.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

376 LEIZHEN CAI AND DEREK G. CORNEIL

C
compound leaf

skeleton tree

FIG. 6. The skeleton tree, compound leaves, and leafstalks.

between x and C(y and C) forms a star Lb(LYc) and will be referred to as a leafstalk of
C. These concepts are illustrated in Fig. 6, where thick lines depict the skeleton tree,
each box contains a compound leaf, and each shaded triangle indicates a nontrivial
leafstalk (a leafstalk with more than one edge).

THEOREM 4.9 (skeleton tree theorem). Let G be a tree 2-spanner-admissible,
nonseparable graph that contains binding edges. A spanning tree T is a tree 2-spanner
of G iff it is obtained from the skeleton tree S(G) of G by adding to S(G) exactly one

leafstalk for each compound leaf of G.
Proof. This follows from Theorem 4.2, Lemma 4.7, and Lemma 4.8. [:]

We now turn to the construction of the skeleton tree S(G) of G. First, we find
all binding edges and triconnected components of G, As discussed in Lemma 4.6 and
the proof of Lemma 4.7, these binding edges form a tree S that is a subtree of S(G).
Then we extend S to S(G) by considering triconnected components one by one. For
each triconnected component H, if H contains two distinct edges el and e2 of S, then
el and e2 share a vertex u and we put into S(G) all the edges of H that are incident
with u (by Theorem 4.2); if H contains only one edge e uv of S and one end of e,
say u, is not a universal vertex of H, then we put into S(G) all the edges of H that
are incident with v (by Theorem 4.2). The correctness of the above algorithm follows
from our previous discussions.

By using the linear-time, triconnected component-finding algorithm of Hopcroft
and Tarjan [22] and standard techniques, we can construct the skeleton tree and find
all compound leaves in linear time. Therefore, the skeleton tree provides a handy
and useful tool in constructing tree 2-spanners with certain properties. For instance,
with the aid of the skeleton tree, the problem of finding a tree 2-spanner of bounded
degree is easily solved in linear time. It is interesting to note that the corresponding
degree-bounded spanning tree problem is NP-complete ([ND1] in [19]). Skeleton trees
have also been used in the design of a polynomial-time algorithm for determining
whether a 2-connected graph contains a tree 2-spanner isomorphic to a given tree
[11], [13]. We note again that the corresponding isomorphic spanning tree problem
is NP-complete ([ND8] in [19]). Further applications of skeleton trees can be found
in the construction of quasi-tree 2-spanners (5.2), as well as in the construction of
nearly distance-preserving spanning trees [11].

4.3. NP-completeness for t

_
4. Although a tree 2-spanner in a graph can

be constructed in linear time, the problem of finding a tree t-spanner seems to be
very hard for t _> 3; in fact, as we show here, the problem is intractable for any fixed
t _> 4. As a consequence, the minimum t-spanner problem on unweighted graphs is

D
ow

nl
oa

de
d

10
/2

6/
15

 to
 1

37
.1

89
.8

8.
22

9.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

TREE SPANNERS 377

NP-complete for any fixed t _> 4. The complexity of finding a tree 3-spanner in a graph
is still unknown.

Remark. Stronger NP-completeness results hold for the minimum t-spanner prob-
lem on unweighted graphs. In fact, the problem is NP-complete for any fixed t >_ 2
[12], [26], even when restricted to graphs of bounded degree [15].

THEOREM 4.10. For any fixed t >_ 4, the tree t-spanner problem is NP-complete.
Proof. It is clear that the problem is in NP. To establish the NP-completeness,

we present a polynomial transformation from 3SAT. By Observation 1.5, we need
to consider only integral values of t. Let t _> 4 be a fixed integer and (U, C) be an
arbitrary instance of 3SAT. We construct a graph G such that C is satisfiable iff G
has a tree t-spanner. Call a path with t edges a t-path. The following result is useful
in our construction.

LEMMA 4.11. Let G be a graph and e an edge of G. Let G’ be a graph formed
from G by adding two distinct t-paths P1, P2 (all internal vertices of P1 and P2 are new
vertices) between the two ends of e and T be a tree t-spanner of G’. Then e E(T).

Proof. We first notice that for any edge e’ of either P or P2, there is only one
path in G’ e’ of length _< t between the two ends of e’. Furthermore, this unique
path contains edge e. It follows that if e is not in T, then all edges of P1 and P2
would have to be in T. However, P1 and P2 form a cycle, which contradicts T being a
tree.

From now on, by forcing an edge, we mean adding two distinct t-paths between
the two ends of the edge. Such an edge will be called a forced edge, and the two
t-paths will be called forcing paths. Denote IUI by n and ICI by m. The graph G is
constructed as follows.

For each variable ui E U, 1 <_ <_ n, construct a graph Hi by
1. taking five vertices xi, ui, ti, yi and
2. adding edges xiyi xiui xiti ziui and
3. joining yi with zi by a (t- 2)-path (all internal vertices on the path are new

vertices) and forcing every edge on the path, and
4. joining ui with fii by a (t- 3)-path (all internal vertices on the path are also

new vertices) and forcing every edge on the path as well.
Figure 7 shows the graph Hi for t 4. Next, put H1,..., Hn together by identifying
vertices x1,..., Xn into a single vertex x to form the variable setting component H.
Vertices ui and fii of Hi will be used to represent the literals ui and fii, respectively,
and they are called literal vertices.

For each clause cj E C, 1

_
j _< m, create a new vertex cj, called a clause vertex,

and add an edge between cj and each of its three distinct literal vertices in H. Note
that each literal vertex is either a vertex ui or a vertex

It is easy to see that G can be constructed in polynomial time. It remains to be
shown that C is satisfiable iff G has a tree t-spanner. Before describing the proof, we
note the following important property of the graph G, which enables us to define a
proper truth assignment for C in terms of a tree t-spanner of G.

LEMMA 4.12. Any tree t-spanner T of G contains exactly one of the two edges
xui and xti for each 1 <_ <_ n.

Proof. Clearly, because T contains the forced path between ui and fii, at most
one of xui and xti can be in T (otherwise we would have a cycle in T). We need to
show that T contains at least one of xui and xti. Suppose that neither xui nor
is in T. Then the shortest path in F G- E(Hi) between x and ui consists of at
least three edges (edge xl for some literal and edges lc and cui for some clause c that

D
ow

nl
oa

de
d

10
/2

6/
15

 to
 1

37
.1

89
.8

8.
22

9.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

378 LEIZHEN CAI AND DEREK G. CORNEIL

xi

u U-

FIG. 7. Component Hi for 4.

contains both and ui). Thus dR(x, ui) >_ 3, and, similarly, dR(x, fii) _> 3. Consider
two cases that depend on whether xyi is in T.

Case 1. xyi E E(T). If neither ziui nor zifii is in T, then no tree (x, ui)-path is
present inside Hi and thus

dT(x, ui) >_ dR(x, ui) >_ 3.

But then

dT(zi, ui) dT(zi, x) + dT(x, ui) >_ (t 1) + dR(x, ui) >_ t + 2,

contrary to T being a t-spanner. Therefore, at least one of ziui and zii is in T.
Without loss of generality, we may assume that ziui E(T). Note that zii E(T),
as there is a forced (ui, fii)-path in T. Since a tree path is unique between any two
vertices, we have

dT(xi, i) dT(xi, zi) + dT(zi, ui) + dT(ui, i) 2t 3 > t

for t >_ 4, again a contradiction to T being a t-spanner.
Case 2. xyi E(T). Then no tree path is present inside Hi between x and ui or

x and fii, and thus
dT(x, ui) >_ dR(x, ui) >_ 3

and

Then

dT(x, i) >_ dR(x, i) >_ 3.

dT x zi min(dT x ui -t- dT ui zi dT x i / dT i zi } >_ 4.

It follows that
dT(x, Yi) dT (x, zi) + dT (zi, Yi) >_ t + 2,

contrary to T being a t-spanner.

D
ow

nl
oa

de
d

10
/2

6/
15

 to
 1

37
.1

89
.8

8.
22

9.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

TREE SPANNERS 379

Since both cases lead to contradictions, we conclude that T contains exactly one
of two edges xui and xi for each 1 _< _< n.

We now prove that C is satisfiable iff G has a tree t-spanner. Suppose that C is
satisfiable and let be a satisfying truth assignment for C. We construct a spanning
tree T of G as follows:

1. for each forced edge e, put edge e in T;
2. for each forcing path, arbitrarily delete one edge and then put the remaining

edges in T;
3. for each variable u, 1 _< _< n, if (u) 1, then put edges xu and zui in T;

otherwise ((u) 0), put edges x and z in T;
4. for each clause cj, 1 <_ j <_ m, arbitrarily pick a true literal lj in cj and put

edge cjlj in T.
Note that each clause vertex is a leaf in T. It is a routine matter to verify that T is a
tree t-spanner.

Conversely, suppose that T is a tree t-spanner of G. We need to present a truth
assignment T that satisfies C. By Lemma 4.12, T contains exactly one of two edges
xui and xfii for each 1 _< _< n. Therefore, we can define a truth assignment T by
setting, for 1 <_ <_ n, T(Ui) 1 whenever xui E E(T) and T(Ui) 0 otherwise, it
remains to be shown that T satisfies C.

Suppose that some clause cj only contains false literals under T. Notice that any
two literals are joined by a path in T that avoids clause vertices. Therefore, cy is a
leaf in T. Then for a clause edge cjlj not in T, dT(cj,lj) 2t- 3 _> t + 1 for t >_ 4,
since the distance between any two false literals in T is 2t 4, contrary to T being a
t-spanner. Therefore, each clause in C contains at least one true literal under T and
thus C is satisfiable. This completes the proof.

5. Tree spanners in digraphs. In this section, we consider tree spanners and
quasi-tree spanners in digraphs. At first glance, it seems that tree spanner problems
on digraphs are at least as hard as tree spanner problems on undirected graphs. Sur-
prisingly, a tree t-spanner of a digraph can be found in almost-linear time. In fact,
even a minimum tree spanner (i.e., a tree t-spanner with t as small as possible) of
a digraph can be found in almost-linear time. On the other hand, the situation for
quasi-tree spanners in digraphs is closer to that for tree spanners in undirected graphs.
We will use the results developed in 3 and 4 for undirected graphs to obtain similar
results for quasi-tree spanners.

Throughout this section, G- (V, A; w) is a weighted digraph and G- (V, E;)
denotes the underlying undirected graph of G. Recall that for an arc (x, y) A, (xy)

w((x,y))if (y,x) A and (v(xy) min{w((x,y)),w((y,x))} if (y,x) e A. Also,
recall that an in-neighbor of a vertex x in G is a vertex y such that (y, x) G A and an
out-neighbor of x is a vertex z such that (x, z) G A. A vertex v is a source if it has no in-
neighbors and an intermediate vertex if it has both in- and out-neighbors. A spanning
subgraph T of G is a spanning tree if T contains no directed cycle and T is a tree. For
convenience, we say that G is connected (triconnected) whenever its underlying graph

is connected (triconnected). The meanings of blocks and connected components of
G should be understood in the same manner.

5.1. Finding a minimum tree spanner. Recall that in a digraph G, a vertex
x reaches vertex y (i.e., y is reachable from x) if there is a directed (x, y)-path in G.
By the definition of a tree spanner, it is easy to see that a spanning tree T of G is
a tree spanner iff it preserves reachability of G, i.e., x reaches y in G iff x reaches y
in T. Unlike an undirected graph, then, a spanning tree of G is not necessarily a tree
spanner. In fact, we have the following result:

D
ow

nl
oa

de
d

10
/2

6/
15

 to
 1

37
.1

89
.8

8.
22

9.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

380 LEIZHEN CAI AND DEREK G. CORNEIL

LEMMA 5.1. A digraph G contains at most one tree spanner.
Proof. Let S and T be two arbitrary tree spanners of G. If S T, then there is

an arc (x, y) in S that is not in T. Thus there is a directed (x, y)-path P in T, since T
is a tree spanner. Let z be an internal vertex of P. Then there is a directed (x, z)-path
Q and a directed (z, y)-path Q in S, since S is a tree spanner. This implies that there
are two distinct, directed (x, y)-paths QQ and xy in S, which contradicts S being a
tree. Therefore, S T and G contains at most one tree spanner. [:]

Because of the above lemma, we need to consider only the problem of finding
the tree spanner T in a digraph G, since T is automatically a minimum tree spanner
and we can use it to solve the tree t-spanner problem by comparing t with the stretch
index of T. Recall that an acyclic digraph is a digraph that contains no directed cycle.

LEMMA 5.2. If a digraph G admits a tree spanner, then G is acyclic.
Proof. Let T be a tree spanner of G. Suppose that G contains a directed cycle

C. Any two vertices of C are then mutually reachable in T since T is a spanner of G,
which contradicts T being a tree. Hence G is acyclic. [:]

In light of the above lemma, we will hereafter assume that G is acyclic. G then
contains a source s. We now present a necessary and sufficient condition for G to admit
a tree spanner in terms of G- s. Note that NG+ (s) is the set of out-neighbors of s in
G and that a trivial digraph (a digraph with a single vertex) is itself a tree spanner.

THEOREM 5.3. Let G be an acyclic digraph and s be a source of G. G then admits
a tree spanner iff each connected component Hi of G s contains a tree spanner
such that there is a vertex vi e Y(Hi)gN(s) that reaches every vertex of Y(Hi)g
N(s) through arcs of Ti.

Proof. If the condition of the theorem is satisfied, then it is readily checked that
T1 U... Tk + {svl,..., svk}, where k is the number of connected components of
G- s, is the tree spanner of G, since for j there are no arcs between Hi and Hi.

Conversely, suppose that G contains a tree spanner T. Then s is a source in T.
We first show that each connected component Hi contains a unique vertex vi adjacent
to s in T. Since G is connected, Hi by definition contains at least one such vertex.
Suppose that Hi contains two such vertices u and u. Then there is a (u, u)-path P
in Hi. Each edge in P corresponds to a unique arc in Hi, as G is acyclic; for each
such arc (x, y), there is a directed (x, y)-path Pxy in T, since T is a tree spanner. Let
Ti T N Hi. It is ey to see that Pxy lies entirely in Ti. It follows that there is
a (u, u)-path P in Ti. However, P together with su and su forms a cycle in , a
contradiction. Therefore, s is adjacent to a unique vertex vi of Hi in tree T. Clearly,
vi e v(gi) Ag(s).

Now, by the definition of Hi, we easily see that Ti is connected; Ti is thus a tree
spanner of Hi. Furthermore, for each out-neighbor v of s in Hi, there is a directed
(s, v)-path Q in T, since T is a tree spanner. Then the (vi, v)-section of Q is a directed
(vi, v)-path in Ti, and hence v is reachable from vi in Ti.

It is trivial to transform the above theorem into a recursive procedure for finding
the tree spanner of G. In order to implement the procedure efficiently, we present an
iterative version. Let (1,..., n} be the vertex set of G. Since G is acyclic, we can
assume that the vertices of G have been topologically ordered, i.e., if (i, j) is an arc of
G, then i < j. Let Gi denote the subgraph of G induced by vertices (i,..., n). Vertex

is then a source of Gi by the definition of the topological ordering of G. Therefore,
vertex vi in Theorem 5.3 is the vertex with smallest number in V(Hi) AN(s). Note
that the out-neighbors of vertex in Gi are the same as those of i in G and hence
will be denoted by N+(i). Figure 8 depicts an acyclic digraph, its tree spanner, and a

D
ow

nl
oa

de
d

10
/2

6/
15

 to
 1

37
.1

89
.8

8.
22

9.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

TREE SPANNERS 381

FIG. 8. An acyclic digraph G, its tree spanner, and a topological ordering of V.

topological ordering of its vertices. The following procedure finds the tree spanner of
G when it contains one.

PROCEDURE TREESPANNER(G, T); {Find the tree spanner T of an acyclic digraph
G.}
begin
1. T - the trivial tree consisting of vertex n;
2. for -- n- 1 downto 1 do
3. ?-/i - {HI(H is a connected component of Gi+l) A (V(H)
4. for each H :Hi do
5. Vi,H -- min{jlj e v(H) N N+ (i)};
6. if Vi,H reaches every vertex in V(H) N+(i) through arcs of T

then T - T + (i, Vi,H) else output "No" EXIT;
end for;

end for;
7. return T;
end TREESPANNER.

Notice that T is a forest during the computation of the above procedure. Let
Ti denote the forest T after the normal completion of the (n- i)th iteration of the
"for" loop at line (2). By Theorem 5.3, it is clear that Ti consists of tree spanners
of the connected components of Gi; thus T1 is the tree spanner of G. However, a
straightforward implementation of the procedure may take O(mn) time.

We now refine the procedure to obtain a more efficient algorithm. We notice the
following: first, the check at line (6) can be postponed after the completion of the
"for" loop at line (2), since Vi,H reaches all vertices in V(H) N+(i) through arcs of
Ti iff it reaches these vertices through arcs of T1; second, the computation at lines (3)
and (5) requires only the vertex sets of connected components of Gi+l; and third, the
connected components of Gi can be obtained from those of Gi+l by merging vertex
and all connected components in T/i into a single component.

Based on the above observations, we use sets to maintain the connected compo-
nents of Gi. Initially, we have n sets consisting of n single vertices. These sets will be
merged to represent the connected components of Gi during the process. Thus line
(3) can be carried out by finding all sets containing the out-neighbors of vertex i. We
are now ready to present an algorithm that finds the tree spanner of G. The algorithm

D
ow

nl
oa

de
d

10
/2

6/
15

 to
 1

37
.1

89
.8

8.
22

9.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

382 LEIZHEN CAI AND DEREK G. CORNEIL

first decides if G is acyclic, then finds a spanning tree T of G, and finally verifies if T
is the tree spanner of G. It also computes the stretch index t of T when T is a tree
spanner.

ALGORITHM TREE-SPANNER(G, T, t){Find the tree spanner T of G.}
Input: A weighted digraph G (V, A; w);
Output: The tree spanner T and its stretch index t if G admits a tree spanner;

otherwise output "No".

begin
1. if G is not acyclic then output "No" EXIT

else compute a topological ordering of G;
(Vertices 1,..., n is a topological ordering of G.}

2. T - the trivial tree consisting of vertex n;
3. Create set (i) for each vertex of G;
4. for --n-1 downto 1 do
5. -6. for each out-neighbor k of i do

(Compute (HI(H is a connected component of Gi+I)A(V(H)AN+(i)
7. Find the set Hk containing vertex k;
8. ?-li -- [9 (Hk }

end for;
9. for each set H E ?-/i do
10. Vi,H -- min(jlj is an out:neighbor of in H};
11. T *- T + (i, Vi,H);

end for;
12. Merge (i} and all H E 7-/i into a single set;

end for;
13. if T is a tree spanner

then compute the stretch index t of T
else output "No";

end TREE-SPANNER.

We now consider the complexity of the above algorithm. Line (1) takes O(m / n)
(cf. [1], [30]). Vertex Vi,H at line (10) can be found in O(IN+(i)l time by keeping
track of the set Hk for each out-neighbor k of at line (7). By Theorem 2.1(b),
line (13) can be carried out in linear time. The merge operation at line (12) and
the find operation at line (7) constitute a sequence of union-and-find operations on
disjoint sets; there are at most m + n operations in total. By using the well-known
"path compression on balanced trees" technique for disjoint set manipulation, these _<
m + n union-and-find operations can be implemented in O((m + n)o(m + n, n)) time

(cf. [1], [30]), where a is a functional inverse of Ackermann’s function and, for all
feasible large m and n, a(m, n) <_ 4 [30].

The remaining computation takes linear time. The overall running time of the
algorithm is thus O((m + n)a(m + n,n)). Therefore, we can state the following
theorem.

THEOREM 5.4. The minimum tree spanner of a weighted digraph and its stretch
index can be computed in O((m + n)a(m + n, n)) time.

D
ow

nl
oa

de
d

10
/2

6/
15

 to
 1

37
.1

89
.8

8.
22

9.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

TREE SPANNERS 383

i/ \\
I \\

I \

I \\
/// \,,

I
I /3

FIG. 9. A quasi-tree 1.5-spanner.

5.2. Quasi-tree spanners in digraphs. Recall that a quasi-tree of G is a
spanning subgraph T such that T is a tree; recall also that T is a quasi-tree t-spanner
if it is a t-spanner of G. See Fig. 9 for an example of a quasi-tree spanner. The
notion of quasi-tree spanners is intended to capture the underlying tree structure of
the spanner. As we will see, results on quasi-tree spanners in digraphs are quite similar
to those of tree spanners in undirected graphs. We begin by considering relationships
between quasi-tree spanners in G and tree spanners in G.

LEMMA 5.5. Let T be a quasi-tree t-spanner of G. If both arcs (x, y) and (y, x)
belong to G, then (x, y) e A(T) iff (y, x) e A(T).

Proof. It suffices to show that (x, y) e A(T) implies (y,x) e A(T). Suppose
(y, x) A(T). Then there is a directed (y, x)-path P in T. It follows that the corre-
sponding edges of P in T together with edge xy form a cycle in T, which contradicts
T being a tree. [3

LEMMA 5.6. If T is a quasi-tree t-spanner of G, then is a tree t-spanner of .
Proof. Let xy be an arbitrary edge in (-. We need to show d(x, y) < t.(v(xy).

By the definition of T, it is easy to see that d(u, v) < dT(u, v) for any two vertices
u, v e V. If exactly one of arcs (x, y) and (y,x), say (x, y), is in G, then (x, y) is in
G- T, and thus

d(x, y) < dT(x, y) < t w((x, y)) t @(xy),

since (v(xy) w((x, y)). Otherwise, both (x, y) and (y, x) are arcs in G and thus are
in G- T by Lemma 5.5. Then dT(x, y) < t. w((x, y)) and dT(y,x) < t. w((y,x)).
Therefore,

d(x,y) < min{dT(x,y),dT(y,x)} < t min{w((x,y)), w((y,x))} t (v(xy).

This proves the lemma.
In light of the above two results, we can use the results on tree spanners in 3

and 4 to obtain similar results for quasi-tree spanners. Given a weighted undirected
graph F, we construct a weighted digraph D by replacing each edge xy of F with two
arcs (x, y) and (y, x) and setting w’((x, y)) w’((y, x)) w(xy), where w and w’ are
the weighting functions of F and D, respectively. The following two NP-completeness
results can be readily obtained from Theorem 3.9 in 3.2 and Theorem 4.10 in 4.3,
respectively, by using Lemmas 5.5 and 5.6.

THEOREM 5.7. For any fixed t > 1, it is NP-complete to determine whether a

weighted digraph contains a quasi-tree t-spanner, even if all arcs have integral weights.

D
ow

nl
oa

de
d

10
/2

6/
15

 to
 1

37
.1

89
.8

8.
22

9.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

384 LEIZHEN CAI AND DEREK G.. CORNEIL

THEOREM 5.8. For" any fixed t >_ 4, it is NP-complete to determine whether an
unweighted digraph contains a quasi-tree t-spanner.

On the other hand, the results in 3.1 and 4.1 can be extended to quasi-tree
1-spanners in weighted digraphs and quasi-tree 2-spanners in unnweighted digraphs,
respectively.

We first discuss the weighted case. Suppose that G admits a quasi-tree 1-spanner
T. Then by Lemma 5.6, is a tree 1-spanner of (. Therefore, is the unique minimum
spanning tree of G by Theorem 3.7 of 3.1. By Lemma 5.5, T is uniquely determined by
T. Therefore, it is easy to see that the following algorithm finds a quasi-tree 1-spanner
in a weighted digraph. First find a minimum spanning tree T of G; then construct
the maximum quasi-tree T corresponding to T by putting into T, for every edge xy
of , all arcs between vertices x and y in G; and finally verify if T is a 1-spanner.
Since G can be obtained from G in linear time, T can be found in O(m log/(m, n))
time, T can be constructed from in linear time, and verification takes linear time
by Theorem 2.1(c), we have the following result.

THEOREM 5.9. The quasi-tree 1-spanner of a weighted digraph can be found in

O(m log (m, n) time.
We now turn our attention to finding a quasi-tree 2-spanner in an unweighted

digraph G. We first consider triconnected digraphs. Remember that by a triconnected
digraph G, we mean that (is triconnected. Also, bear in mind that a vertex u will be
referred to as a universal vertex of G whenever it is a universal vertex of G. Finally,
recall that an intermediate vertex is any vertex with both in- and out-neighbors.

THEOREM 5.10. A triconnected digraph G admits a quasi-tree 2-spanner iff it
contains a universal vertex u such that, for any intermediate vertex v of G- u, both
(u, v) and (v, u) are arcs of G.

Proof. If G contains such a universal vertex u, then it is readily checked that the
set of arcs between u and the remaining vertices of G induces a quasi-tree 2-spanner
of G. Conversely, suppose that G admits a quasi-tree 2-spanner T. It follows from
Lemma 5.6 and Theorem 4.2 that T is a spanning star of G centred at a vertex,
say u. Therefore, u is a universal vertex of G and hence of G. Let v be an arbitrary
intermediate vertex of G. If (u, v) is an arc of G, then there must be a vertex x such
that (v, x) is an arc of G, since v is an intermediate vertex. If x u, then (v, x) is
an arc of G T. Then there is a directed (v, x)-path P of length 2 in T, since T is a
quasi-tree 2-spanner of G. Notice that 7 is a spanning star. Thus P passes through
vertex u, which implies that (v, u) is an arc of G. By a similar argument, we can
deduce that (u, v) is an arc of G if (v, u) is an arc of G.

To illustrate the above theorem, a triconnected digraph and its quasi-tree 2-
spanner are depicted in Fig. 10. It is clear that we can use the above theorem to find
a quasi-tree 2-spanner in a triconnected digraph. We need only to find all intermediate
vertices I and all universal vertices U of G and then check if there is a vertex u E U
such that all possible arcs between u and I appear in G. If such a vertex u exists,
then the set of arcs between u and the remaining vertices of G forms a quasi-tree 2-
spanner; otherwise, G has no quasi-tree 2-spanner. It is easy to see that this method
takes linear time.

It is possible to extend the structural results in 4.1 to quasi-tree 2-spanners and
then obtain an algorithm for constructing quasi-tree 2-spanners. However, an easy way
to construct a quasi-tree 2-spanner is to use the skeleton tree. Because of Theorem
5.10, we need to consider only a nonseparable digraph G that is not triconnected. As
we have mentioned, if G contains a quasi-tree, then G is tree 2-spanner admissible.
Then contains a skeleton tree S(), which corresponds to a subgraph S of G.

D
ow

nl
oa

de
d

10
/2

6/
15

 to
 1

37
.1

89
.8

8.
22

9.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

TREE SPANNERS 385

FIG. 10. A quasi-tree 2-spanner in a triconnected digraph.

TABLE 2
The complexity status of tree spanner problems.

Weighted graphs Unweighted graphs Directed graphs

1 O(mlog3(m,n)) O(m+n) O((m+n)o(m+n,n))

(1, 3) NPc O(m + n) O((m + n)oz(m + n, n))

[3, 4) NPc ? O((m + n)((m + n, n))

[4, x)) iec Nec O((m + n)((m + n, n))
(:x) O(mlog(m,n)) O(m -t- n) O((m 4- n)a(m --t- n,n))

Since belongs to every tree 2-spanner of (, by Lemma 5.6, any quasi-tree 2-spanner
of G must contain S. Therefore, S must be a 2-spanner of the subgraph of G induced
by vertices in S. For a compound leaf C of (, let ec be the unique edge in with
which C is fully joined and Hc be the triconnected component of G containing C. Let

and denote the two leafstalks in/c with the addition of edge ec. Denote the
subgraphs in G corresponding to/c,, and by Hc, L, and L, respectively.
in light of the skeleton tree theorem (Theorem 4.9 in 4.2), for each compound leaf C
we need to check only if either L or L is a 2-spanner of Hc.

To summarize, we outline the quasi-tree 2-spanner algorithm as follows. First,
decide if G is tree 2-spanner admissible. If it is, then find all blocks of G. For each block
B of G, if it is triconnected, then use Theorem 5.10 to find its quasi-tree 2-spanner;
otherwise, construct the skeleton tree SB of B and the corresponding subgraph SB in
B. Check if SB is a 2-spanner of B[V(SB)]. Finally, for each compound leaf C of B,
check if either L or L is a 2-spanner of Hc. If G passes all of the above checks,
then it contains a quasi-tree 2-spanner; otherwise, it does not. The actual quasi-tree
2-spanner of G can be obtained by keeping track of SB, LIc, and L.

The correctness of this algorithm follows from our discussions. We now estimate
the complexity of the algorithm. It has been shown in 4.1 and 4.2 that whether
(is tree 2-spanner admissible can be decided in linear time and that the skeleton
tree of/ can be found in linear time. We also mentioned that it takes linear time to
find a quasi-tree 2-spanner in B if B is triconnected. Furthermore, checking if SB is a
2-spanner of B[V(SB)] takes linear time by Theorem 2.1(c). Since all of the remaining
operations can be carried out in linear time as well, the algorithm takes linear time.

THEOREM 5.11. A quasi-tree 2-spanner in an unweighted digraph can be found
in linear time.

D
ow

nl
oa

de
d

10
/2

6/
15

 to
 1

37
.1

89
.8

8.
22

9.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

386 LEIZHEN CAI AND DEREK G. CORNEIL

6. Concluding remarks. In this paper, we introduced the notion of tree span-
ners and studied the theoretical and algorithmic aspects of the subject. In particular,
we considered the complexity of tree spanner problems for weighted, unweighted, and
directed graphs. The current complexity status of tree spanner problems is summa-
rized in Table 2, where row "cx)" indicates the complexity of finding a tree spanner
(with minimum weight if G is weighted). The complexity of quasi-tree spanner prob-
lems on weighted and unweighted digraphs is the same as that of tree spanner problems
on weighted and unweighted graphs, respectively.

Note that the tree 3-spanner problem on unweighted graphs and the quasi-tree
3-spanner problem on unweighted digraphs remain open. We conjecture that the tree
3-spanner problem on unweighted digraphs is NP-complete; if true this would imply
the NP-completeness of the quasi-tree 3-spanner problem on unweighted digraphs.

One can also consider the tree t-spanner problem for restricted families of graphs.
For partial k-trees, it is easily deduced from the results of Arnborg et al. [4] that the
problem is polynomial-time solvable for any fixed t, since it is a monadic second-order
problem. However, the problem is open for planar graphs, bounded degree graphs,
and many other interesting families of graphs.

In terms of applications, it is desirable to construct tree spanners with small
stretch factors. Is there a polynomial-time algorithm for finding a tree t-spanner such
that t is close to the stretch factor of the minimum tree spanner? The notion of tree
spanners can also be extended to other families of graphs. In general, given a family- of graphs, one can ask whether a graph G contains a spanner H E ’. The problem
is particularly interesting for families of graphs that underlie communication network
structures or parallel machine architectures, since graphs that contain these graphs as
spanners capture some important properties of jobs that can be carried out on these
networks or machines. However, we expect that the problem is hard for most families
of graphs.

Acknowledgments. Some material in this paper has previously appeared in
the first author’s Ph.D. dissertation under the supervision of the second author. The
authors thank the referees for useful suggestions.

REFERENCES

[1] A. V. AHO, J. E. HOPCROFT, AND J. D. ULLMAN, The Design and Analysis of Computer
Algorithms, Addison-Wesley, Reading, MA, 1974.

[2] I. ALTHSFER, On optimal realization offinite metric spaces by graphs, Discrete Comput. Geom.,
3 (1988), pp. 103-122.

[3] I. ALTH/SFER, G. DAS, D. DOBKIN, D. JOSEPH, AND J. SOARES, On sparse spanners of weighted
graphs, Discrete Comput. Geom., 9 (1993), pp. 81-100.

[4] S. ARNBORG, J. LAGERGREN, AND D. SEESE, Easy problems for tree-decomposable graphs, J.
Algorithms, 12 (1991), pp. 308-340.

[5] B. AWERBUCH, A. BARATZ, AND D. PELEG, Efficient broadcast and light-weight spanners,
manuscript, 1992.

[6] S. BHATT, F. CHUNG, F. LEIGHTON, AND A. ROSENBERG, Optimal simulations of tree machines,
in 27th IEEE Foundations of Computer Science, Toronto, 1986, pp. 274-282.

[7] J. A. BONDY, Trigraphs, Discrete Math., 75 (1989), pp: 69-79.
[8] J.A. BONDY AND G. FAN, Cycles in weighted graphs, Combinatorica, 11 (1991), pp. 191-205.

[9] J. n. BONDY AND W. S. R. MURTY, Graph Theory with Applications, North-Holland, New
York., 1976.

[10] L. CAI, Spanning 2-trees, manuscript, 1994.
[11] , Tree Spanners: Spanning Trees that Approximate Distances, Ph.D. thesis, University

of Toronto, Toronto, Canada, 1992; Technical Report 260/92, Department of Computer

D
ow

nl
oa

de
d

10
/2

6/
15

 to
 1

37
.1

89
.8

8.
22

9.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

TREE SPANNERS 387

Science, University of Toronto, 1992.
[12] NP-completeness of minimum spanner problems, Discrete Appl. Math., 48 (1994), pp.

187-194.
[13] L. CAI AND D. G. CORNEIL, Isomorphic tree spanner problems, Algorithmica, to appear.
[14] L. CAI AND J. M. KEIL, Computing visibility information in an inaccurate simple polygon,

Internat. J. Comput. Geom. Appl., submitted.
[15] , Spanners in graphs of bounded degree, Networks, 24 (1994), pp. 233-249.
[16] L.P. CHEW, There is a planar graph almost as good as the complete graph, in Proc. 2nd ACM

Symposium on Computational Geometry, Yorktown Heights, NY, 1986, pp. 169-177.
[17] M. L. FREDMAN AND R. E. TARJAN, Fibonacci heaps and their uses in improved network

optimization algorithms, J. Assoc. Comput. Mach., 34 (1987), pp. 596-615.
[18] H.N. GABOW, Z. GALIL, W. H. SPENCER, AND a. E. TARJAN, Ejcient algorithms for finding

minimum spanning trees in undirected and directed graphs, Combinatorica, 6 (1986), pp.
109-122.

[19] M. R. GAREY AND D. S. JOHNSON, Computers and Intractability: A Guide to the Theory of
NP-completeness, W. H. Freeman, San Francisco, 1979.

[20] S. L. HAKIMI AND S. S. YAW, Distance matrix of a graph and its realizability, Quart. Appl.
Math., 22 (1964), pp. 305-317.

[21] D. HAREL AND R. E. TARJAN, Fast algorithms for finding nearest common ancestors, SIAM
J. Comput., 13 (1984), pp. 338-355.

[22] J. HOPCROFT AND R. E. TARJAN, Dividing a graph into triconnected components, SIAM J.
Comput., 2 (1973), pp. 135-158.

[23] A. L. LIESTMAN AND T. SHERMER, Additive graph spanners, Networks, 23 (1993), pp. 343-364.
[24] Additive spanners for hypercubes, Parallel Process. Lett., 1 (1992), pp. 35-42.
[25] , Grid spanners, Networks, 23 (1993), pp. 123-133.
[26] D. PELEG AND A. A. SCH)FFER, Graph spanners, J. Graph Theory, 13 (1989), pp. 99-116.
[27] D. PELEG AND J. D. ULLMAN, An optimal synchronizer for the hypercube, in Proc. 6th ACM

Symposium on Principles of Distributed Computing, Vancouver, 1987, pp. 77-85.
[28] D. PELEG AND E. UPFAL, A tradeoff between space and efficiency for routing tables, in Proc.

20th ACM Symposium on Theory of Computing, Chicago, 1988, pp. 43-52.
[29] D. RICHARDS AND A. L. LIESTMAN, Degree-constrained pyramid spanners. Parallel Distrib.

Comput., to appear.
[30] R. E. TARJAN, Data Structures and Network Algorithms, Society for Industrial and Applied

Mathematics, Philadelphia, 1983.
[31] P. WINKLER, The complexity of metric realization, SIAM J. Discrete Math., 1 (1988), pp.

552-559.

D
ow

nl
oa

de
d

10
/2

6/
15

 to
 1

37
.1

89
.8

8.
22

9.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

