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ABSTRACT

Due to the prevalence of personalization and information fil-
tering applications, modeling users’ interests on the Web has
become increasingly important during the past few years. In
this paper, aiming at providing accurate personalized Web
site recommendations for Web users, we propose a novel
probabilistic factor model based on dimensionality reduc-
tion techniques. We also extend the proposed method to
collective probabilistic factor modeling, which further im-
proves model performance by incorporating heterogeneous
data sources. The proposed method is general, and can be
applied to not only Web site recommendations, but also a
wide range of Web applications, including behavioral tar-
geting, sponsored search, etc. The experimental analysis on
Web site recommendation shows that our method outper-
forms other traditional recommendation approaches. More-
over, the complexity analysis indicates that our approach
can be applied to very large datasets since it scales linearly
with the number of observations.
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1. INTRODUCTION
How to find the most relevant search results for Web users

has been extensively studied in both academia and industry
during the past decade. Traditionally, commercial search
engines try to satisfy online users’ information needs based
on the queries issued by users. By taking advantages of
the advanced learning and ranking algorithms, commercial
search engine services have already become indispensable in
solving Web users’ various information needs.

However, due to the rapid growth of information on the
Web, especially for the social Web, the traditional search
paradigm can no longer meet Web users’ ever-growing in-
formation needs. The Web is now shifting online users from
“search” to “discovery”. The current paradigm is that a user
who has information needs or questions will search on com-
mercial search engines for related Web sites or answers. Dif-
ferent from “search”, the concept of “discovery” refers to the
ability to push relevant content to users either based on the
meta data that have already been collected about the users,
or by exposing their activities that their friends and social
networks are engaged in.

From the above definitions, we can see that these two con-
cepts are different but closely related since essentially, the
idea of “discovery” is similar to “autonomous search”, which
helps users search for things when they do not even yet know
what they want. Due to its personalized nature, “discovery”
or “autonomous search”, which combines a person’s context
with others’ past opinions and actions, can therefore create
tremendous value and relevance.

In this paper, in order to enhance online users’ experi-
ence, we investigate a novel application, Web site recom-
mendation, to help users proactively discover relevant Web
sites by conducting autonomous search based on their past
online behaviors.

Many methods [7, 13, 17, 19, 22, 23, 24, 32] have been
proposed to tackle recommendation or collaborative filtering
problems in the literature. Typically, in traditional recom-
mender systems, modeling users’ interests needs to utilize
a user-item rating matrix, which explicitly specifies users’
preferences. However, in the scenario of Web site recom-
mendation, it is infeasible to ask Web users to explicitly
rate Web sites they like or dislike. Instead, we can only
take advantages of implicit user behavior data in the past
to make recommendations. Hence, most of the traditional
collaborative filtering approaches cannot be directly applied
to the Web site recommendation task.

In this work, aiming at solving the Web site recommenda-
tion problem effectively and efficiently, we propose a proba-
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bilistic factor modeling framework by utilizing implicit user-
site frequency data based on the following motivations:

1. A Web user’s preference on different Web sites can be
represented by how frequently a user visits each Web
site;

2. Higher visiting frequency on a site from a user means
heavy information need on this site while lower fre-
quency indicates less interest;

3. User-query issuing frequency data can be incorporated
to refine a user’s preference since normally the user will
first issue a query before clicking a Web site.

The first two motivations lead to a Probabilistic Factor
Model (PFM) based on dimensionality reduction techniques.
More specifically, the user-site frequency matrix is factor-
ized into two low-dimensional factor matrices: user latent
matrix and site latent matrix. The value of each dimension
in a user factor vector follows a gamma distribution, which
indicates a user’s preference in a latent topic. A site fac-
tor vector also has similar definition. Then, the observed
user-site frequency matrix is assumed to follow Poisson dis-
tribution with the mean generated by the inner product of
the user latent matrix and the item latent matrix. Finally,
an efficient multiplicative updating algorithm is proposed to
learn the latent factor matrices.

By considering the third motivation, we design a Collec-
tive Probabilistic Factor Model (CPFM) which simultane-
ously factorizes user-site matrix and user-query matrix by
sharing the same user latent space. The experimental anal-
ysis shows that CPFM model can further improve the rec-
ommendation quality.

The remainder of this paper is structured as follows. In
Section 2, we provide an overview of several major approaches
for recommender systems and some related work. Section 3
details the concept of low-rank matrix factorization. The
proposed probabilistic framework and the learning algorithm
are presented in Section 4. The results of an empirical anal-
ysis is presented in Section 5, followed by the conclusion and
future work in Section 6.

2. RELATED WORK
In this section, we review two research topics which are

relevant to our work: Web user interests prediction and rec-
ommender systems.

2.1 Web User Interests Prediction
In this subsection, we review some closely related tasks in

the literature to predict Web user interests.
Personalized search engine is a natural application to Web

user interests modeling, which improves the ranking system
(ranking problem can also be considered as recommendation
problem) by incorporating an individual’s historical activi-
ties. In [27], Sun et al. conducted sophisticated analysis
on the correlation between users, their queries and search
results clicked to model user preferences. The experimen-
tal results indicate that the proposed CubeSVD approach
can significantly improve Web search performance. In [20],
Qiu et al. studied how a search engine can learn a user’s
preference automatically based on her past click history and
how it can use the user preference to personalize search re-
sults. The experiments show that personalized search based

Figure 1: IE8 Site Suggestion for “Google.com”

on user preference yields significant improvements over the
best existing ranking mechanism in the literature. Teevan
et al. in [28] also utilized implicit information about users’
interests to re-rank Web search results within a relevance
feedback framework.

Applications of implicit feedback to predict user future
visits are also studied in [6, 11]. These systems typically
establish historical click trails of a user or a community of
users, and assess the accuracy of statistical machine learning
models which predict future page visits [29].

Recently, White et al. evaluated how to effectively predict
user interests based on five contextual information sources:
social, historic, task, collection and user interaction [29].
The user’s Web page visits are automatically assigned to
Open Directory Project (ODP) categories and then used to
predict future visits of sites within a category. Different from
this approach, in the work presented in this paper, we focus
on predicting a lower granularity of actual frequencies of the
visits, as opposed to a category level.

Starting from the release of Internet Explorer 8 (IE8), an
important feature was introduced - “Suggested Site”. As
shown in Figure 1, IE8 lists Top 5 Web sites that are similar
to the site a user types in the address bar. So far, this
feature makes Web site recommendations based on a single
site, which does not include any personalized results. In
this paper, we will study how to personalize the suggestion
results based on users’ past online behaviors.

2.2 Recommender Systems
Our work is closely related to the research of recommender

systems. In this subsection, we review several major ap-
proaches for recommender systems, especially for collabora-
tive filtering.

A number of algorithms have been proposed to improve
both the recommendation quality and the scalability prob-
lems. As discussed in [9], one of the most commonly-used
and successfully-deployed recommendation approaches is col-
laborative filtering. These collaborative filtering algorithms
can be divided into two main categories: neighborhood-
based and model-based approaches. Neighborhood-based
methods, or memory-based methods, mainly concentrate
on finding the similar users [2, 10] or items [5, 17, 24] for
generating recommendations. The neighborhood-based rec-
ommendation algorithms are based on the assumption that
those who agreed in the past tend to agree again in the
future. They usually fall into two classes: user-based ap-
proaches and item-based approaches. User-based approaches
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predict the ratings of active users based on the ratings of
similar users found, while item-based approaches predict the
ratings of active users based on the computed information
of items similar to those chosen by the active user.

In addition to the neighborhood-based approaches, the
model-based approaches to collaborative filtering train a pre-
defined model by employing the observed user-item ratings.
Algorithms in this category include the clustering model [12],
the aspect models [7, 8, 25], the latent factor model [3], the
Bayesian hierarchical model [31] and the ranking model [18].
Recently, due to its efficiency in dealing with large datasets,
several low-dimensional matrix approximation methods [1,
13, 21, 22, 23, 26] have been proposed. These methods all
focus on fitting the user-item rating matrix using low-rank
approximations, and employ the matrix to make further pre-
dictions. The low-rank matrix factorization methods are
very efficient in training since they assume that in the user-
item rating matrix, only a small number of factors influence
preferences, and that a user’s preference vector is determined
by how each factor applies to that user. Low-rank matrix
approximations based on minimizing the sum-squared er-
rors can be easily solved using Singular Value Decomposi-
tion (SVD). In [22], Salakhutdinov et al. proposed a prob-
abilistic graphic model by assuming some Gaussian obser-
vation noises on observed user-item ratings. The proposed
model achieved promising prediction results. In their follow-
ing work proposed in [23], the Gaussian-Wishart priors are
placed on the user and item hyper-parameters. Since exact
inference is intractable in the new model, a Gibbs sampling
method is proposed to iteratively learn the user and item
latent matrices.

All of the low-dimensional approximation methods men-
tioned above are based on factorizing the user-item rating
matrix. Normally, in a recommender system, users can as-
sign 5-scale integer ratings (from 1 to 5, and 5 indicates
“love” while 1 means “dislike”) to items1. However, in the
case of Web site recommendation, the range of the user-site
frequency data is much wider than the rating data. A user
can visit a site only once, but probably will also visit another
site thousands of times or even more. The wide range of the
frequency data poses new challenges in modeling the Web
site recommendation problem. Some state-of-the-art algo-
rithms based on the rating data may not perform well on
the frequency data. For example, in the method proposed
in [22], the rating data are modeled as Gaussian distribu-
tions with some noises. This assumption is not suitable for
modeling the frequency data since the underlying distribu-
tion is probably not Gaussian. Hence, most of previous low-
dimensional approximation methods cannot generate good
recommendation results when they are applied to the Web
site recommendation problems.

3. MATRIX FACTORIZATION IN RECOM-

MENDER SYSTEMS
As mentioned in Section 2, a popular method in recom-

mender systems is to factorize the user-item rating matrix,
and to utilize the factorized user-specific and item-specific
matrices for further missing data prediction [22, 23, 30]. The
premise behind a low-dimensional factor model is that there
are only a small number of factors influencing the prefer-

1Different recommender systems adopt different rating
scales. Some systems may use 10-scale integer ratings.

ences, and that a user’s preference vector is determined by
how each factor applies to that user [21].

In recommender systems, considering an m× n user-item
rating matrix R describing m users’ numerical ratings on
n items, a low-rank matrix factorization approach seeks to
approximate the rating matrix R by a multiplication of d-
rank factors R ≈ UV T , where U ∈ R

m×d and V ∈ R
n×d

with d << min(m,n). The matrix R in the real-world is
usually very sparse since most of the users only rates few
items.

The Singular Value Decomposition (SVD) method is em-
ployed to estimate a matrix R by minimizing

min
U,V

1

2

m∑

i=1

n∑

j=1

Iij(Rij − UiV
T
j )2, (1)

where Ui and Vj are row vectors with d values, Iij is the
indicator function that is equal to 1 if user i rated item j
and equal to 0 otherwise.

Another popular method in recommender systems is the
Probabilistic Matrix Factorization (PMF) method proposed
in [22]. The conditional distribution over the observed rat-
ings is defined as:

p(R|U,V, σ2

R) =
m∏

i=1

n∏

j=1

[
N

(
Rij |UiV

T
j , σ2

R

)]Iij
, (2)

where N (x|µ, σ2) is the probability density function of the
Gaussian distribution with mean µ and variance σ2. The
zero-mean spherical Gaussian priors are also placed on user
and item feature vectors:

p(U |σ2

U )=

m∏

i=1

N (Ui|0, σ
2

UI), p(V |σ2

V )=

n∏

j=1

N (Vj |0, σ
2

V I). (3)

Hence, through a Bayesian inference, we have the following
objective function:

min
U,V

1

2

m∑

i=1

n∑

j=1

Iij(Rij −UiV
T
j )2 +

λ1

2
||U ||2F +

λ2

2
||V ||2F , (4)

where λ1, λ2 > 0. The optimization problem is to minimize
the sum-of-squared-errors objective function with quadratic
regularization terms. Gradient based approaches can be
applied to find a local minimum. The above algorithm is
perhaps one of the most popular methods in collaborative
filtering.

Actually, when modeling the observed rating data, both
SVD and PMF have the underlying assumption about Gaus-
sian distribution. This assumption may not be appropriate
when working on the frequency data. Hence, these models
may encounter problems in generating good recommenda-
tion results. The experimental analysis conducted in Sec-
tion 5 demonstrates our concerns. In next section, we pro-
pose two probabilistic models which can potentially gener-
ate better Web site recommendation results than SVD and
PMF.

4. RECOMMENDATION FRAMEWORK

4.1 Problem Definition
The major task studied in this paper is to predict how

frequently a user will visit a Web site. In commercial search
engines or browser toolbars, query logs record the activities
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Table 1: Samples of Search Engine Query Logs

ID Query URL
358 facebook http://www.facebook.com
358 rww http://www.readwriteweb.com
3968 iphone4 http://www.apple.com
3968 ipad http://www.apple.com
... ... ...

(a) User-Site Matrix (b) User-Query Matrix

Figure 2: Aggregated Data From Query Logs

of Web users, which reflect their interests and the relation-
ships between users and queries, as well as users and clicked
Web sites. As shown in Table 1, each line of the data we
need includes the following information: a user ID, a query
issued by the user, and a Web site on which the user clicked.

By aggregating the data in Table 1, we can construct two
matrices, as shown in Figure 2. Figure 2(a) is the user-site
frequency matrix, which contains how many times a user
visited a Web site. Figure 2(b) gives the user-query fre-
quency matrix, which indicates how frequently a user issued
a query.

The problem under investigation is essentially how to ef-
fectively and efficiently predict the missing values of the
user-site frequency matrix by employing these data sources.
To attack this problem, in Section 4.2, we propose a novel
probabilistic factor model by using only the user-site fre-
quency matrix, while in Section 4.3, we introduce a collec-
tive probabilistic factor model by utilizing both user-site and
user-query frequency matrices, which can further improve
the model performance.

4.2 Probabilistic Factor Model
Our proposed Probabilistic Factor Model (PFM) is a gen-

erative probabilistic model, which can be represented by the
graphical model in Figure 3. Let F be an m × n data ma-
trix whose element fij is the observed count of event (or
feature, or item) j by user i. Y is a matrix of expected
counts with the same dimensions as F , and yij denotes an
element in matrix Y . Every observed element fij in matrix
F is assumed to follow Poisson distribution with the mean
yij in matrix Y , respectively. The matrix Y is factorized
into two matrices U and V , where U is an m× d matrix, V
is an n×d matrix and d is the dimensionality. Each element
uik (k = 1, ..., d) in U encodes the preference of user i to
latent topic k, and each vjk in V can be interpreted as the
affinity of site j to the latent topic k. Finally, uik and vjk
are given the Gamma distributions as the empirical priors.

There are two reasons we use Gamma distributions to
model uik and vjk instead of Gaussian or other distribu-
tions: (1) Gamma distribution is suitable for modeling non-
negative values, while Gaussian distribution can model both

Figure 3: Graphical Model for Probabilistic Factor
Modeling

negative and non-negative values. If we allow negative values
in uik and vjk, potentially, the model will generate negative
frequency values, which is unreasonable in the real world.
(2) The Gamma distribution is already proved to be effec-
tive in modeling document latent vectors in text analysis [4],
where the document-word relation is also represented as a
frequency matrix.

Therefore, the generative process of an observed user-site
count fij in our model follows:

1. Generate uik ∼ Gamma(αk, βk),∀k.

2. Generate vjk ∼ Gamma(αk, βk),∀k.

3. Generate yij occurrences of item or event j from user

i with outcome yij =
∑d

k=1
uikvjk.

4. Generate fij ∼ Poisson(yij).

The gamma distributions of U and V follow the proba-
bilistic functions

p(U |α,β) =
m∏

i=1

d∏

k=1

u
αk−1

ik exp(−uik/βk)

βαk

k Γ(αk)
, (5)

p(V |α,β) =

n∏

j=1

d∏

k=1

v
αk−1

jk exp(−vjk/βk)

β
αk

k Γ(αk)
, (6)

where α = {α1, ..., αd}, β = {β1, ..., βd}, uik > 0, vjk > 0,
αk > 0 and βk > 0, Γ(·) is the Gamma function.

The Poisson distribution of F given Y can then be defined
as

p(F |Y ) =
m∏

i=1

n∏

j=1

y
fij
ij exp(−yij)

fij !
, (7)

where yij =
∑d

k=1
uikvjk.

Since Y = UV T , the posterior distribution of U and V
given F can be modeled as

p(U, V |F,α,β) ∝ p(F |Y )p(U |α,β)p(V |α,β). (8)

Hence, we can infer the log of the posterior distribution
p(U,V |F,α,β) as follows
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Figure 4: Graphical Model for Collective Probabilis-
tic Factor Modeling

L(U, V ;F ) =

m∑

i=1

d∑

k=1

((αk − 1) ln(uik/βk)− uik/βk)

+

n∑

j=1

d∑

k=1

((αk − 1) ln(vjk/βk)− vjk/βk)

+

m∑

i=1

n∑

j=1

(fij ln yij − yij) + const. (9)

Taking derivatives on L with respect to uik and vjk, we
have

∂L

∂uik

=
n∑

j=1

(fijvjk/yij − vjk) + (αk − 1)/uik − 1/βk,

∂L

∂vjk
=

m∑

i=1

(fijuik/yij − uik) + (αk − 1)/vjk − 1/βk. (10)

Using similar techniques proposed by Lee and Seung in [16],
by setting the learning rates to

uik∑n

j=1
vjk + 1/βk

and
vjk∑m

i=1
uik + 1/βk

respectively, we can obtain the following multiplicative up-
dating rules:

uik ← uik

∑n

j=1
(fijvjk/yij) + (αk − 1)/uik∑n

j=1
vjk + 1/βk

,

vjk ← vjk

∑m

i=1
(fijuik/yij) + (αk − 1)/vjk∑m

i=1
uik + 1/βk

. (11)

4.3 Collective Probabilistic Factor Model
In many Web applications, we have multiple data sources

instead of a single data source. In the case of Web site rec-
ommendation, the Web users not only browsed many Web
sites, but also issued several queries. The queries issued by
users can also represent the interests of the users. If we can
incorporate this information, we can potentially improve the
model performance.

Actually, our proposed model in Section 4.2 can be easily
extended to incorporate heterogeneous data sources. When
we are observing the example matrices in Figure 2(a) and
Figure 2(b), we notice that these two data sources share

the same user space. Hence, we propose a Collective Prob-
abilistic Factor Model (CPFM) by sharing the same user
latent space. Intuitively, CPFM method should outper-
form PFM method since the additional user-query matrix
can help model users’ preferences more accurately. Figure 4
shows the graphical model for mining these two data matri-
ces.

In this graphical model, F x is an m×p data matrix whose
element fx

il represents how many times user i issued query
l. X is a matrix of expected counts with the same dimen-
sions as F x, and xil denotes an element in matrix X. Ev-
ery observed element fx

il in matrix F x is assumed to follow
Poisson distribution with the mean xil in matrix X, respec-
tively. The matrix X is factorized into two matrices U and
Z, where Z is a p×d matrix. Each element zlk in Z encodes
the affinity of query l to the latent topic k. The definitions
of F y, Y , U , V , uik and vjk are the same as the definitions
in Section 4.2.

Similar to Eq. (8), we have the posterior distribution of
U , V and Z, given F x and F y:

p(U,V, Z|F x, F y,α,β)

∝ p(F x|X)p(F y|Y )p(U |α,β)p(V |α,β)p(Z|α,β).(12)

In this equation, p(F x|X) and p(F y|Y ) are defined as:

p(F x|X) =
m∏

i=1

p∏

l=1

x
fx
il

il exp(−xil)

fx
il!

, (13)

p(F y|Y ) =
m∏

i=1

n∏

j=1

y
f
y
ij

ij exp(−yij)

fy
ij !

, (14)

where xil =
∑d

k=1
uikzlk and yij =

∑d

k=1
uikvjk.

Moreover, since every element in Z also follows a Gamma
distribution, similar to p(U |α,β) and p(V |α,β), p(Z|α,β)
can be defined as:

p(Z|α,β) =

p∏

l=1

d∏

k=1

zαk−1

lk exp(−zlk/βk)

β
αk

k Γ(αk)
. (15)

Hence, by inferring Eq. (12), we have the log of the pos-
terior distribution for CPFM model:

L(U, V, Z;F x, F y)

=

m∑

i=1

p∑

l=1

(fx
il lnxil − xil) +

m∑

i=1

n∑

j=1

(fy
ij ln yij − yij)

+

m∑

i=1

d∑

k=1

((αk − 1) ln(uik/βk)− uik/βk)

+

n∑

j=1

d∑

k=1

((αk − 1) ln(vjk/βk)− vjk/βk)

+

p∑

l=1

d∑

k=1

((αk − 1) ln(zlk/βk)− zlk/βk) + const. (16)

Similar to PFM, we can easily obtain the multiplicative
updating rules for learning U , V and Z:
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uik ← uik

n∑

j=1

(fy
ijvjk/yij) +

p∑

l=1

(fx
ilzlk/xil) + (αk − 1)/uik

n∑

j=1

vjk +

p∑

l=1

zlk + 1/βk

,

vjk ← vjk

∑m

i=1
(fy

ijuik/yij) + (αk − 1)/vjk∑m

i=1
uik + 1/βk

,

zlk ← zlk

∑m

i=1
(fx

iluik/xil) + (αk − 1)/zlk∑m

i=1
uik + 1/βk

. (17)

In Eq. (17), we treat the information from the user-site
matrix and the user-query matrix equally. However, some-
times we may want to control how much information to use
in each side, and to find a balance between these two data
sources. Hence, we add a smoothing parameter θ in order
to tune the importance of these two data sources. The up-
dating rules for uik in Eq. (17) is then changed to

uik←uik

θ
n∑

j=1

(fy
ijvjk/yij)+(1−θ)

p∑

l=1

(fx
ilzlk/xil)+(αk−1)/uik

θ
n∑

j=1

vjk + (1− θ)

p∑

l=1

zlk + 1/βk

.

(18)
Our proposed method is general, and can be easily ex-

tended to incorporate other contextual information for other
research problems. In this section, we utilize the user-query
information to improve the PFM method. Actually, in the
query logs, every Web site is also associated with some
queries. Hence, a natural extension is to further incorporate
the site-query frequency matrix by adding another matrix
factorization in Figure 4. We hope this can help learn the
site latent vectors more accurately. Besides Web site recom-
mendation, many other research problems also have similar
frequency data, like sponsored search, behavioral targeting,
text mining, etc. Our model can also be easily applied to
these problems. We do not discuss the details in this paper
since our focus of this paper is to illustrate how to make
Web site recommendations.

4.4 Complexity Analysis
The main computation of gradient methods is evaluating

the object function L and its gradients against variables.
In PFM model, because of the sparsity of matrix F , the
computational complexity of evaluating the object function
L is O(NF d), where NF is the number of nonzero entries in
matrix F . The computational complexities for gradients ∂L

∂U

and ∂L
∂V

in Eq. (10) are also O(NF d). Therefore, the total
computational complexity in one iteration is O(NF d), which
indicates that the computational time of our PFM method is
linear with respect to the number of observations in the user-
site frequency matrix. The total complexity of PFM is then
O(NF dr), where r is the number of iterations. Similarly, for
CPFM, the complexity is O(NFxdr + NFydr), where NFx

and NFy are the number of nonzero entries in user-query
and user-site matrices, respectively. Since our algorithm will
converge after 10 to 20 iterations, this complexity analysis
shows that our proposed approach is very efficient and can
scale up with respect to very large datasets.

Table 2: Statistics of User-Site and User-Query Fre-
quency Matrices
Statistics User-Site Frequency User-Query Frequency

Min. Num. 4 10
Max. Num. 9,969 4,693
Avg. Num. 20.33 23.05

5. EXPERIMENTAL ANALYSIS
In this section, we conduct several experiments to com-

pare the recommendation quality of our PFM and CPFM
approaches with other baseline and state-of-the-art collabo-
rative filtering or recommendation methods.

Our experiments are intended to address the following
questions:

1. How does our approach compare with the baseline and
published state-of-the-art algorithms?

2. How do the model parameters αk and βk affect the
accuracy of prediction?

3. What is the performance difference when we use dif-
ferent dimensions to represent users, sites and queries?

4. How does the smooth parameter θ affect the prediction
quality in CPFM?

5. Is our algorithm efficient for large datasets?

5.1 Metrics
We use two metrics, the Normalized Mean Absolute Er-

ror (NMAE) and the Normalized Root Mean Square Error
(NRMSE), to measure the prediction accuracy.

The metric NMAE is defined as:

NMAE =

∑
i,j
|(fi,j − f̂i,j)/fi,j |

N
, (19)

where fi,j denotes the frequency user i visited Web site j,

f̂i,j denotes the frequency user i visited Web site j as pre-
dicted by a method, and N denotes the number of tested
data. The metric NRMSE is defined as:

NRMSE =

√∑
i,j((fi,j − f̂i,j)/fi,j)2

N
. (20)

From the definitions, we can see that a smaller NMAE or
NRMSE value means a better performance.

5.2 Dataset
The primary source of data for this work is the anonymized

logs of Web sites visited by users who opted-in to provide
data through a widely-distributed browser toolbar. Each
line of the data source may contain a lot of information. We
only keep those entries which include a unique identifier for
the user, query issued by the user, and the Web sites visited
by the user. Similar to the work in [29], in order to remove
variability caused by geographic and linguistic variations in
search behaviors, we only include those entries generated in
the English speaking United States locale.

The experiments conducted in this paper are based on
one month browser toolbar data, which represents billions
of Web site visits. In order to remove some outliers and
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Table 3: Performance Comparison (Dimensionality = 10)
Training Data Metrics UserMean SiteMean SVD PMF NMF GaP PFM CPFM

90%

NMAE 2.246 1.094 0.488 0.476 0.465 0.440
0.432 0.427

Improve 80.98% 60.96% 12.50% 10.29% 8.17% 2.95%
NRMSE 3.522 2.171 0.581 0.570 0.554 0.532

0.529 0.520
Improve 85.24% 76.05% 10.50% 8.77% 6.14% 2.26%

80%

NMAE 2.252 1.096 0.490 0.478 0.468 0.441
0.434 0.428

Improve 80.99% 60.95% 12.65% 10.46% 8.55% 2.95%
NRMSE 3.714 2.159 0.584 0.571 0.560 0.533

0.530 0.520
Improve 86.00% 75.91% 10.96% 8.93% 7.14% 2.44%

Table 4: Performance Comparison (Dimensionality = 20)
Training Data Metrics UserMean SiteMean SVD PMF NMF GaP PFM CPFM

90%

NMAE 2.246 1.094 0.469 0.460 0.449 0.426
0.413 0.409

Improve 81.79% 62.61% 12.79% 11.09% 8.91% 3.99%
NRMSE 3.522 2.171 0.568 0.556 0.542 0.521

0.503 0.496
Improve 85.92% 77.15% 12.68% 10.79% 8.49% 4.80%

80%

NMAE 2.252 1.096 0.470 0.462 0.451 0.427
0.415 0.410

Improve 81.79% 62.59% 12.77% 11.26% 9.09% 3.98%
NRMSE 3.714 2.159 0.570 0.558 0.545 0.522

0.504 0.498
Improve 86.59% 76.93% 12.63% 10.75% 8.62% 4.60%

clean up the data, we require that every user should at least
visited 10 Web sites, and each Web site should at least be
visited by 10 users. Moreover, we also constrain that a user
should visit each Web site at least four times. URLs of all
the Web sites are truncated to the site level. After pruning,
we have 165,403 unique users, 265,367 unique URLs and
442,598 unique queries. Totally, the pruned dataset records
53,089,262 Web site visits. In the constructed user-site fre-
quency matrix, 2,612,016 entries are observed, while in the
user-query frequency matrix, the number of observed en-
tries is 833,581. Some other statistics are shown in Table 2.
From this table, we can see that a user visited a site for 9,969
times in a month, which shows that the range of user-site
frequency matrix is very wide.

5.3 Comparison
In this section, in order to show the effectiveness of our

proposed recommendation approaches, we compare the rec-
ommendation results of the following methods:

1. UserMean: this is a baseline method, which uses the
mean frequency value of every user to predict the miss-
ing values.

2. SiteMean: this is also a baseline method, which uti-
lizes the mean frequency value of every site to predict
the missing values.

3. SVD: this is a well-known method in matrix factor-
ization. We have shown the details of this method in
Section 3. It is also been utilized in large scale collab-
orative filtering tasks [14].

4. PMF: this method is proposed by Salakhutdinov and
Minh in [22]. The details of this method are also in-
troduced in Section 3.

5. NMF: this method is originally proposed in [15, 16]
for image analysis. However, it is widely used in collab-
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Figure 5: Gamma Distributions

orative filtering recently. The underlying distribution
is also modeled as Poisson distribution.

6. GaP: this approach is proposed in [4], and it is orig-
inally used to model text mining problems. The doc-
uments are modeled as a mixture of Gamma distribu-
tions.

We use different amounts of training data (90%, 80%) to
test the algorithms. Training data 90%, for example, means
we randomly select 90% of the observed data as the training
data to predict the remaining 10%. The random selection
was carried out 5 times independently, and we report the
average results. The experimental results using 10 and 20
dimensions to represent the latent features are shown in Ta-
ble 3 and Table 4, respectively. The standard deviations of
the results generated by our methods are all around 0.005.
In Table 3, we set all αk = 20, βk = 0.2 in our PFM and
CPFM models, while in Table 4, we change the settings to
αk = 20, βk = 0.05 for both PFM and CPFM. In Section 5.4,
we will explain why we need to choose different αk and βk

values when the dimensions are different. In addition, in
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all the experiments, we set the parameter θ = 0.1 for our
CPFM method.

From the results, we can observe that our methods consis-
tently outperform other approaches in all the settings, which
shows the promising future of our methods. The percent-
ages in Table 3 and Table 4 are the improvements of our
CPFM method over the corresponding approaches.

We observe that the two baseline methods, UserMean and
SiteMean, have the worst performance. Among these two
methods, SiteMean performs much better than UserMean.
This may indicate that users generally have diverse visit-
ing patterns than sites. We also notice that two Gaussian
based methods SVD and PMF are not suitable for factoriz-
ing frequency data, which coincides with our discussion in
Section 2.

5.4 Impact of Dimensionality
From Table 3 and Table 4, we can see that our methods

perform better when we choose a larger dimensionality. This
is reasonable since more dimensions give us more flexibility
to represent both user and site latent vectors. However,
this is not always true since in the case we choose a very
large dimensionality, we may experience severe overfitting
problems.

As we discussed above, we set different αk and βk val-
ues when choosing different dimensions. This is because we
model

∑d

k=1
uikvjk as the mean of a Poisson distribution.

Since the frequencies are fixed, if we use a larger dimension-
ality, we need to employ some smaller values of uik and vjk.
That is why in the case of d = 10, the optimal parameter
settings are αk = 20 and βk = 0.2, while in the case where
d = 20, we set αk = 20 and βk = 0.05. We also plot the

Gamma probability density functions for these two settings
in Figure 5. From this figure, we can see that we will have a
very high probability to generate smaller values if we choose
the setting βk = 0.05. This observation can help guide us
to efficiently select appropriate parameters once the dimen-
sionality is decided.

5.5 Impact of Parameters αk and βk

Parameters αk and βk are two important parameters since
they define the shapes and scales of the Gamma distribu-
tions. In Figure 6 and Figure 7, we independently study
how these two parameters affect the model performance in
PFM. Figure 6 shows the impact of parameter αk, given
βk = 0.2. We can see that the model achieves the best per-
formance when αk = 20. A larger or smaller αk value will
lead to hurt the model performance.

Figure 6(c) shows some related Gamma distributions with
βk fixed. From this figure, we can easily interpret why dif-
ferent αk and βk values can significantly influence the per-
formance. When αk = 20 and βk = 0.2, the model has the
best performance. At the same time, this Gamma distribu-
tion will generate values from 3 to 5 with high probabilities,
which also means that these values can best represent user
and site latent vectors. However, other parameter settings
generate either much smaller or much larger values, which
will potentially hurt the model performance.

The impact of parameter βk is shown in Figure 7, and it
shares similar trends as shown in Figure 6.

5.6 Impact of Parameter θ

In our CPFM method proposed in this paper, the parame-
ter θ balances the information from the user-site matrix and
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Table 5: Efficiency Analysis (90% as Training Data)
PFM

Dimensions 10D 20D 40D 60D
Seconds per Iteration 6.06 14.73 32.67 53.87

CPFM
Dimensions 10D 20D 40D 60D

Seconds per Iteration 8.77 20.36 46.13 78.29

the user-query matrix. It controls how much our method
should use the information in each matrix. If θ = 1, we only
factorize the user-site frequency matrix, and simply employ
users’ site visiting pattern in learning. If θ equals to a very
small value, we will count more on information from the
user-query frequency matrix to learn users’ interests. For
other cases in-between, we fuse information from the user-
site matrix and the user-query matrix for collective proba-
bilistic factor modeling and, furthermore, to make Web site
recommendation for the users.

The impacts of θ on NMAE and NRMSE are shown in
Figure 8. We observe that the value of θ impacts the recom-
mendation results a lot, which illustrates that fusing these
two data sources can greatly improve the recommendation
quality. As θ increases, the NMAE and NRMSE decrease at
first, but when θ surpasses a certain threshold, the NMAE
and NRMSE increase with further increase of the value of
θ. This phenomenon confirms with our initial intuition that
fusing these two data sources together can generate better
performance than purely using the user-site frequency ma-
trix for recommendations.

In Figure 8(a) and Figure 8(b), when using 90% as train-
ing data, we observe that, our CPFM method achieves the
best performance when θ is around 0.1, while smaller values
like θ = 0.01 or larger values like θ = 0.3 can potentially
hurt the model performance. Also a smaller θ is preferred
to a larger θ indicates that we need to use more about user-
query information than user-site information. The reason is
perhaps the training data of user-site matrix is very sparse,
which is less effective in learning the accurate interests of
users.

5.7 Efficiency Analysis
The complexity analysis indicates that our method is lin-

ear with the observations. We also conduct some exper-
iments on measuring the efficiency of our method. The
Seconds-per-Iteration evaluation results are shown in Ta-
ble 5 for both PFM and CPFM methods. We find that our
methods are very efficient since our method will converge af-

ter 10 to 20 iterations. Hence, in 10-dimension case, we only
need around 2 minutes to learn our PFM and CPFM mod-
els. CPFM is generally a little bit slower than PFM since
CPFM needs to deal with one extra user-query matrix.

All the experiments are conducted on a workstation con-
taining an Intel Xeon CPU (2.5 GHz) with 8G memory.

6. CONCLUSION AND FUTURE WORK
In this paper, aiming at providing personalized, accurate

and efficient Web site recommendations for Web users, we
propose two novel probabilistic factor models: PFM and
CPFM. The experimental analysis on the large browser tool-
bar data shows the effectiveness and efficiency of our meth-
ods. The complexity analysis indicates our methods can be
applied to very large datesets since they are linear with the
observations in the user-site and user-query matrices.

In order to reduce the model complexity, in our PFM and
CPFM methods, we use the same set of αk and βk values
for both user, site and query latent features. Actually, since
users, sites and queries are totally different objects, they
may belong to completely different Gamma distributions.
Hence, in order to further improve the recommendation per-
formance, in the future, we can slightly modify the model,
and allow setting different αk and βk values for these three
objects.

In all the experiments conducted in this paper, we need to
set the values for αk and βk. In the future, we will investi-
gate a more intelligent algorithm to automatically determine
these values. Wemay run into some challenges since the data
is very sparse, hence, learning αk and βk automatically may
experience overfitting problems. Another solution is that
we can further assume a distribution on top of these two pa-
rameters. However, this is also difficult to implement since
Gamma distribution does not have a very good conjugate
prior distribution.

In our experiment, we only measure how accurate we can
predict the user-site visiting frequency. Sometimes, only be-
ing accurate cannot meet the application requirements. We
also plan to design a prototype for users to use, and ask
users to measure the effectiveness of the proposed methods.

For the PFM model itself, we can make further assump-
tion that every user or site is generated from a mixture of
Gamma distributions. We can also assume that the mixture
coefficients follow a Dirichlet distribution. Since we proba-
bly cannot infer the exact form of this model, we need to
use sampling or variational approximation methods to solve
the problem. This may however increase the complexity of
the model.

Our proposed frame work is general; hence, in the future,
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we plan to apply our methods to other research problems,
such as behavioral targeting and sponsored search. We can
use the proposed methods to predict how many times a user
will click an advertisement. Finally, we can also apply our
methods to many text mining tasks, including clustering,
classification, retrieval tasks, etc.
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