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Abstract. Label ranking is considered as an efficient approach for object recognition, document classifi-
cation, recommendation task, which has been widely studied in recent years. It aims to learn a mapping
from instances to a ranking list over a finite set of predefined labels. Traditional solutions for label rankings
cannot obtain satisfactory results by only utilizing labeled data and ignore large amount of unlabeled data.
This paper introduces a novel Semi-Supervised Learning (SSL) framework by exploiting unlabeled data
to improve the performance. Under this framework, we also propose a new Information Gain Decision
Tree(IGDT) with aims to make full use of latent information and as such raise the efficiency and accuracy.
Then we outline our models involving another two algorithms, Instance Based Learning (IBL) and Mallows
Model Decision Tree (MMDT) within this framework. Experiment results demonstrate our approaches can
obtain a better performance comparing with only applying labeled data.
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1 Introduction

Label ranking [4] [12] is a complex predication task aims to learn a mapping from instances to a list of rankings
over a finite set of predefined labels. It can be viewed as a natural generalization of traditional classification
with the reason that once obtaining the list of rankings, the first label is the result of single-label classification,
and by setting a proper threshold of all labels, we can also get the result of multi-label classification [2]. A
good application of label ranking is recommendation system, where users share the similar characteristics (e.g.:
gender, age, occupation) will largely has the similar interests upon different movies (labels). The job of this
learning algorithm is to assign higher rankings to the more relevant movies.

Many approaches for label ranking have been proposed recently. Constraint classification learns a framework
capturing many flavors of multi-class classification including multi-label classification and ranking, and present
a meta-algorithm for learning in this framework [6]. Log-linear models for label ranking [4] assumes that each
instance in the training data is associated with a list of preferences over the label-set and learn a ranking
function that induces a total order over the entire set of labels. As to the ranking by pairwise comparison, a
binary preference model is learned for each pair of labels [7].

Even though those approaches have strong theoretical supports, they are limited to the supervised learning
paradigm. With enough labeled data, they have shown good performance. However, in the real-world label
ranking, unlabeled data are widely available. Another practical problem in label ranking is the distinctiveness
of unlabeled data. It is difficult to assign a complete ranking to each instance, and as such plenty data are
incomplete. Like the movie recommendation system, a common situation is that one user prefers action movie
to comedy, but without any information about the science fiction film and thriller. Here action movie, comedy,
science fiction and thriller are different labels in the system.

In this paper, we focus on another view to solve label ranking problem under the semi-supervised learning
(SSL) framework. SSL [8], as a popular research field, provides a framework to solve the classification problem,
including EM algorithm [5], graph-based methods [13], co-training methods [1]. The advantages of SSL is that
by combining few labeled data and a large amount of unlabeled data (latent information), it can predict labels
for unlabeled data. In this particular classification problem of label ranking, unlabeled data can be divided into
unlabeled ranking and partial ranking. Unlabeled ranking means that, all labels of the corresponding ranking
list are hidden, which is similar with the traditional unlabeled data. Partial ranking means only some labels
are obtainable of the ranking list, while some are unobtainable. In order to utilize the available information as
much as possible, we solve the label ranking problem by three methods under the framework of SSL.

In summary, our main contributions include:

1. Semi-supervised learning framework is firstly used for label ranking problem.
2. Based on the traditional information gain decision tree, we propose a new method in terms of the large

amount of unlabeled data in label ranking problem.
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In Section 2, we define the problem setup and introduce the SSL framework. Besides, we detail how three
SSL methods, information gain decision tree, instance based label ranking [3], Mallows model decision tree [3],
are applied to label ranking. In Section 3, we report the experimental comparisons and results. We conclude
the paper in Section 4.

2 Label Ranking and the framework of SSL

2.1 Notation and Problem Setup

Label ranking is the task of inferring a total order over a predefined set of labels for each unlabeled instance. We
denote the instance space as X and the label space as L = {li}n

i=1, where li ∈ {1, ..., n}. n denotes the number
of classes according to this data set.

Label Ranking Given a set of instances X = {xi}l+u+p
i=1 , where xi ∈ Rm, and whose corresponding ranking

is Y = {yi}l+u+p
i=1 . Each ranking yi stands for a permutation of all labels from L. We use yi(j) to denote

one single label, where j ∈ {1, ..., n}, and � to denote the preference of different labels. n is the number of
classes and l + u + p is the number of instances.

According to this definition, yi(1)�yi(2) expresses yi(1) is preferred to yi(2). Label ranking problem aims to learn
an order of rankings in the form of X → Y mapping. We denote the resulting permutation yi = (yi(1), ..., yi(n)).
Here yi can be viewed as a function from the identity permutation to another permutation.

Labeled Data We define the labeled data as X = {xi}l
i=1, where xi ∈ Rm, with the corresponding ranking is

Y = {yi}l
i=1, where yi, i ∈ {1, 2, . . . l} is an all permutation of Y from 1 to n.

Unlabeled Data We define the unlabeled data as X = {xi}l+u
i=l+1, where xi ∈ Rm, with the corresponding

ranking is Y = {yi}l+u
i=l+1. However, the label ranking information yi is missing or latent, where i ∈ {l +

1, l + 2, . . . l + u}. u is the number of unlabeled data.
Partial Data We define the partial data as X = {xi}l+u+p

i=l+u+1, where xi ∈ Rm, with the corresponding ranking
is Y = {yi}l+u+p

i=1+u+1. Each yi is a subset of all permutation from 1 to n, i ∈ {l +u+1, l +u+2, . . . l +u+p}.
p is the number of partial data.

To evaluate the predictive performance of the mapping function, a suitable loss function on Y is necessary.
Diverse methods are used to calculate this distance, here we select a popular one in statistics, which is called
Kendall tau rank coefficient [11] [9]. Suppose y and z are two rankings, we define the distance between them as
follows:

D(y, z) = #{(i, j)|(y(i)− y(j))(z(i)− z(j)) < 0}. (1)

D(y, z) will be equal to 0 if the two lists are the same and n(n - 1) / 2 (where n is the list size), if one list
is the reverse of the other. Often Kendall tau distance is normalized to [0,1] since it can be interpreted as a
correlation measure. Therefore, D(y, z) = 0 if and only if i and j are in the same order, D(y, z) = 1 if and only
if i and j are in the opposite order.

Now the objective of SSL label ranking problem is try to predict the rankings for ŷl+1, ŷl+2, . . . , ŷl+u+p.
A basic assumption is that the similarities lie in the features would also indicate some similarities in different
rankings. Based on this assumption, we will detail three models in the following parts.

2.2 Information Gain Decision Tree

Decision tree or a tree-like graph is one of the most popular and practical method in machine learning and
data mining. Two motivations of our paper to utilize decision tree are the convenience of getting result and
easy for chasing error. The induction of a decision tree is an iteration process. By calculating some splitting
criteria, the whole data set can be partitioned into two sub groups. The partition will not suspend until some
stopping standard is satisfied. Therefore, we will discuss three sub-problems of the algorithm in the following
three aspects.

(i) Find the candidates as splitting node for continuous attributes. C4.5 [10] creates a threshold and then
splits the list into those whose attribute value is above the threshold and those are less than or equal to it. To
select this threshold, first we sort the data for each dimension, and then determine adjacent examples whose
rankings are very dissimilar with each other. Then a series of candidate thresholds can be selected with the
median value of the adjacent examples.

(ii) Information gain is one of the most popular method to evaluate a splitting rule which requires to
assemble the number of instances belongs to each class. It is straightforward for the labeled data. However,
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incomplete data (partial and unlabeled) also involve some information should not be discarded. To utilize this
part of information, we want to find the probability of it belongs to every possible permutation. Here we use
{numi}n

i=1 and {meani}n
i=1 to denote the number of different rankings and the average value of instances for

each class. We use {z(i)}n
i=1 to denote complete rankings in order to judge whether a partial ranking is conflict

with complete rankings. Here conflict means there are no discordant pairs between two rankings. (iii) Another

Algorithm 1 Probability of Incomplete Data Belongs to Possible Permutations
Require:
Unlabeled data U = {xi}l+u

i=l+1. Partial data P = {xi, yi}l+u+p
i=1+u+1. The number of different classes n, threshold θ .

{z(i)}n
i=1. {meani}n

i=1. {numi}n
i=1.

1. for each incomplete data in xi, yi ∈ U, P do
if num(yi) �= 0 then

if sim(xi, mean(yi)) > θ then
num(yi)← num(yi) + 1. mean(yi)← (mean(yi) + xi)/2

end if
else

if z(i) and yi are not conflict then
num(yi)← num(yi) + 1. mean(yi)← (mean(yi) + xi)/2

end if
end if

2. end for
3. return updated {num} and {mean}

challenge in our algorithm is the stopping criteria. A generalized common sense of splitting the source is to
make the subsets as dense as possible. Therefore, if all instances are not conflict with each other, then the tree
is viewed pure enough to stop training. Besides, to prevent over fitting, the building process should also be
stopped when the number of instances is small enough.

2.3 Instance Based Learning

The Mallows model [3] has been utilized to solve the label ranking problem, which belongs to the exponential
family. Given the model parameters z and θ, the probability of y can be expressed as follows:

P (y|θ, z) =
1

Φ (θ, z)
exp (−θD (y, z)) , (2)

where Φ (θ, z) =
�

y∈Y exp (−θD (y, z)) is a normalization constant. z is the distribution’s model or center
ranking, and θ ≥ 0 refers to the dispersion degree.

In this sense, for each incomplete ranking y, we use E (y) to denote all possible permutations which are
not conflict with y. By further assuming that the independence of the observations, the probability of y given
neighbors {xi, yi}k

i=l with the parameter z and θ becomes:

P (y|θ, z) =
k�

i=1

P (E (yi) |θ, z) =

k�
i=1

�
y∈E(yi)

exp(−θD(y, z))

�
n�

j=1

1−exp(−jθ)
1−exp(−θ)

�k
. (3)

Due to the difficulty in deriving the parameter z and θ, a modified Expectation Maximum [5] algorithm
can be utilized to solve this problem. Starting from an initial center ranking z ∈ Y , the label information is
estimated for the incomplete data by comparing the distance between each possible extension and the center z
(E-step). And in the M-step, compute the new center ẑ of the distribution. The two steps should be repeated
until the center will not change at all. The final center will output as the prediction ranking for the query x.

2.4 Mallows Model Decision Tree

Based on the instance based model, another decision tree algorithm can be utilized to solve this problem.
Mallows model has two parameters, the center z and the dispersion parameter θ. By assuming both two sub
branches Tleft and Tright follow the Mallows model, we can get θleft and θright as the estimation of the dispersion
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degree. Besides, the size of tree is another crucial criterion. Therefore, we should balance against the purity and
the size, a tradeoff standard is to maximize

|Tleft| · |θleft| + |Tright| · |θright|
|T | , (4)

where θleft, θright denotes the estimated parameters and |Tleft|, |Tright|, |T | denotes the size of corresponding
tree.

3 Experiments

In the experiments part, we apply those three algorithms under the SSL framework. A transductive inference
method for SSL has been utilized, thereby our job is to predict the label information for the unlabeled data and
partial data. The task of experiments is to observe the accuracy and efficiency of those three classifiers: Instances
Based Learning (IBL), Mallows Model Decision Tree (MMDT) and Information Gain Decision Tree (IGDT).
In this sense, we first partition each experiment into several parts in terms of the number of labeled data. Then
in each part, by continuous increasing partial data , we compare the performance variation comparing with
supervised learning result.

Considering lacking labeled ranking data, we use the multi-class and regression data sets downloaded from
UCI repository to imitate the benchmark data. For classification data, a Naive Bayes classifier is first trained
on the complete data. All the labels are then ordered with respect to the predicted class probabilities for each
instance. For regression data, a certain number of features is removed from the set of attributes. All attributes
are standardized and ordered by size to obtain the ranking. The value of every attribute is scaled into [−1, 1]
and the cosine similarity between any two profile vectors is calculated. Some characteristics have been listed in
Table 1.

Table 1. Data sets and their properties

data set attribute �inst. �attr. �labels

iris real 150 4 3

glass real 214 9 7

vehicle real 1518 18 4

concrete real 1030 9 3

abalone real 4177 8 3

Some parameters should be set before training the algorithm. In order to approximate the real data set
as closely as possible, we train the parameters firstly by a ten-fold cross validation on a sub group of labeled
data which are selected randomly from the data set and then apply them in the whole data set by assuming
that parameters which have the better performance will also work well upon the whole data set. Besides, to
simulate the partial and unlabeled data, some labels are removed from the whole ranking randomly in terms
of the requirements of different experiments. When the probability of partial data is 0, the data set is involved
with labeled data and unlabeled data only. At that scenario, all data are trained under the supervised learning
framework. As for the SSL algorithms, we partitioned the remaining data into partial and unlabeled with equal
proportion. Other partitioned situations are not shown here due to the limited space.

The summary of results are shown in Table 2. We can see that all three methods under the SSL framework
are performed better than supervised learning, which means partial data and unlabeled data can improve the
classifier’s performance when enough labeled data are not obtainable. Besides, we can see that with the very
limited labeled data the two decision tree algorithms are not as good as the instance based learning (IBL)
algorithm especially when the number of partial data is not plentiful. We suspect the reasons lie in two aspects:
first, for the instance based learning, it will prefer to select the labeled instances as the neighbors to obtain
the useful information; second, no matter for IGDT and MMDT, both of them are intended to select an
attribute/value pair as the splitting criteria, thereby the information is so limited that it is difficult to select
such a proper criteria. However, with more labeled data are added into the data set, IGDT performs better
than MMDT and IBL obviously, which means that IGDT can make use of the limited information as much as
possible than other two algorithms.

Besides the accuracy, we also record the average time of iris data set under the matlab platform and the
Intel(R) Core(TM)2 Duo CPU E7400 @ 2.80 GHz, 3.21 GB of RAM. For the IBL, the average times for
supervised learning and SSL are 1.8478(s) and 0.8969(s), and for MMDT, the individual times are 43.0021(s),
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Table 2. Performance of the label ranking algorithms

data # of Supervised SSL Supervised SSL Supervised SSL

set labeled IBL IBL MMDT MMDT IGDT IGDT

10 0.5903 0.7126 0.5294 0.6604 0.5741 0.7382

iris 20 0.6861 0.7725 0.6154 0.7109 0.6519 0.8098

30 0.7121 0.8130 0.6519 0.7312 0.7019 0.8213

10 0.6366 0.7759 0.6279 0.7514 0.6468 0.7805

glass 20 0.6904 0.8071 0.6592 0.7684 0.6884 0.8085

30 0.7203 0.8230 0.6819 0.7901 0.7012 0.8139

10 0.3922 0.4380 0.3760 0.4186 0.3929 0.4231

concrete 20 0.4029 0.4390 0.3869 0.4266 0.4044 0.4431

30 0.4108 0.4476 0.3968 0.4358 0.4264 0.4875

10 0.5526 0.6203 0.5193 0.5870 0.5048 0.5663

vehicle 20 0.5625 0.6591 0.5209 0.6072 0.5595 0.5921

30 0.5772 0.7010 0.5296 0.6179 0.5896 0.6394

10 0.4821 0.7223 0.4606 0.6925 0.5239 0.7892

abalone 50 0.5361 0.7580 0.4948 0.7342 0.5596 0.8193

100 0.5372 0.7739 0.5093 0.7491 0.5887 0.8287

21.8474(s) and for IBDT, the average times are 2.9855(s), 2.6020(s). Both decision tree algorithms cost longer
time than instance based learning. Instance based learning is a lazy classifier, which need little time in the
building process while much more time in the prediction procedure. For the two decision tree algorithms, the
process of tree induction is a little time consuming especially when confronting more features and labels data
set. Besides, our proposed IGDT runs faster than MMDT conspicuously, the reason of which is that MMDT
depends on continuous iterations while IGDT depends on simple calculations.

In general, SSL is superior to supervised learning for label ranking. Besides, considering those three al-
gorithms, IBDT performs better than IGDT and IBL in most cases especially when more labeled data are
available.

4 Conclusions and Future Work

In this paper, we study the problem of label ranking, which is an efficient approach for object recognition,
document classification, recommendation task. Particularly, we introduce semi-supervised learning framework
for the first time. We also propose a novel IGDT algorithm. There are still various aspects in further studying the
algorithm. 1) Extending the current SSL framework to more algorithms. 2) Trying more distance measurement
of rankings, Kendall tau coefficient does not consider diverse significance of different labels in a ranking.
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