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Abstract. Agent systems, such as those used to control robots, make decisions
about their actions and take into account changes in the surrounding environment.
The agent’s reasoning includes deliberating about its goals, such as whether to
adopt an additional goal, to prioritize or reprioritize its goals, and to suspend
some goals. In popular agent systems, such as those based around the Belief-
Desire-Intention (BDI) architecture, deliberation is usually qualitative only, in
that goals are dropped when they are found to be in conflict with other goals, or
no longer believed to be possible, rather than as a means of increasing a measure
of utility. In this paper we add a quantitative dimension to this reasoning process
by formulating it as a Constraint Optimization Problem (COP). This allows us
to incorporate preferences and other utility measures. We describe some criteria
relevant to the reasoning process. The resulting model is able to encompass mul-
tiple aspects of agent deliberation, enabling the agent to make decisions that take
into account more options and sources of information than it could by breaking
the deliberation into components across its decision cycle.

1 Introduction

Agent-oriented programming is often used for devices such as robots that must operate
in complex and dynamic environments. A key element of agent systems is the balance
between proactive behaviour, i.e., pursuing goals, and reactive behaviour, i.e., respond-
ing to environmental changes. Accordingly, the execution cycle of such agents involves
the interleaving of performing actions to achieve goals, sensing environmental changes,
and deliberating over the right actions to perform.

Constraint programming can, on one hand, benefit from agents developed for dis-
tributed constraint solving, and, on the other, serve the development of agent systems,
particularly in modelling multiagent coordination [9, 3].

Our work centres on the Belief-Desire-Intention (BDI) model of agency [19], which
has become the predominant architecture for the design of cognitive agents. The BDI
model provides an explicit, declarative representation of three key mental structures:
informational attitudes about the world (beliefs), motivational attitudes on what to do
(desires), and deliberative commitments to act (intentions). This explicit representation
enables ready inspection of an agent’s operation, both by an observer and by the agent
itself, thus supporting reflective capabilities such as explanation and redirectability.

One important decision that a rational agent will deliberate over is that of goal
adoption: under what circumstances to add a potential goal g to the set of its existing
adopted goals GA. Whereas the goals a rational agent would adopt and the intentions
that would follow from them, must be consistent — for an agent to act consistently and
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effectively in the world — its potential candidate goals may be inconsistent with one
another, the state of the world, and the means of the agent to act upon them.

The desires and also the candidate goals of an agent can be inconsistent for internal
or external reasons. Internally, the agent may have conflicting desires (as humans of-
ten have), and potentially or necessarily conflicting plans to achieve certain candidate
goals. Externally, the agent may have conflicts between its desires and those of other
agents, and between its desires and societal obligations and norms. Consistent goals
may become inconsistent because of changes in the environment. Not least, goals may
be potentially or necessarily inconsistent because of limited resources. Goal adoption is
one component of goal deliberation, the process by which an agent balances its desires
and candidate goals with its current set of goals and intentions.

Previous work has most commonly modelled aspects of the goal deliberation pro-
cess using logical or decision-theoretic formulations. In this paper we present a broadly
based model able to encompass multiple aspects of the deliberation, by characterizing
the agent’s reasoning as generation of and choice among possible future mental states.
We develop the reasoning process as a soft Constraint Optimization Problem (COP)
[22]. By formulating such a soft COP and solving it with objective criteria according
to its nature, an agent can perform its goal deliberation, coming to decisions that take
into account more options and sources of information than it could by breaking the
deliberation into components across its decision cycle.

2 Background and Related Work

Of the numerous agent frameworks published in the literature in recent years, many,
although not all, are based on the BDI model. Three key aspects of agency are cap-
tured by the BDI model: informational attitudes about the world (beliefs), motivational
attitudes on what to do (desires), and deliberative commitments to act (intentions) [19].

Recent developments have begun to address the gap between theoretical BDI mod-
els and practical BDI systems. An important aspect of the theory–practice gap is be-
tween motivational attitudes that may be not consistent and feasible (candidate goals,
we will call them) and those that must be (goals, we will call them). As discussed by
[7] and others, many formalizations of BDI equate these two types of goals.

A critical aspect of the representation of goals is whether goals are viewed as declar-
ative or procedural (or both), and there are various examples of both aspects in the lit-
erature on goals in agent systems [20, 34, 6]. The distinction is sometimes described
as goals to perform versus goals to be achieved. The latter are naturally represented
as desired states of the system, and accordingly theoretical BDI frameworks represent
desires as states to be accomplished. On the other hand, most implemented systems rep-
resent goals as tasks to be performed. For consistency with these conventions, we will
represent desires as states and goals as tasks. However, critically for goal deliberation,
we include a declarative representation of goals. This allows us to form a direct link
between the agent reasoning process and its implementation. State-to-task translation,
while reasonably straightforward, is not the focus of this paper.

The decision cycle in BDI architectures follows a three-step pattern: Observe (Per-
ceive), Decide (Deliberate), and Act, as shown in Figure 1. In general, an agent will be
pursuing a particular course of action (Act) before pausing to gather input from the envi-
ronment (Perceive). After processing this input, the agent may deliberate over whether



while( true )
events := observe-external-events()
drop-successful-attitudes( events, B, D, I )
adopt-new-attitudes( events, B, D, I )
options := generate-options( events, B, D, I )
selected-options := option-deliberate( options, B, D, I )
update-intentions( selected-options, I )
execute( I )

Fig. 1. BDI decision cycle

to continue with its current course of action (i.e., intentions), or to modify it in response
to environmental changes. Hence there is a distinction between decisions made as part
of its course of action, and meta-decisions about what course of action is appropriate.

This tension between responding to environmental changes (being reactive) and
pursuing a course of action (being proactive) is fundamental to agent systems. The
balance between reactive behaviour and proactive behaviour will depend on the appli-
cation domain, and in particular how often changes in the environment occur compared
to actions of the agent.

The objective of our work is to consider the broad aspects of reasoning encom-
passed by a rational agent’s self-reflection and deliberation over its commitments. This
reasoning includes goal adoption and intention reconsideration, but encompasses more
than either of these important single aspects on their own.

We are by no means the first to recognize the importance of commitment deliber-
ation in the BDI model. Previous work has most commonly modelled aspects of the
commitment deliberation process using logical or decision-theoretic formulations.

Dastani and van der Torre [5] distinguish desires from goals, formalizing a BDGICTL
logic and considering a belief-theoretic approach to merging desires into goals. The role
of desires in the agent’s adoption of goals is a precursor to the reasoning we include
within goal deliberation. Dignum et al. [7] consider a multiagent context, in which an
agent has desires, obligations and norms, and from these derives and maintains a set of
goals: the B-DOING agent framework. Since the three motivational attitudes are distin-
guished in this framework, the problem of goal adoption now involves reconciling three
potentially conflicting sets of attitudes. Our work leaves aside the origin of the agent’s
motivational attitude, which we collate as simply desires; our focus is on the delibera-
tion of a single agent over its commitments. Note that one source of commitments can
be other agents, in that an agent may take on a commitment at the request of another.
Such interactions are outside the scope of this paper.

The BOID agent framework [2, 6] sees goals arising out of the interaction between
different cognitive aspects — obligations as well as beliefs, desires and intentions —
and the resolution of conflicts among them according to the nature (character) of the
agent. Sets of goals are selected according to rule-based reasoning with priorities. Das-
tani and van der Torre [6] present the syntax and semantics of a language for program-
ming BOID agents. It features a notion of the agent’s cognitive state of current beliefs,
goals, intentions, and plans, but not desires. As fits the BOID framework, goal gen-
eration, goal adoption, plan generation, and plan selection are separate steps that the
programmer can specify in a decision cycle.



Schut et al. [24] develop a decision-theoretic approach to intention reconsideration,
in which the agent meta-deliberates over the expected cost of the computation versus
the expected utility to be gained. Raja and Lesser [18] present a similar utility-based
formulation in terms of a Markov Decision Process.

Stroe et al. [27] consider a problem subsequent to ours, namely, action (plan) selec-
tion, but adopt a similar approach. They associate an objective function over agent status
sets, and compute the ideal agent action as that induced by the status set optimizing the
objective. Natarajan et al. [16] also consider optimal agent activity, in the context of an
assistive agent that seeks to minimize the user’s effort in a joint activity. Selection of
the optimal action is according to a combined logical and probabilistic model.

Meneguzzi et al. [12] explore the BDI reasoning process by mapping BDI mental
states to propositional planning problems. Like our work, their intent is to leverage es-
tablished AI representations and models to give a global view of BDI agent deliberation.

Informing Goal Deliberation Goal deliberation cannot operate in a vacuum of infor-
mation. Thangarajah et al. [30, 32, 31] provide information for an agent to deliberate
over whether to adopt a new goal g, by computing summary information that captures
goal effects. These summaries are computed at each node of a goal-plan tree. An in-
stance of a goal-plan tree consists of the possible subgoals of g that can arise according
to the plans that the agent can apply, in order to achieve an intention that fulfills g.

A similar approach is applied to analyze potential resource consumption and pro-
duction by goals [30, 33]. Morley et al. [13] extend the representation to include task
parameters and a richer set of plan language constructs, and dynamically update the
resulting resource estimates as execution proceeds.

Shaw and Bordini [25] cast the goal adoption problem as a reachability problem in
Petri nets. They are developing an automated translation from BDI agent mental state to
Petri net formulation. This formulation enables the agent to consider potential negative
and positive interactions between a postulated new adopted goal g and the existing goal
set GA without maintaining the explicit goal summaries of Thangarajah et al.

Shaw and Bordini [25] also describe in-progress work to develop a method based
on compiling the goals and possible plans of an agent into a Constraint Satisfaction
Problem (CSP), exploiting ideas from the AI planning community [28]. This formula-
tion enables a method, given an agent’s current goals GA, candidate goal g, and current
plans, for generating a CSP whose solutions correspond to valid ordering of plans that
minimize goal effect conflicts (and exploit serendipitous opportunities) when attempt-
ing to achieve g∪GA. We share the use of a constraint-based model in agent cognition,
not to analyze potential goal effects (one aspect of information that informs goal delib-
eration), but to model the whole reasoning process itself.

Whereas agents have been developed for distributed constraint solving, constraints
in service of agent research have focused on modelling multiagent consultation, coop-
eration, and competition [9, 3]. Constraints are employed by Chalmers et al. [4] not in
service of the agent’s reasoning, but to specify a desired organization state. A BDI agent
is constructed such that the plans it decides upon correspond to generation of possible
organizations matching the specification, via solving of a Constraint Logic Program that
represents domain knowledge. Perhaps the closest to our work in the CP community
are developments along the lines of the agent framework of Mackworth [11], in which
constraint-based controllers are developed for the heart of agent reasoning engines.



3 Goal Deliberation

Goal deliberation lies at the heart of BDI architectures: how should an agent balance its
desires and candidate goals with its current set of goals and intentions? This balancing
problem embraces two fundamental decisions: determining when to adopt a new goal
(goal adoption) and when to terminate an existing intention (intention reconsideration).
Potential conflicts between commitments are the reason a rational agent will deliberate.

As we have presented, the agents literature is for the large part silent on these ques-
tions [30, 5]. In practice, most agent systems skirt the goal adoption problem by making
the simplifying assumption that desires and goals can be equated, and by not distin-
guishing candidate and adopted goals over an extended life cycle. Every candidate goal
is adopted. Potential conflicts and synergies between goals are ignored. Intention re-
consideration then is driven solely by problems encountered as execution proceeds. At
best, goals are dropped when they are found to be in conflict with other goals, or no
longer believed to be possible.

We view both activities as components of the larger cognitive function of deliberat-
ing over mental states. For this reason, we propose an approach in which goal adoption
and intention reconsideration are inextricably linked in a goal deliberation process.

To express the mental attitudes that bear upon this process, we adopt an extended
BDI model that distinguishes desires, candidate and adopted goals, and intentions [15].
We define the mental state of the agent as a tuple of sets of these elements. Next, we
characterize the agent’s goal deliberation as generation of and choice among possible
future mental states. We then present, in the next section, a general proposal for imple-
menting goal deliberation as a soft Constraint Optimization Problem.

3.1 BDGI Cognitive Model

We relate an informal description of the BDGI framework [15] which will be the basis
for our model of agent cognition.

– Beliefs are the agent’s accepted knowledge about the world and its current state.
Example: “Alice and Bob are the best fits on paper for the open position”.

– Desires are states that describe the agent’s motivations. As discussed earlier, we
consider only a single type of motivational attitude; we do not distinguish between
(internally motivated) desires, and (externally motivated) obligations and norms.

– Candidate Goals are tasks that provide the agent’s motivation. That is, candidate
goals characterize tasks that the agent would like to accomplish, but may not be
able to because of extenuating factors. Candidate goals need not be consistent with
each other, with the state of the world, or with adopted intentions. For example, “I
wish to interview Alice at 9 a.m. on Monday”, and “I wish to interview Bob at 9
a.m. Monday” constitute conflicting candidate goals.

– Goals are a consistent, feasible set of tasks, which are derived from the agent’s
candidate goals. As noted, implemented BDI systems suppose candidate goals to be
consistent. We below explain what we mean by consistent and feasible. Example:
“I want to invite Alice” (and it is possible).

– Intentions are committed goals together with the means to achieve them (plans).
Intentions represent the tasks that have successfully passed the conditional aspects;
as far as it knows, the agent can achieve these tasks, and it has committed to doing
so. Example: “I am inviting Alice” (by emailing her three possible dates).



– Goal-Advice are constraints on the adoption of candidate goals as goals. Examples:
“Don’t invite multiple candidates on the same day”, “Attend only one conference
this summer”.

– Execution-Advice are constraints for user directability of problem solving. Whereas
Goal-Advice advises the agent what to do, Execution-Advice advises the agent how
to do it. Examples: “Use email to invite candidates”, “Fly on a US carrier”.

– Plans are the means to achieve intentions (the standard BDI interpretation). Plans
are selected from a library of alternative recipes for achieving an intention.

We define four conditions that a set of adopted goals GA must satisfy. Here, consis-
tency implies consistency w.r.t. a fixed background theory of domain constraints.

– Self-consistency: GA must be mutually consistent
– Coherence: GA must be mutually consistent relative to the current beliefs B
– Feasibility: GA must be mutually satisfiable relative to current intentions I and

available plans
– Reasonableness: GA should be mutually reasonable w.r.t. current B and I

The requirements of self-consistency and coherence are common to most BDI frame-
works [21]. Feasibility requires that goals be adopted only if they can be achieved.

The requirement of reasonableness requires a background domain theory. It plays
an important role in personal assistant agents [14], where for example the user may
pose desires that are consistent, coherent, and feasible, but not in her best interest. This
type of situation can arise because a user lacks awareness of problem-solving history,
commitments, or constraints. For example, suppose that the user asks her assistive agent
to purchase a laptop computer; the next day, having forgotten about the request issued
the prior day, she requests the agent again to purchase a computer. If the user worked
in procurement, such a request may seem reasonable. However, for the typical office
worker, the purchase of a computer is a relatively rare event. In this case, it would be
helpful for the agent to recognize that the request is unreasonable, and check with the
user as to whether she really wants the agent to proceed with the purchase.

3.2 The Goal Deliberation Process

Many formal models cast goal adoption as a filtering problem, where some maximal
subset of stated desires is identified that satisfies designated requirements (such as those
above). We argue that this approach is inappropriate in many situations, as it places un-
due emphasis on current goals. More generally, the goal adoption process should admit
the possibility of modifying beliefs (through acting to change the state of the world),
adopted goals, and intentions in order to enable adoption of new candidate goals.

The desires and other motivational attitudes of an agent lead it to accept or generate
new candidate goals. For the remainder of the paper, we focus on the decision making
process from candidate goals through to intentions.

There is little reason for an agent not to adopt a candidate goal, provided its inclu-
sion as an adopted goal satisfies the conditions of consistency (i.e., non-conflicting),
coherence, feasibility and reasonableness as stated earlier. Goal deliberation becomes
significant when the candidate goal g would lead to an adopted goal set GA that no
longer satisfies the above conditions.



Among its possible decisions, the agent may choose to not adopt g at present, or
to reject it entirely. If the new candidate goal causes conflict with an existing goal
(or goals), for example because of conflict over a reusable resource, then the agent
may delay adopting g or suspend the currently adopted goal(s), depending on which
it believes it should be more committed. On the other hand, the nature of the conflict
could lead to the agent dropping the existing goal(s), or to it creating a new candidate
goal and directly adopting it in order to enable g to be addressed at a future stage.

As a concrete example, suppose that the user of an assistive agent desires to attend
the AAMAS conference in Europe but lacks sufficient travel funds. To enable atten-
dance, the user could shorten a previously scheduled trip for a different meeting, or she
could cancel the planned purchase of a new laptop. Alternatively, the user could apply
for a travel grant from the department to cover the costs of the European trip.

A typical BDI agent executes a tight control loop for determining the actions that
it will perform, as shown earlier in Figure 1. Let S = (B,D,GC , GA, I) denote the
agent’s current mental state at the start of a cycle through this loop. The five cognitive
elements are, respectively, Beliefs, Desires, Candidate Goals, Adopted Goals, and In-
tentions. Recall that the control flow involves identifying modifications to S from the
prior cycle (Observe), deciding what to do in response to those changes (Decide), and
then performing an appropriate set of actions (Act).

Goal deliberation fits in neatly as an initial step within this control loop. Thus, to
start a cycle of the control loop, the agent first performs some deliberation to deter-
mine whether it needs to revise its goals in light of the changes during the past cy-
cle. In general, this deliberation can transition the agent’s mental state to a new state
S′ = (B′, D′, GC ′

, GA′
, I ′). We next consider the possible transitions in a constraint

formulation of the reasoning process.

4 Constraint Model of Goal Deliberation

Informally, we take a Constraint Satisfaction Problem (CSP) to consist of a set of vari-
ables V , a set of corresponding domains D that specify the possible values for the
variables, and a set of constraints C [22]. A solution is a complete assignment s to all
variables in V that satisfies all constraints in C. A Constraint Optimization Problem
(COP) is a CSP together with an objective function f that evaluates tuples of variables.
An optimal solution is one that maximizes f(s).

In a soft CSP, the requirement that a solution satisfy all constraints is relaxed. We
follow the semiring-based soft CSP [22], in which a weight function wi is attached to
each constraint Ci ∈ C. The weight functions ascribe values from a set E to assign-
ments of variables in the scope of the constraint. These values are compared according
to the structure of an associated semiring. For our purposes the fuzzy semiring will suf-
fice. In the corresponding fuzzy CSP, weight functions take real values in E = [0, 1],
are aggregated by min and max, and are compared with ≥.

By its nature, a soft CSP is an optimization problem. In a fuzzy CSP, maximally
preferred solutions are those that maximize the aggregated weight functions, i.e., max-
imize the minimum preference level achieved over all constraints. We write v to denote
the aggregated valuation function from the set of soft constraints Thus, any additional
objective function f added to a soft CSP results in a multi-criteria optimization prob-
lem. We discuss the optimization below.



We develop a soft constraint optimization model of a BDGI agent’s reasoning over
mental states as follows. Consider one cycle through the control loop. For a state S =
(B,D,GC , GA, I), define set-valued variables BS , DS , CS , GS , and IS for the five
components of S, respectively. Each variable takes values as subsets of a domain of
possible beliefs, desires, and so on, respectively. For instance, the domain of values for
BS consist of subsets of a set B of possible beliefs. For example, at initialization, an
accounting agent might have BS = balance($100) and B = balance($X) ∀X ∈ Z.
Note that the domains may not be finite.

These underlying domains — B, D, C, G, I — are obtained from the background
theory and the recipe library of the agent, and evolve according to perception and ac-
tions. At least for beliefs, the domain is open: the possible values in the domains are
not fixed and known.3 However, upon entry of the control loop, the current mental state
and the underlying domains are fixed and known for the remainder of the loop. Thus
the constraint problem that the agent will formulate for any one iteration through its
decision cycle is closed.

We encapsulate the evolution of the underlying domains by domain update func-
tions, one for each element of the mental state. These functions are invoked when the
agent executes an action and when it receives a perception, and when internal events
occur, such as an intention succeeding or failing. The functions serve to update mental
state (e.g., assert new beliefs) and underlying domain theories (e.g., enlarge the domain
of possible beliefs). They take as input the current domain, together with the current
mental state, the executed action or world state change, and they produce as output an
updated mental state and domain. For instance, the domain update function for beliefs
thus encapsulates the beliefs that the agent could potentially hold, as a result of the
completion of the execution cycle. In the example, after executing a web query for the
cost of a purchase of a laptop, the agent’s domain of possible beliefs could be B =
{balance($X) ∀X ∈ Z, laptop cost($Y) ∀Y ∈ Z+}. Note that there is no reason
for the underlying domains to be enumerated extensionally.

The role of the domain update functions is non-trivial. The outcome of goal delib-
eration is a decision over what commitments to pursue. The underlying domains for
candidate goals and goals, therefore, describe the choices the agent can consider for its
goals. For some agents, these choices can include goal modifications, such as modifying
the specifications requested of the laptop to be purchased. Thus G includes all possible
such modifications that the agent can consider; computation of these possibilities is
highly dependent on the application domain.

Constraints stipulate the permissible transition from the current mental state S to
the next state S′. They describe the possible moves S → S′ in terms of the evolution
of each mental attitude. Formally, the semantics of the transitions can be captured with
conditioned proof rules. We consider the following representative transitions:

– Rejection of a new candidate goal. S′ = (B,D,GC , GA, I)
– Consideration of a new candidate goal. S′ = (B,D,GC ∪ g,GA, I); g may have

awakening conditions attached.
– Rejection of an existing candidate goal. S′ = (B,D,GC − g,GA, I)
– Expansion of the adopted goals by adopting a candidate goal. S′ = (B,D,GC −

g,GA ∪ g, I)

3 Only in simplistic application domains can we expect the closed world assumption to hold.



– Direct adoption of a new goal. S′ = (B,D,GC , GA ∪ g, I)
– Suspension of an adopted goal. S′ = (B,D,GC ∪ g,GA − g, I − Ig), where Ig is

the set of intentions associated with or descended from goal g.4

– Resumption of a suspended goal. S′ = (B,D,GC − g,GA ∪ g, I ∪ Ig)
– Modification of an existing adopted. S′ = (B,D,GC , GA − g ∪ g′, I), where g′ is

a modification of the goal g.
– Revocation of an adopted goal. S′ = (B,D,GC , GA − g, I − Ig)

We state set constraints [22, Ch. 17] corresponding to each type of transition. For in-
stance, the constraints that describe an expansion transition are BS′ = BS , DS′ = DS ,
CS′ = CS − g, AS′ = AS ∪ g, and IS′ = IS . Such constraints can be stated for every
type of transition that the agent’s deliberation will consider. Transitions not considered
by the agent need not be stated. For an agent that cannot modify an adopted goal, for
example, we need not state constraints corresponding to the modification transition. The
constraints form a disjunction: rejection conjuncts ∨ consideration conjuncts ∨ . . . .

The transition constraints must be satisfied, but they may have differing levels of
importance according to the nature of the agent, such as its level of commitment to
existing intentions [2]. For instance, a more conservative agent may adopt new goals
only with reluctance; it would have a low weight on consideration, expansion, and direct
adoption transitions. These constraint importances can be modelled dually in a fuzzy
CSP as weights on variable assignments.

The possible transitions S → S′ are constrained by the user’s goal advice AG. Such
advice defines user preferences over permissible transitions. For example, the advice
“Don’t invite multiple candidates on the same day” gives a constraint: sameday(g1, g2)
=⇒ g1, g2 6⊆ G, for any pair of goals g1 and g2 that correspond to inviting candidates
for interview. These advice-derived constraints have a lesser level of importance than
the transition constraints. Since advice is soft, the agent may consider advice-infeasible
transitions, with a suitable penalty in the overall assessment. Indeed, to complement
goal- and execution-advice, we define meta-advice on how to approach the optimization
problem. Whereas the other forms of advice restrict the possible transitions, the meta-
advice indicates what transitions the user prefers: e.g., “Refrain from dropping any
intention that is more than 70% complete”.

The constraint model corresponds to one cycle through the control loop, akin to
a constraint model of one transition of a deterministic finite state machine. While we
could develop a non-myopic model that considers the (non-deterministic and partially-
observed) future consequences — just as lookahead planning is married into BDI ar-
chitectures by [23] — the single cycle model fits the reactive spirit of BDI agents.

4.1 Optimality and Solving the COP

The model described so far is a soft CSP. We now consider the optimization criteria that
direct the agent’s deliberation. The goals and intentions for a mental state may have
associated criteria that inform the deliberation process, including

– Goals: Value or utility (time-varying), priority, and deadline; estimated cost of
achievement. For adopted goals, there is also the level of commitment.

4 Computation of the intentions Ig that must be suspended or aborted, as a consequence of
suspending or aborting a goal g, is addressed in [29].



– Intentions: Cost of change (deliberative effort, loss of utility, delay); level of com-
mitment; level of effort so far (e.g., percentage complete); estimated cost to com-
plete; estimated probability of success; and the value or utility implied by the goal
from which the intention arises.

In selecting goals and intentions, as well as plans to execute intentions, the agent
seeks to maximize some combination — sophisticated or otherwise — of these and
other criteria. In general, the multiple criteria, together with the soft constraint satis-
faction valuation v, may not necessarily be aggregated into a single objective function.
Indeed, it is well known that there is no way to satisfy all the properties one would like
in multi-criteria optimization; utility functions on the components cannot be combined
to a single, ideal ranking function on the possible S′ [8].

Hence, the transition from S to S′ is a multi-criteria optimization problem not only
because of the presence of both a soft constraint preference/relaxation objective (i.e.,
valuation function v) and an optimality objective (i.e., f ), but because the optimality
objective itself most likely stems from multiple criteria. While some criteria are user
specified, others derive from the agent’s cognitive processes, as we discuss below.

An optimal solution to the soft COP must be developed according to the literature
on constrained multi-criteria optimization [26], and the algorithms for COPs developed
from it, such as [10]. A simple method to balance the preference/relaxation (coming
from the soft constraints) and the optimality (coming from the objective function) is
a weighted sum of the v and f . A lexicographical ordering of v before f emphasizes
constraint satisfaction before optimality.

Solution methods for the constraint model of agent deliberation, while of prime
practical importance if the model is to be applicable in an agent framework, are outside
the focus of this paper. We note, however, that an agent may be endowed with a simple
strategy for selecting an optimal S′ (i.e., there may be multiple such options), and with
the capability for it to be overridden by more elaborate strategies specified by the agent
programmer or the user for a given situation. Second, we note that the solving may
exploit similarity between the COPs of successive iterations through the decision cycle.

The agent’s deliberation is expressed simply with the model, as follows. Let the
variables in S be assigned according to the agent’s current mental state. Then a satisfy-
ing assignment for the variables in S′ corresponds to a possible future mental state. An
assignment that optimizes the value of S′ according to the form of optimality chosen
corresponds to a decision that is maximally preferred by the agent.

Within the decision cycle of a BDGI agent, goal deliberation is as follows:
1. Observe, update current mental state to S
2. Meta-deliberate: is there need for goal deliberation, and does its expected utility

outweigh the expected cost?
3. If warranted, formulate COP based on S
4. Solve COP for optimal solution(s)
5. Pick a solution and make corresponding transitions to S′

6. Act according to new mental state and current intentions

An interactive agent can benefit from collaboration with the user, according to the
level of adjustable autonomy. For example, an assistive agent might consult the user
if it cannot establish a clear best S′, given the meta-advice. For example, it might ask
“Should I give up on purchasing a laptop, in order to satisfy your decision to travel to
both CP and AAMAS conferences?”, if it finds the two options are in Pareto trade-off.



4.2 Example

Let us continue the example of a user being aided in arranging conference travel and
laptop purchase by a personal assistant agent. Let c1 be the candidate goal “Purchase
a laptop”, c2 the candidate goal “Attend CP”, and c3 the candidate goal “Attend AA-
MAS”. Available funds are the resource money, expressed by a belief balance($X)
where X is the current amount. Suppose c1 and c2 have led to the following adopted
goals and intentions: g1 with intention i1: “Purchase a high-specification laptop using
general funds”; and g2 with intention i2: “Attend CP and its workshops, staying in the
conference hotel”. The agent estimates it is 90% through completion of intention i1 and
25% through intention i2; to change i2 would incur a financial cancellation penalty.

Suppose the user tasks the agent with the new candidate goal c3 to attend AAMAS
in Europe. Thus, the current cognitive state is S = {B, {c1, c2, c3}, {g1, g2}, {i1, i2}}.
(For simplicity, since they do not impact this example, we will not describe agent de-
sires.) As before, suppose adopting c3 is infeasible because of resource contention, i.e.,
insufficient general funds. The agent has several alternatives, including one or more of

1. Do not adopt c3 (i.e., don’t attend AAMAS)
2. Drop c1 or c2 (i.e., laptop purchase or CP attendance)
3. Modify g2 to attend only the main CP conference
4. Adopt a new candidate goal c4 to apply for a departmental travel grant

Suppose now that the user has stated meta-advice forbidding the agent from drop-
ping any intention, thus disallowing the second alternative above. Finally, suppose the
user also gave a high priority when tasking the agent with c3.

We have variables BS = balance($850), CS = {c1, c2, c3}, GS = {g1, g2},
and IS = {i1, i2}. Let P denote the power set of a set. The underlying domains are
B = {balance($X) ∀X ∈ Z}, C = P({c1, c2, c3, c4}), G = P({g1, g2, g3, g4, g

′

2}),
and I = P({i1, i2}), where g

′

2 denotes the modification of goal g2. The transition
constraints include those for rejection, consideration, expansion, and so on.

The constraint derived from user advice is IS ⊆ IS′ (“don’t drop an intention”). The
user’s emphasis on attending AAMAS can be modelled via the preference function of
the adoption transition constraint, i.e., greater preference on assignments that include c3

in GS′ . Alternatively, it can be modelled via an optimality criterion in the optimization
formulation, i.e., a weight on c3 and an objective function that goal sets with higher
weight are preferred.

According to its nature, the agent builds the optimization problem from the criteria
it considers in its goal deliberation. In this case, suppose the agent’s simple behaviour
is to neglect measures of commitment to existing intentions (i.e., here, the estimated
percentage complete) and the cost of changing an intention, and to consider only the
weight the user has given to candidate goals together with her advice. This gives an
objective function f(s) =

∑
g∈AS

w(g), where w(g) is the weight on a goal. Suppose
the agent resolves the multiple criteria by the aggregation into F (s) = v(s) + f(s).

Solving the constraint problem gives optimal values for variables as follows: BS′ =
BS , CS′ = CS , AS′ = AS−g2∪{g

′

2, g4}, and IS′ = IS . Despite the penalty incurred,
the agent therefore seeks to move to an S′ that corresponds to taking both the third
and fourth options above: to modify g2 and adopt g4, i.e., S′ = {B, {c1, c2, c3, c4},
{g1, g2, g4}, {i1, i2}}. Thus, on successful completion of g4, the agent is able to adopt
g3 also and maintain goal feasibility,



4.3 Criteria for the Agent’s Decision Making

We have shown how modelling and solving a COP can be incorporated into the agent
execution cycle. Recall from Section 3 that an agent may need to deliberate over the
choice of goals to pursue if a candidate goal is to be adopted and its inclusion as an
adopted goal violates any of the consistency, coherence, feasibility, and reasonableness
properties. An important factor that guides this deliberation process is the commitment
the agent has towards a particular goal. In the following we consider some of the criteria
that may be used to determine this commitment.

Utility (time-varying), priority, and deadline Utilities can derive from a combination
of two sources: explicit statement for externally tasked goals, or inference by the agent.
Utility may be a time-varying quantity. For example, the utility of a conference regis-
tration task might increase the closer to the early registration deadline, then fall off until
nearer the final deadline.

Estimated cost of achievement, including estimated amount of resources required In
resource-critical domains, an important component of the cost of achievement is the
amounts of resources required. An estimate of this can be derived and updated as execu-
tion proceeds using the methods of Morley et al. [13]. Distinguishing between consum-
able and reusable resource consumption is also useful as the former has a greater impact
than the latter. In domains where resources are less significant, the cost of achievement
can be determined by a simpler measure such as the number of steps (plans, subgoals,
actions) that are required to satisfy a goal.

The dependency by other goals Internal dependencies concern how many other goals
depend on the successful completion of the goal, whereas external dependencies con-
cern how many other agents depend on it. For example, suppose the goal is to book a
flight as part of a top-level goal of attending AAMAS. If cancelled, the penalty, apart
from the local financial penalty, is that the conference attendance goal fails, and so forth.
Similarly, suppose the goal is a delegated goal by another agent. If dropped, then any
obligation to fulfill the goal may be violated.

The interactions with other goals A goal may potentially interact with the pre/post/in-
conditions and the effects of other goals. An interaction can be positive (cooperates
with) or negative (hinders). The computation will also consider the importance of the
goals that are involved, be it positive or negative. An assessment of these interactions
can be computed by the methods of Thangarajah et al. [30, 33, 32, 31]. For example,
the existing conflicting goal may have steps that contribute to the achievement of many
other goals, or the new goal may cause potential conflict with several existing goals.

Intentions, similarly, depend upon and affect other intentions. Note that while a goal
may not cause conflict, the way the agent achieves the goal (i.e., the intention) may do
so; the same applies when the interaction is positive.

The penalty of retracting the goal, or the intention Penalties are linked to commitment,
since performing steps that incur a high penalty to undo should increase commitment
towards pursuing this same path of achieving the goal. The penalty for retracting a goal
— other than causing the goals that it depends on to fail — is the cost of aborting the
goal and its current plans (intentions) [29]. For example, to retract a goal to travel to
AAMAS may require forfeiting flights booked, registrations paid, and so on.



The level of effort to date The effort from the conception of an intention to the current
moment is captured by a sum of the computation time and resources used in service
of all plans so far attempted: the more that has been invested into the goal, the more
committed the agent is to it. An alternate and simpler measure of effort is to use the
number of plans and subgoals completed for a given goal.

However the agent assesses the level of effort, the import of this criterion depends
on the nature of the agent. A blindly committed agent, for instance, will not give up
even if it is almost certain that it cannot achieve the goal.

The estimate cost to completion An estimate can be computed from the total estimated
cost to achieve the intention by means of the selected plan (see earlier remarks), together
with an estimate of the progress so far derived from the level of effort to date.

The likelihood of success When conflicts are detected using the mechanisms developed
by Thangarajah et al. [32, 31], they can be classified as definite or potential conflicts,
and as uncertain or definite success. Of course, goals in the definite success category
are of higher preference, and goals with definite conflict are what causes the agent to
perform a deliberation of choice between goals.

It is reasonable to infer that the more potential conflicts that a goal is involved
in, the greater the probability that it may fail. Whilst this is also true for goals in the
uncertain category, the probability of failure is lesser than if the conflict was potential.
More principled, Pfeffer [17] presents an approach to compute, and update as execution
proceeds, an estimated probability of success for any intention. The initial value of such
an estimation can take into account the definite or possible positive and negative goal
interactions of Thangarajah et al.

The criteria described above are domain independent. However, their impact on the
commitment towards a goal may depend on the type of domain. For example, deadlines
have more of an effect on time-critical domains, while resource consumption has greater
impact on resource-critical domains. In addition to the above, domain-specific criteria
may be provided, for example, as user advice for a personal assistant agent.

5 Conclusion

We have investigated how to extend the usual methods of agent reasoning by incor-
porating the formulation and solving of a soft COP into the deliberation process. This
provides a richer means of reasoning about appropriate courses of action for an agent, in
that qualitative measures, such as utility measures, can be embedded into the decision-
making process. In addition, we have introduced a finer granularity of goals and related
concepts (desires, candidate goals, goals and intentions), which can be neatly reflected
in a hierarchy of constraints, in that a constraint associated with a desire, for example,
is considered softer than one associated with an intention.

From a practical standpoint, empirical investigations are necessary to understand the
affordability of embedding a soft constraint optimization solver within an autonomous,
reactive agent. We must understand how to effectively solve our soft COP model.

One key area of future research is to investigate particular mechanisms for deter-
mining the level of commitment an agent should have to a particular goal. In practice,



most conflicts between goals in agent systems occur because of resource issues. Ac-
cordingly, the vast majority of the constraint solving will most likely be focused on
resource optimization (compare [25]). To able to perform the measurements necessary
for this, the relative importance of the goals will need to be established.

A second area of further work is to investigate the generation of candidate goals
from desires. In principle, this is a matter of finding an optimal set of consistent goals
from a given set; in practice, this may also involve prioritizing goals that have already
consumed substantial resources and are considered ‘almost finished’, as well as esti-
mating resource usage before accepting a goal as a candidate goal.

A third area is that of scheduling. It is often the case that resource conflicts can
be resolved by rescheduling goals, rather than having to choose between them (com-
pare [1]). This can be considered another dimension of the COP, and an area where
constraint-based techniques have proved effective.
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