

Weeks 10 and 11

■ Does the following lex_lesseq constraint have an answer?

- ◆ A: what the hell is lex_lesseq?
- → B: definitely has a solution
- C: probably has a solution
- D: probably doesn't have a solution
- E: definitely has no solutions

■ Does the following lex_lesseq constraint have an answer?

- ◆ A: what the hell is lex_lesseq?
- → B: definitely has a solution
- C: probably has a solution
- D: probably doesn't have a solution
- E: definitely has no solutions

■ Does the following value_precede_chain constraint have an answer?

- ◆ A: what the hell is value _precede _chain?
- B: definitely has a solution
- C: probably has a solution
- D: probably doesn't have a solution
- E: definitely has no solutions

CSCI 5240

Magic Squares of Numbers

- Arrange the numbers 1..n*n in an n*n square where
 - Every row adds to the same amount
 - Every column adds to the same amount
 - ◆ Both full diagonals add to the same amount
 - ♦ e.g. n = 3

4	3	8
9	5	1
2	7	6

Magic Squares of Numbers

- How many solutions
 - \diamond for n = 3?
 - \rightarrow for n = 4?
 - \Rightarrow for n = 5?!

Magic Squares of Numbers

■ Add a symmetry breaking constraint to your model

■ Count the number of solutions again

- \diamond for n=3
- \Rightarrow for n=4
- \Rightarrow for n = 5

Lex Least Solution

- How do we get the single lex least solution
 - → Think about the 2d array as written out as 1d
 - ◆ E.g. [4,3,8,9,5,1,2,7,6]

■ What about lex greatest?

More Squares of Numbers

■ Modify your model to maximize the sum of the corner squares of the solution

- What if you want to maximize the weighted sum of the top left corner (2x2)
 - ♦ 4 * top left
 - → 2 * orthogonal neighbours
 - → 1 * diagonal neighbour

4*4	3*2	8*0
9*2	5*1	1*0
2*0	7*0	6*0

Remember

- The symmetry breaking constraints must be correct
 - ◆ Your problem must have symmetries in the first place!!
 - You are really breaking the correct symmetries
 - ◆ If you are breaking more than one symmetry, your symmetry breaking constraints must be compatible with each other

Let's look at Survey 9

■ Given domains

$$D(X) = \{-3, -2, 0, 1, 4\} \& D(Y) = \{-4, -1, 0, 2, 3\}$$

What would a domain propagator for "Y = abs(X)" return?

- ◆ A: no change in domains
- \bullet B: D(X) = {0,1,4}, D(Y) = { -4, -1, 0, 2, 3 }
- \bullet C: fail domains: $D(X) = D(Y) = \{\}$
- \rightarrow D: D(X) = {-3,-2,0,1}, D(Y) = { 0, 2, 3 }
- \rightarrow E: D(X) = {-3,-2,0}, D(Y) = {0,2,3}

Given domains

$$D(X) = \{-3, -2, 0, 1, 4\} \& D(Y) = \{-4, -1, 0, 2, 3\}$$

What would a bounds(Z) propagator for "Y = abs(X)" return?

- ◆ A: no change in domains
- \bullet B: D(X) = {0,1,4}, D(Y) = { -4, -1, 0, 2, 3 }
- \bullet C: fail domains: $D(X) = D(Y) = \{\}$
- \rightarrow D: D(X) = {-3,-2,0,1}, D(Y) = { 0, 2, 3 }
- \rightarrow E: D(X) = {-3,-2,0}, D(Y) = {0,2,3}

Given domains

$$D(X) = \{-3, -2, 0, 1, 4\} \& D(Y) = \{-4, -1, 0, 2, 3\}$$

What would a bounds(R) propagator for "Y = abs(X)" return?

- A: no change in domains
- \bullet B: D(X) = {0,1,4}, D(Y) = { -4, -1, 0, 2, 3 }
- \bullet C: fail domains: $D(X) = D(Y) = \{\}$
- \rightarrow D: D(X) = {-3,-2,0,1}, D(Y) = { 0, 2, 3 }
- \rightarrow E: D(X) = {-3,-2,0}, D(Y) = {0,2,3}

- Propagation applies propagators $f \in F$ repeatedly until all at fixpoint f(D) = D
 - ♦ assume f(D) = D for $f \in Fo$ isolv(Fo, Fn, D)

 $F := Fo \ UFn; \ Q := Fn$

while $(Q \neq \{\})$

f := choose(Q) % select next propagator

 $Q := Q - \{f\}; D' := f(D);$

 $Q := Q \cup \text{new}(f, F, D, D') \% \text{ read props}$

D := D'

return D

CSCI 5240

- $\overline{}$ $x = 2y \land x = 3z, D(x) = [0..17], D(y) = [0..9], D(z) = [0..6]$
- Propagators: f1 = (x = 2y), f2 = (x = 3z): $Q = \{f1, f2\}$
- write Q, f, domains, new (assuming all with vars changed)

- $x = 2y \land x = 3z, D(x) = [0..17], D(y) = [0..9], D(z) = [0..6]$
- Propagators: f1 = (x = 2y), f2 = (x = 3z): $Q = \{f1, f2\}$
- write Q, f, domains, new (assuming all with vars changed)

\mathcal{Q}	f	D(x)	D(y)	D(z)	new
f1,f2	f1	[017]	[08]	[06]	{f1}
f2,f1	f2	[017]	[08]	[05]	{f2}
f1,f2	f1	[016]	[08]	[05]	{f1,f2}
f2,f1	f2	[015]	[08]	[05]	{f1,f2}
f1,f2	f1	[015]	[07]	[05]	{f1}
f2,f1	f2	[015]	[07]	[05]	{}
f1	f1	[014]	[07]	[05]	{f1,f2}
f2,f1	f2	[014]	[07]	[04]	{f2}
f1,f2	f1	[014]	[07]	[04]	{}
f2	f2	[012]	[07]	[04]	{f1,f2}
f1,f2	f1	[012]	[06]	[04]	{f1}
f2,f1	f2	[012]	[06]	[04]	{}
f1	f1	[012]	[06]	[04]	{}

- Domain propagators are always idempotent
- We usually apply bounds propagation on arithmetic constraints,
- The "basic" bounds propagator for x = 2y is not idempotent. Why?

■ Design an idempotent bounds propagator for x = 2y

- Given D(x) = [0..17] and D(y) = [0..9]. What would your idempotent bounds propagator for x = 2y give?
 - ◆ A: no change in domains
 - \rightarrow B: D(x) = [0..17] and D(y) = [0..8]
 - \rightarrow C: D(x) = [0..16] and D(y) = [0..8]
 - \rightarrow D: D(x) = [0..17] and D(y) = [0..9]
 - \rightarrow E: D(x) = [0..18] and D(y) = [0..9]

- $\mathbf{x} = 2y \land x = 3z, D(x) = [0..17], D(y) = [0..9], D(z) = [0..6]$
- Propagators: f1 = (x = 2y), f2 = (x = 3z): $Q = \{f1, f2\}$
- write Q, f, domains, new (assuming all with vars changed)
- Assuming idempotent propagators won't get replaced in Q
 by their own variable domain changes

- $\mathbf{x} = 2y \land x = 3z, D(x) = [0..17], D(y) = [0..9], D(z) = [0..6]$
- Propagators: f1 = (x = 2y), f2 = (x = 3z): $Q = \{f1, f2\}$
- write Q, f, domains, new (assuming all with vars changed)
- Assuming idempotent propagators won't get replaced in Q
 by their own variable domain changes

Q	f	D(x)	D(y)	D(z)	new
f1,f2	f1	[016]	[08]	[06]	{f2}
f2	f2	[015]	[08]	[05]	{f1}
f1	f1	[014]	[07]	[05]	{f2}
f2	f2	[012]	[07]	[04]	{f1}
f1	f1	[012]	[06]	[04]	{}

Let's look at Survey 10