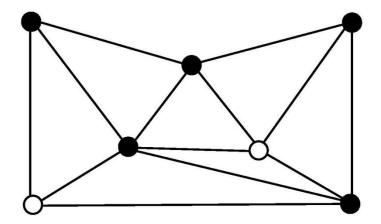
Vertex Covers: Indirect Certificates and New FPT Algorithms

CAI Leizhen

CSE, CUHK

1


March 2, 2019

Outline

- Introduction
- Indirect certificates
- FPT algorithms
- Conclusion

Introduction

Vertex Cover (NP-complete)
Input: Graph G = (V,E), parameter k.
Question: Does G contain k vertices that cover all edges?

Parameterized Complexity

Task: Compute 2^n

Direct: $O(n^2)$ time. Repeated squaring: $O(n^{1.59})$ or $O(n \log^2 n \log \log n)$ time.

Input size: $O(\log n)$. Question: Can we do it in polynomial time? Answer: No, because output size $\Theta(n)$.

Parameterizd Complexity

Input I \rightarrow Algorithm A \rightarrow Output O

Time complexity: classical $T(|I|) \rightarrow 2D$ -way T(|I|, |O|)

Parameterized complexity: T(|I|, k)

k: parameter of interest, typically |O|, solution size, or structural parameter (e.g., number of edge deletions to obtain a planar graph).

FPT Algorithms

FPT algorithm: $f(k)n^{O(1)}$ time.

 $k^{k}n$ $4^{k}k^{2}n^{2}$ $2^{k}n$ $2^{\sqrt{k}}n$ $n^{2} + 2^{k}$ $1.2738^{k} + kn$

FPT = fixed-parameter tractable

To solve NP-hard problems effectively for relatively small *k*.

FPT Algorithms

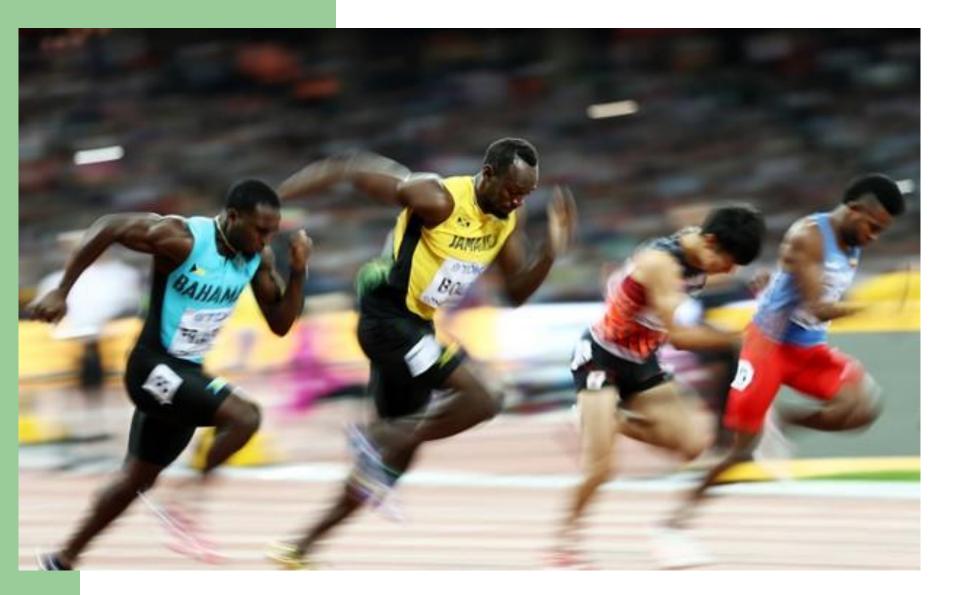
	k	10	20	50	100	n = 10
DS	n^k	10 ³⁰	10 ⁶⁰	10^{150}	10 ³⁰⁰	
IS	$n^{0.8k}$	10 ²⁴	10 ⁴⁸	10 ¹²⁰	10 ²⁴⁰	
VC	$2^k n$ 1.2738 ^k +kn			10 ¹⁸ 10 ⁵	10 ³³ 10 ¹⁰	

Vertex Cover, Clique, Independent Set:

No problem to obtain optimal solutions for graphs with 200 vertices!

Vertex Cover

Input: Graph G = (V,E), parameter k. Question: Does G contain k vertices that cover all edges?


Task: FPT algorithms for Vertex Cover.

March 2, 2019

March 2, 2019

FPT Algorithms for Vertex Cover

Graph minorFellow and Langston (1986) $\rightarrow O(f(k)n^3)$ f(k) astronomicalJohnson (1987) $\rightarrow O(f(k)n^2)$ $f(k) \approx 2^{2^{500k}}$ Matching

Papadimitriou and Yannakakis (1993) \rightarrow O(3^kkn)

FPT algorithms for Vertex Cover

Bounded search tree

- For any edge uv, either u or v must be in a solution $\rightarrow O(2^k kn)$
- Path P_3
- Vertex of degree at least 3
- Chan, Kanj, and Xia (2010)

- $\rightarrow O(1.618^k kn)$
- $\rightarrow O(1.5^k kn)$
- \rightarrow O(1.2738^k + kn)

March 2, 2019

Ways to Finish 100M

倒走 拿大顶飞滚 旋翻 单腿跳 滑雪型转步 西施步玉环 醉酒 扭臀步 太空漫游 凌波虚步精神病人思路广 猫行 梦游 旋风腿 僵尸跳 济公步 比翼双飞 秧歌摆 小鲜肉步 开车租人趟泥步倒撵猴乘火箭喷 打的 快闪最少能弹弓风火轮交叉迴旋

Introduction: Motivations

大道至简 Greatest truth is simple

- Better understanding
- Training students
- Intellectually challenging

化腐朽为神奇 Do bad things in clever ways

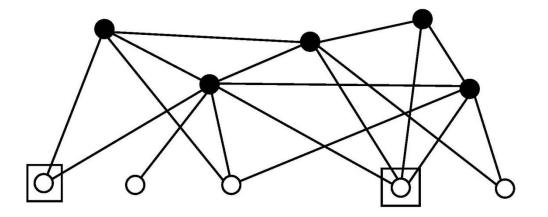
March 2, 2019

New FPT Algorithm for Vertex Cover

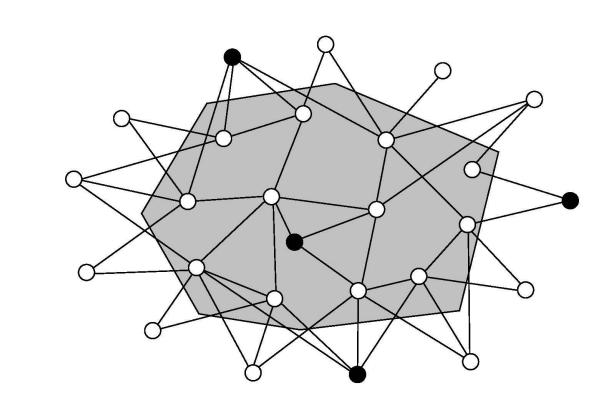
Randomly mark each vertex, output N(M).

M: marked vertices. N(M): neighbors of marked vertices.

Certificate for Vertex Cover


Vertex Cover belongs to class NP.

Natural certificate: solution, i.e., a *k*-vertex cover X.


Alternative certificate: subset of X with at most $k - \log n$ vertices.

Indirect Certificate

Theorem 1. For any minimal vertex cover X of a graph G = (V, E), V - X contains at most |X| vertices C such that N(C) = X.

Indirect Certificate

Indirect Certificate

Given indirect certificate C, we can obtain vertex cover X in linear time.

Therefore C can be used as a certificate to verify that G indeed has a *k* vertex cover.

FPT Algorithm using Indirect Certificate

Partition vertices of G into blue vertices B and red vertices R such that

- B contains vertex cover X, and
- R contains indirect certificate C.

Once we have such a (B,R)-partition, Theorem 1 guarantees that N(R) is a required vertex cover.

How to produce such a (B,R)-partition?

Randomized FPT Algorithm

Algorithm VC-IC

Step 1. Randomly and independently color each vertex either red or blue with probability ½ to form red vertices R.

Step 2. Return N(R) as a solution.

Theorem 2. Algorithm VC-IC finds, with probability at least 4^{-k} , a *k*-vertex cover of G, if it exists, in O(*m* + *n*) time.

Note: The algorithm can be derandomized by (n, 2k)-universal sets.

Semi-random Partition

Repeat the following until all vertices of G are coloured:

- Randomly choose an uncoloured vertex *v*, colour it red or blue with probability *p* for red and probability *1-p* for blue, and
- colour all neighbours of *v* blue if *v* is coloured red.

Random Selection

Optimal value for *p* is 1.

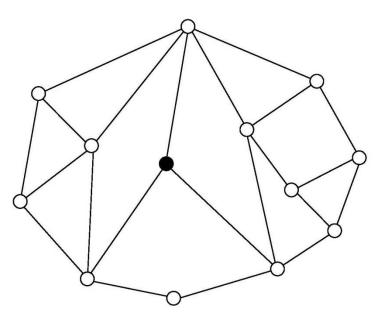
Randomly choose a vertex v and declare it to be not in solution, and hence put all vertices of N(v) into solution.

Random Selection

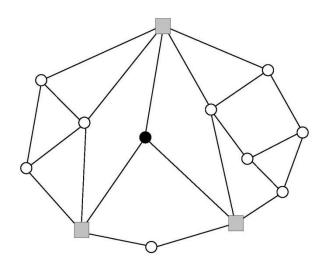
Algorithm VC-SRP

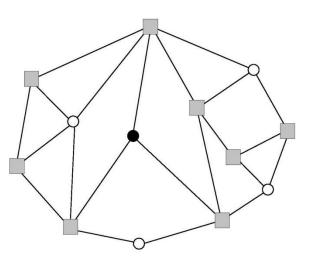
Step 1. Repeat the following until all vertices are coloured:

Randomly and uniformly choose an uncoloured vertex v, colour v red and all neighbours of v blue to form a (B,R)-partition of V.


Step 2. Output N(R) as X.

Theorem 3. Algorithm VC-SRP finds, with probability at least 2^{-k} , a *k*-vertex cover of G, if it exists, in O(*m* + *n*) time.


Smaller Indirect Certificate


Theorem 4. Every yes-instance (G, k) of Vertex Cover admits an indirect certificate C with at most k/3 vertices.

Success probability better VC-IC: 2.1166^{-k} VC-SRP: 1.6633^{-k}

Smaller Indirect Certificate

Conclusion

- Indirect certificates are interesting in their own right.
- Potential to use indirect certificates to obtain FPT algorithms.

