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Abstract—This correspondence introduces a multidrug cancer chemo-
therapy model to simulate the possible response of the tumor cells under
drug administration. We formulate the model as an optimal control prob-
lem. The algorithm in this correspondence optimizes the multidrug cancer
chemotherapy schedule. The objective is to minimize the tumor size under
a set of constraints. We combine the adaptive elitist genetic algorithm
with a local search algorithm called iterative dynamic programming (IDP)
to form a new memetic algorithm (MA-IDP) for solving the problem.
MA-IDP has been shown to be very efficient in solving the multidrug
scheduling optimization problem.

Index Terms—Drug scheduling (cancer) model, evolutionary algorithms
(EAs), hybrid genetic algorithm–local search (GA–LS), iterative dynamic
programming (IDP), memetic algorithms (MAs), optimal control.

I. INTRODUCTION

Cancer chemotherapy is one of the essential treatment methods
for tumor therapy. One of the major aims of cancer chemotherapy
is to minimize the number of tumor cells after a number of fixed
treatment cycles. A cancer treatment schedule usually specifies a drug
administration pattern that is repeated in cycles. The schedule of the
drug administration determines the dosage of drugs to be infused into
the patient’s body. To minimize the tumor cells with minimum side
effect after the end of treatment, it is crucial to design an optimal drug
schedule for cancer chemotherapy. To find such an optimal treatment
schedule, many mathematical models were developed to predict tumor
growth when drugs were administered. There are many mathematical
models introduced for cancer chemotherapy [9], [11], [20], [27], [31].

The use of combinations of drugs for cancer chemotherapy has
proven to be more effective. Combination chemotherapy has several
major advantages. Using multiple drugs for cancer chemotherapy can
usually decrease the chance of drug resistance. The overall toxicity to
the body or at least to an organ of the body can be reduced. A multiple
chemotherapeutic drug model for cancer treatment subject to drug re-
sistance was proposed by Martin and Teo [23] and Westman et al. [30].

According to Liang et al. [16], the toxicity equation of Martin’s
model [23] is not consistent with clinical experience and medical
knowledge. Liang et al. modified the toxicity equation in Martin’s
single-drug model. In this correspondence, we have extended the two-
drug model in [23] and modified the set of equations in [16] to model
the responses of multidrug administrations. We use the multidrug
model to simulate a set of clinical data with three drugs in our trails.
The clinical data used in our simulations are collected by our oncol-
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ogist, who used three drugs throughout the course of cancer chemo-
therapy treatment. A multidrug model can help oncologists to design
the best way to administer drugs for tumor treatments and save much
effort for trial and error, especially when a new drug is discovered.

The objective of this study is to design or provide an efficient
multidrug cancer chemotherapy schedule. We try to minimize the
number of tumor cells after a fixed period of treatment. Our proposed
model is formulated as an optimal control problem (OCP). The details
of the problem statements will be presented in the following sections.
It is usually very difficult to find the solutions to these OCPs due to the
multimodal and highly nonlinear landscape of the search space. There
are many optimization algorithms developed to solve OCPs [7], [16],
[22], [24]. In this correspondence, we propose a new optimization
algorithm to solve the multidrug scheduling optimization problem.

Exploration and exploitation are two major issues when designing
a global search method. Exploration is important for the search al-
gorithm to achieve global optimality, whereas exploitation searches
around the neighborhood of good solutions to produce higher quality
solutions. The search algorithm should strike a tactical balance be-
tween the two sometimes-conflicting goals. EAs are a class of global
optimization algorithms proven very effective in solving a wide range
of problems. However, traditional EAs may take a relatively longer
time to converge to an optimum. Local search (LS) methods, based
on different heuristics, can locally improve solution quality efficiently.
These two common classes of optimization algorithms can be inte-
grated to satisfy the two goals. Algorithms that hybridize nongenetic
LSs to refine solution quality with EAs are called memetic algorithms
(MAs). There are many studies on the design of MAs [2], [6], [12],
[13], [25], [26].

Iterative dynamic programming (IDP), based on the idea of
Bellman’s dynamic programming (DP) [2], has been shown to effec-
tively solve OCPs with very high dimension [17]–[21]. By integrating
IDP, which is an efficient solution identification method, and an
adaptive elitist genetic algorithm (AEGA), which is a global optimizer,
we have created a new MA called MA-IDP which has been applied
successfully to solve our proposed multidrug scheduling optimization
problem.

This correspondence is organized as follows. Section II introduces
the new drug administration dynamic model. The new MA designed
to solve the dynamic model is presented in Section III. Section IV
describes the implementation details and results of automating the
optimal drug administrations with our proposed MA. Conclusions are
drawn in Section V.

II. NEW DRUG ADMINISTRATION DYNAMIC MODEL

Modeling of tumor responses for cancer chemotherapy with mathe-
matical systems has a long history [10], [22], [29]. These mathematical
models are widely used to predict the tumor responses and to optimize
the control parameters and drug dosages infused in cancer chemother-
apy. We model the problem as an OCP with a set of differential
equations. The aim is to minimize the tumor size of the multidrug
chemotherapy schedule under different constraints of drug resistances.

Our tumor growth model is a modified version of [23]. The original
model proposed a two-drug model that considered the effects of drug
resistance under the interactions between the tumor cells and the drugs
administered. We extend this model by adding one more drug to
the chemotherapy schedule. This means that our model will consider
the interactions of three different drugs during the whole course of
chemotherapy treatment. In fact, the model can be generalized to
include even more drugs administered concurrently.

1083-4419/$25.00 © 2007 IEEE



IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 37, NO. 1, FEBRUARY 2007 85

Fig. 1. Tumor growth under the action of three non-cross-resistant drugs. It
consists of eight disjoint subpopulations, namely S, NA, NB , NC , NAB ,
NAC , NBC , and NABC . Mutations from sensitive phenotypes to resistant
phenotypes are represented by arrows.

Using combinations of drugs for cancer chemotherapy has some
advantages over a single-drug treatment since the chances of drug
resistance are decreased [23]. The advantage of using multiple non-
cross-resistant drug therapy is that a greater variety of resistant sub-
populations can be targeted. Also, simultaneous use of two or more
drugs can kill more tumor cells if the toxic effects of these drugs on
normal cells do not overlap significantly.

Our model is simulated with a set of clinical data collected by our
oncologist, who used three drugs, namely: 1) irinotecan; 2) cisplatin;
and 3) docetaxel, in the treatment cycles.

A. Three-Drug Mathematical Model

The model is developed by considering “pharmacokinetics.” Phar-
macokinetics is the mathematical study of what the body does during
the course of absorption, distribution, metabolism, and excretion of
drugs. In our model, a tumor comprises different compartments. A
two-compartment model was proposed to study the effects of drug-
sensitive and drug-resistant tumor cells in [5] and [8], whereas a
four-compartment model with two “cytotoxic drugs” for cancer
chemotherapy was introduced in [1]. We develop a three-drug model
in which the tumor contains eight compartments that are resistant to
different drugs. In this section, all cells in our model are referring to
tumor cells. Cells from sensitive compartments can transit to resistant
compartments. Three chemotherapeutic drugs A, B, and C are used
for cancer treatment. Within a tumor, there are eight disjoint subpopu-
lations. These subpopulations include the following: cells sensitive to
all drugs, S(t); cells resistant to exactly one drug, drug A, drug B,
and drug C (NA(t), NB(t), and NC(t), respectively); cells resistant
to exactly two drugs, drugs A and B, drugs A and C, and drugs B
and C (NAB(t), NAC(t), and NBC(t), respectively); and the to-
tally resistant cells for all drugs, NABC(t). Cells from sensitive
subpopulations may acquire resistance to drug i “spontaneously” with
probability αi. Multiple resistant cells arise from multiple mutations.
Fig. 1 shows the transition of cells from sensitive compartments to
resistant compartments. Since all patients enrolled in this study have
advanced stage lung cancer, we can assume the same mutation rate for
this group. In addition, the rate may be different in other cancer cell
types or stages. The increase in the tumor population N(t) at time t
per unit time due to cell proliferation is given by

dN(t)

dt
= λN (exponential growth model)

where λ is a positive constant representing the leading order exponen-
tial growth. Besides using the exponential growth model, we can also

replace N(t) with other growth models. Cells in all subpopulations
share the same growth rate. Our model assumes that the effects of
chemotherapy are instantaneous. This assumption is justifiable since
the time unit we used, i.e., one day, is long enough for most treatment
effects to happen.

The chemotherapeutic drugs are assumed to be non-cross-resistant
since there are some classes of drugs that demonstrate no or little cross
resistance. The mutation rates to a non-cross-resistant drug are the
same for cells already resistant to another non-cross-resistant drug and
cells from totally sensitive subpopulation. When the drugs are used
simultaneously, it is assumed that the number of cells killed in each
subpopulation is equal to the sum of cells killed when each drug is used
individually. Drug i is effective against its sensitive subpopulations
only when the concentration υi is above the threshold concentration
υthi

. A fraction of cells are killed by the chemotherapeutic drugs that
are effective to them. For example, cells from subpopulation NAB

with resistance to drugs A and B can only be killed with drug C,
while no drug can eliminate cells from the totally resistant phenotype
NABC . The fraction of cells killed by drug i per unit time per drug
concentration is denoted by κi. The set of dynamic equations modeling
the description is shown in the following:

dS

dt
=λ [(1− αA − αB − αC)S]

− κA (υA − υthA
)H (υA − υthA

)S

− κB (υB − υthB
)H (υB − υthB

)S

− κC (υC − υthC
)H (υC − υthC

)S (1)

dNA

dt
=λ [(1− αB − αC)NA + αAS]

− (κB (υB − υthB
)H (υB − υthB

)

+ κC (υC − υthC
)H (υC − υthC

))NA (2)

dNB

dt
=λ [(1− αA − αC)NB + αBS]

− (κA (υA − υthA
)H (υA − υthA

)

+ κC (υC − υthC
)H (υC − υthC

))NB (3)

dNC

dt
=λ [(1− αA − αB)NC + αCS]

− (κA (υA − υthA
)H (υA − υthA

)

+ κB (υB − υthB
)H (υB − υthB

))NC (4)

dNAB

dt
=λ [(1− αA)NAB + αBNA + αANB ]

− κC (υC − υthC
)H (υC − υthC

)NAB (5)

dNAC

dt
=λ [(1− αB)NAC + αCNA + αANC ]

− κB (υB − υthB
)H (υB − υthB

)NAC (6)

dNBC

dt
=λ [(1− αA)NBC + αBNC + αCNB ]

− κA (υA − υthA
)H (υA − υthA

)NBC (7)

dNABC

dt
=λ[αANBC + αCNAC + αCNAB ] (8)

where H(x) is the Heaviside step function defined as

H(x) =
{

1, if x ≥ 0
0, otherwise.
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TABLE I
SUMMARY OF PARAMETERS OF THE MULTIDRUG MODEL

The initial cell subpopulations are as follows:

S(0) =S0 NA(0) = NA0 NB(0) = NB0

NC(0) =NC0 NAB(0) = NAB0 NAC(0) = NAC0

NBC(0) =NBC0 NABC(0) = NABC0 .

Besides studying tumor population, we also need to study drug
concentrations and drug toxicities. We adopt the equations of drug
concentrations and toxicities from [16].

The concentration of each drug is assumed to decay exponentially.
Equations (9)–(11) describe the change of drug concentrations inside
the patient’s body. The rate to deliver drug i is denoted by the variable
ui, where the concentration of drug i decays with half-life γi, which
depends on the biochemical property of the drug, i.e.,

dυA

dt
=uA − γAυA (9)

dυB

dt
=uB − γBυB (10)

dυC

dt
=uC − γCυC . (11)

The cumulative toxicity can be measured by the cumulative drug
concentration within the patient’s body, which affects the population
of the immune cells. It is actually an index reflected by the normal
bone marrow cell count. In our model, we simplified it as a function of
drug concentrations and metabolic rate. The relationship between the
cumulative drug toxicity and the drug concentration inside the body
is described in (12)–(14). The cumulative drug toxicity τi increases
with the concentration of drug i (i.e., υi) and decreases with the rate
of metabolism of drug i inside the body. The rate of metabolism of
drug i inside the body is assumed to be directly proportional to the
cumulative drug toxicity τi with a proportion constant ηi, i.e.,

dτA

dt
=υA − ηAτA (12)

dτB

dt
=υB − ηBτB (13)

dτC

dt
=υC − ηCτC . (14)

Parameters of the proposed multidrug model are shown in Table I.

B. OCP

After we have developed a mathematical model to describe the
behavior of tumor subpopulations throughout the course of treatment,
we want to determine the optimal treatment regime during the course
of therapy. Based on the set of dynamic equations, we can formulate
our problem as an OCP for optimization. Numerous research [4],
[9], [28] shows that optimal control theory can be applied to identify

TABLE II
SUMMARY OF STATE VARIABLES OF THE MULTIDRUG MODEL

TABLE III
SUMMARY OF CONTROL VARIABLES OF THE MULTIDRUG MODEL

the optimal chemotherapeutic schedule. The general form of an OCP
consists of a dynamic system that describes a set of state variables, i.e.,

x(t) = f (x(t),u(t), t) (15)

x(0) =x0 (16)

where x(t) is an (n× 1) state variable vector and u(t) is an (m× 1)
control variable vector bounded by

αj ≤ uj(t) ≤ βj , j = 1, 2, . . . ,m.

Unlike those localized treatment methods such as surgery or radio-
therapy, actions taken by chemotherapeutic drugs are effective not only
to the tumor site but also to all organs of the body. Serious adverse
effects will arise when the concentration or toxicity of a drug inside the
body exceeded a certain threshold. The level of drug concentration and
toxicity should be kept below a tolerable level throughout the course of
treatment. Thus, we imposed a set of constraints on drug concentration
and toxicity to our model to ensure that the patient can tolerate the
toxic side effects of the drug. These constraints are as follows:

υi ≤ 50, i ∈ {A,B,C} (17)

τi ≤ 100, i ∈ {A,B,C}. (18)

Since our goal is to minimize the tumor size after the course of
chemotherapy, we have our performance index I as

I = S(tf ) +
∑

i

Ni(tf ) +
∑
i,j

Nij(tf ) +
∑
i,j,k

Nijk(tf ) (19)

where i, j, k ∈ {A,B,C}, i �= j �= k, and tf = 84 days (which is the
length of the treatment cycles).

The state variables and control variables of our model are listed in
Tables II and III, respectively.

III. PROPOSED MEMETIC OPTIMIZATION ALGORITHM

Optimization plays a key role in the fields of artificial intelli-
gence, computer science, and operational research. We propose a
new memetic optimization algorithm (MA-IDP) by hybridizing a
population-based search (AEGA) with an LS (IDP). AEGA [15] deter-
mines the dissimilarity among individuals by the relative ascending (or
descending) directions in maximization (minimization) problems and
a distance threshold parameter σs. Based on the dissimilarity between
individuals, AEGA can eliminate redundant individuals that share the
same peak and create elitist individuals on the unexplored peaks.
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Fig. 2. Construction of state grid points over all stages. Stage 1 only has the initial condition of the state grid point, and each state grid point in each stage
represents a set of respective values of the state variables.

IDP [20] divides the problem into different time stages and improves
the solution iteratively. This section briefly reviews IDP and AEGA,
the details of the MA-IDP, and how we apply MA-IDP to solve our
drug schedule optimization problem.

A. IDP

IDP is an LS method proposed by Luus et al. [19]. The fundamental
ideas of IDP are based on DP [3]. Applications of IDP to optimize
many real-world OCPs were explored in numerous papers [17]–[21].
The general formulation of an OCP has been discussed in the previous
section. The algorithm of IDP includes the following steps.

Division of Time Interval: To apply IDP for optimization, we have
to construct a sequence of time stages for the problem as required
by DP. We divide the time interval into P stages, each of length L,
such that

L =
tf
P

. (20)

In our problem, tf is the length of the treatment schedule (84 days).
Construction of State Grid Points: A set of values taken by a state

vector x (n× 1) is represented as a grid point. For the state vector x
at the first stage, it takes the value of the specified initial condition.
For each variable xi of the state vector x at the remaining stages, it is
allowed to take N values over its variable domain at that time stage.
This means that there are Nn grid points for stages 2, 3, . . . , P . Fig. 2
shows the construction of state grids over all stages. The best value
of x obtained from the previous iteration is set as the central point of
the grid.

Construction of Control Grid Points: For each variable ui of the
control vector u (m× 1) at each stage, it is allowed to take M values
over its variable domain at that time stage. This means that there are
Mm grid points for each stage. The variable domain of the control
vector contracts during iteration. The central value of the variable
domain is taken as the best value of u from the previous iteration.

Iterative Procedure: The iteration procedure starts from the last
stage P . It evaluates the performance index of each state grid
point x by integrating (1)–(14) from time tf − L to tf with its Mm

control vector values u.
The best control vector of a particular state vector is the one that

gives the minimum value of the performance index among these Mm

control vector values.
After obtaining the best control vector at stage P , it steps backward

to stage P − 1, which corresponds to the time interval tf − 2L ≤
t < tf − L. Similarly for stage P , we consider Mm control values
of each state grid point. After we have evaluated (19) from tf − 2L
to tf − L, the state vector x(tf − L) may not match any state vector
of the next stage (stage P ). To continue to integrate the equations to
the next stage, we use the optimal control vector of the grid point in
the next stage that is closest to the state x(tf − L). Fig. 3 shows the
details on how to continue the integration to the next stage, with n = 2,
N = 7, m = 1, and M = 5. For example, for the grid point (3,2) in

Fig. 3. Details on how to continue the integration with the optimal control
of the closest grid point at the next stage. At stage P − 1, based on the
performance of the closest grid point at stage P obtained in the previous step,
the best set of control values u for the grid point (2,3) will be used to continue
the integration to the last stage. For example, if u = a is the best values for
grid point (2,3) at stage P − 1, the best values of its closest grid point (1,4) at
stage P will be used to continue the integration to the last stage.

stage P − 1 with u = a, the state grid point (4,1) is the closest grid
point among the (7 × 7) state grid points in stage P . Therefore, we
use the optimal control vector uopt of the grid point (4,1) in stage P
obtained from the previous step to continue the integration to the final
time stage. We calculate the performance index of the grid point (3,2)
in stage P − 1 with the remaining control vectors. The optimal control
for that grid point is the control vector that gives the minimum value
of the performance index. The integration procedure is continued in a
backward manner from stage P − 2 to stage 1.

Systematic Reduction in Region Size: The optimal control policy
from the previous iteration provides the central values of the control
vectors for each stage, while the optimal trajectory from the previous
iteration updates the central grid point of each stage. The search ranges
si and rj , which correspond to the control and state vectors at each
stage, respectively, are contracted by a region contraction factor γ for
finer resolution. Thus, the search region for xi and uj is x∗

i ± si and
u∗

j ± rj , respectively, where x∗
i and u∗

j are the optimal trajectory of
the ith state variable and the optimal control policy of the jth control
variable at that stage, respectively. If the search region is outside
the domain of the variable, it is substituted with the value of the
upper or lower bound. The whole iteration procedure is repeated until
the optimal control policy is obtained with sufficient accuracy. The
IDP algorithm can locate an optimal solution quickly, but there is no
guarantee that the optimum found is the global one.

B. AEGA

We regard two individuals as similar if they share the same bang-
bang control patterns (same cycle length) in all three pairs of their
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Fig. 4. Chromosome that encodes a drug administration schedule.

schedules. Otherwise, the two individuals are considered to be dissim-
ilar. The elitist of similar individuals is conserved, while the redundant
ones are eliminated from the population by the genetic operators
during iteration. With the aids of the elitist genetic operators, the
algorithm can adaptively adjust the population size according to the
features of the problems. It minimizes the number of individual to
explore each optimum and search the landscape optima in parallel. We
will show the details of the bang-bang control and our elitist genetic
operators in the coming sections.

C. Proposed MA

We apply the efficient IDP algorithm as a genetic operator of the
multimodal GA (AEGA) [15]. We also employ IDP to initialize our
candidate solutions. The advantages of using IDP are threefold: IDP
can refine the solution quality and repair a solution that violates any
constraint, while AEGA can find global and multiple solutions for the
problem. In clinical treatment, an oncologist expects to select different
drug scheduling policies for different patients. Our MA-IDP can obtain
multiple solutions and identify multiple efficient drug scheduling
policies for a doctor to design the treatment method depending on
various patient conditions.

D. Bang-Bang Control

Cancer chemotherapy treatments usually consist of a number of
cycles. The dosage of drugs infused to the patient is fixed in each cycle.
To find such kind of drug administration patterns, bang-bang solutions
[14] are used. Solution schedule is a schedule that infuses either a fixed
or zero dosage to the patient’s body for each day of treatment cycles.
Bang-bang control patterns are applied to the schedule to push toward
the constraint limits.

E. Chromosome Encoding

We encode a chromosome of our problem as a schedule of drug
dosages throughout the treatment cycles. It consists of the dosage of
each drug (as a real number) throughout the course of the 84-day
chemotherapy treatment. Fig. 4 shows a chromosome of the drug
schedule. The chromosome comprises two parts, i.e., 1) the head
dosages and 2) the tail bang-bang controls (in cycles). The head
dosages are the drug dosages for the early days of the treatment. For
the remaining days, a cyclewise representation is used to encode the
bang-bang control cycles, which consist of three numbers, i.e., 1) the
starting day; 2) the dosage; and 3) the cycle length. For example,
the chromosome (50, 40, 30)|(4, 35, 3) represents the drug sched-
ule of [50, 40, 30|35, 0, 0, 35, 0, 0, . . . , 35, 0, 0]. With this cyclewise
representation, we can generate a bang-bang solution for the drug
schedule accurately and easily. The valid range for each gene of the
chromosome is from 0 to 150. Bang-bang solutions are generated first
by the one-iteration + one-stage IDP followed by the generation of
the head dosages by the one-iteration + 84-stage IDP. Fig. 5 illustrates
example schedules for obtaining the bang-bang solutions. Example
schedules after optimizing the head dosages are shown in Fig. 6.

Fig. 5. Example schedules after applying one-iteration + one-stage IDP.

Fig. 6. Example schedules after applying one-iteration + day-stage IDP.

F. Initialize Schedule

We apply IDP with a single iteration and one time stage (one-
iteration + one-stage IDP) to initialize our candidate schedules such
that a fixed dosage of drugs is administered after a certain time interval.
A bang-bang control schedule pattern is obtained. Fig. 5 shows an
example of our initialized schedule, a schedule of drug A with time
interval equals to seven days, a schedule of drug B with time interval
equals to 14 days, and a schedule of drug C with time interval equals
to three days. The dosage of each drug is fixed within each schedule.

From our observations, a bang-bang control solution obtained after
initialization can push toward the constraint limits in the later phases of
the treatment cycles, while the schedule still allows us to infuse higher
dosage of drug in the early phases. After initialization, our algorithm
will try to push toward the limit in the early phases by increasing
the drug dosages. We improve the schedule by trying higher drug
dosage in the early phases of a schedule with IDP. We applied IDP
with a single iteration and day time stages (one-iteration + day-stage
IDP)1 to initialize our candidate schedules, where day is the number of
days in the treatment period. Fig. 6 shows the example schedules after
applying one-iteration + 84-stage IDP.

In the first few days of the treatment period, it is suggested to kill as
many tumor cells as possible since drug resistances are not acquired in
the patient’s body. Drug dosages are adjusted by IDP in the first few
treatment days. When the patient gradually acquires drug resistances,
a fixed cycle of fixed patterns is used, corresponding to the bang-bang
control pattern of our schedule in the later treatment days.

G. Elitist Crossover

Crossover is performed by exchanging a pair of complete schedule
of a single drug of two chromosomes. Two chromosomes are selected
randomly from the population as parents. If the two individuals share
the same bang-bang control patterns (same cycle length) for all drug
schedules, we consider the two schedules are similar. If two schedules
are similar, the one with lower fitness will be eliminated. Otherwise,
crossover will be performed to generate two offspring. Fig. 7 shows
the details of the crossover operator. It exchanges the drug schedules
between two chromosomes, and one-iteration + 84-stage IDP is then
applied to each offspring.

1IDP with only one pass in its iterative procedure and the time interval is
divided into day time stages (84 time stages in our problem).
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Fig. 7. Crossover operator that exchanges the drug schedules between two
chromosomes.

Fig. 8. Mutation operator that changes a drug schedule of a chromosome.

After applying the crossover operator, we evaluate the fitness of the
two offspring and then select the two individuals with higher fitness
among the parents and offspring for the next generation.

H. Elitist Mutation

Mutation operator randomly changes the dosage of a drug schedule
in the way similar to the initialization step. Fig. 8 depicts the mutation
operation. If the mutated schedule has a similar one in the population,
the one with lower fitness will be eliminated. Otherwise, both parent
and offspring are carried to the next generation.

I. Fitness Evaluation

The fitness of each candidate solution to be maximized is defined as
104/N(tf ), where N is the sum of the numbers of tumor cells of all
subpopulations.

J. Algorithm Outline

We apply IDP within the genetic operators of AEGA to explore
multiple high-quality solutions of the drug model efficiently. The
outline of MA-IDP is as follows.

1) Set t = 0 and initialize a chromosome population P (t) (bang-
bang solutions based on one-iteration + one-stage IDP).

2) Optimize and evaluate the fitness of P (t) by using one-
iteration + day-stage IDP.

3) While (termination condition not satisfied) Do
a) Elitist crossover operation to generate P (t + 1).

i) Check the dissimilarity of the randomly selected parents pi

and pj .
ii) If the parents pi and pj are similar, the elitist crossover

operation conserves the better one of them to P (t + 1).
Else, perform crossover operation to generate two off-

spring ci and cj and optimize and evaluate the fitness of ci

and c by using one-iteration + day-stage IDP; then, select
the better two among the parents and their offspring into
P (t + 1).

b) Elitist mutation operation to generate P (t + 1).
i) Perform the mutation operation to generate the offspring ci

from the parent pi.
ii) Optimize and evaluate the fitness of ci by using one-

iteration + day-stage IDP.
iii) If cj is dissimilar with any individual in P (t), the

elitist mutation operation conserves pi and ci together to
P (t + 1).

Else, select the better one of similar individuals into
P (t + 1).

4) Stop if the termination condition is satisfied; otherwise, t← t +
1 and go to Step 3).

TABLE IV
PARAMETER SETTING OF THE TUMOR MODEL

TABLE V
EXPERIMENTAL SETTINGS FOR IDP, MA-IDP, AND AEGA

IV. EXPERIMENTS AND RESULTS

We have applied our proposed MA to find high-quality schedules
for our proposed model presented in Section III.

A. Experimental Settings

We have carried out a number of experiments with MA-IDP and
compared the results with AEGA and IDP. The initial population sizes
for MA-IDP and AEGA were both set to 10. The population sizes
changed dynamically. We set the crossover and mutation probabili-
ties to 1.0. Both algorithms were iterated until they converged. For
MA-IDP and IDP, the numbers of state grid points and control grid
points were set to 4 and 10, respectively. The values of the parameters
of the model are presented in Table IV. From day 1 to day 84, all
three drugs, i.e., A, B, and C, are administered simultaneously. To
achieve higher accuracy, the drug dynamic model was simulated using
the fourth-order Runge–Kutta numerical integration method with a
step size of 0.01 day. Table V depicts the experimental settings for
MA-IDP, AEGA, and IDP. The number of generations is set just
large enough to ensure that the population will converge in both the
MA-IDP and AEGA experiments. Based on our experimental settings,
MA-IDP and AEGA converged around the 50th and 5000th genera-
tions, respectively. The population size is changed dynamically by the
genetic operators.

B. Optimization Results

We have automated the multidrug scheduling model with our
proposed algorithm, i.e., MA-IDP, and 12 multiple solutions were
obtained. Fig. 9 shows the details of each state variable of the best
schedule obtained (schedule 1). From the plots, we can see that
the schedule tries to push toward the toxicity limits of each drug
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Fig. 9. Optimization result. (a) Logarithm of the number of tumor cells. (b) Concentration of drug A at the cancer site. (c) Concentration of drug B at the cancer
site. (d) Concentration of drug C at the cancer site. (e) Toxicity of drug A inside the body. (f) Toxicity of drug B inside the body. (g) Toxicity of drug C inside
the body. (h) Administration schedule of drug A (dosage unit: D). (i) Administration schedule of drug B (dosage unit: D). (j) Administration schedule of drug C
(dosage unit: D).

TABLE VI
COMPARISON BETWEEN DIFFERENT ALGORITHMS

[Fig. 9(e)–(g)]. The tumor cell count is reduced exponentially during
the early phases of the treatment period. Due to drug resistances,
the tumor population gradually converges to a small number. It is
envisaged that the immune system could seek out and eliminate these
small tumors in the body.

The experiments with the three algorithms (i.e., MA-IDP, AEGA,
and IDP) were repeated ten times, and the results are listed in Table VI.
We can see that MA-IDP outperformed both AEGA and IDP in terms
of the average and the best fitness (of the best individual in each run).
MA-IDP has also preserved the ability of AEGA to find multiple
solutions in a run. Although the average runtime and convergence
power (standard deviation) for IDP is better than MA-IDP, the values
are still comparable. It demonstrates that MA-IDP has combined the
high convergence power of IDP and the strong global optimization
ability of AEGA. Fig. 9(a) shows the high quality of the solutions,
and the tumor size can be reduced effectively in the early stage
of the treatment. The solution schedules [Fig. 9(h)–(j)] can provide
the oncologist with insights for designing their treatment schedules
and patterns.

V. CONCLUSION AND FUTURE WORK

This correspondence has proposed an optimal control tumor model
for multidrug cancer chemotherapy schedule optimization with the
help of an oncologist. We have integrated the AEGA and IDP algo-
rithms to form a new MA (i.e., MA-IDP).

Our model can automate the trial and error procedure to suggest
the ways to administer different drugs, especially for newly discovered

drugs. We plan to tune our multidrug model parameters with multidrug
clinical data and simulate biochemical behaviors of the drugs in the
future work. We will then study a variety of drug combinations, doses,
and treatment patterns with different schedules.
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