Survey 8 * Required

1.	Please give your name *
2.	Please give your CUHK student ID *
3.	How much of Assignment 7 have you completed? * Mark only one oval.
	What? There is an assignment!?
	Seen it.
	Thought about it.
	Tried it.
	Finished it!!
4.	How many Course 2 Modules 4 & 5 lectures have you watched? * Mark only one oval.
	None
	1
	2-3
	All
5.	What kind(s) of constraints do we have in basic packing problems? You can tick more than one
	Check all that apply.
	Alldifferent constraints
	Counting constraints
	Cumulative constraints
	Non-overlap constraints
	Precedence constraints
6.	How can we enforce in our model that no two rectangles can overlap each other in space? You can tick more than one. *
	Check all that apply.
	Inequalities
	Disequalities
	Disjunctive globals
	Diffn globals
	Cumulative globals

tho ame time cun cun	e cumulative constraint is very similar/closely related to the diffn constraint. Each task can be ught of a rectangle with duration as length and resource requirement as height. Cumulative ounts to "packing" these rectangles into a big rectangle defined by maximum resource and e available. Given the same set of rectangles. A diffn constraint correspond to two nulative constraints (one in x- and one in y-direction). What is the relationship between the nulative constraints and diffn? * **Rk only one oval.**
	Cumulatives are satisfied if and only if diffn is satisfied
	If cumulatives are satisfied, then diffn is satisfied
	If cumulatives are satisfied, then diffn may be satisfied
	If diffn is satisfied, then cumulatives are satisfied
	If diffn is satisfied, then cumulatives may be satisfied
	v can we model a rectilinear shape in a packing problem? * ck only one oval.
sha	A collection of squares with specific orientations and relative positions to the "origin" of the pe
sha	A collection of rectangles with specific orientations and relative positions to the "origin" of the pe
"ori	A collection of collections of squares with specific orientations and relative positions to the gin" of the shape
"ori	A collection of collections of rectangles with specific orientations and relative positions to the gin" of the shape
	NONE of the above
	v can we model a rotatable rectilinear shape in a packing problem? *
sha	A collection of squares with specific orientations and relative positions to the "origin" of the pe
sha	A collection of rectangles with specific orientations and relative positions to the "origin" of the pe
"ori	A collection of collections of squares with specific orientations and relative positions to the gin" of the shape
"ori	A collection of collections of rectangles with specific orientations and relative positions to the gin" of the shape
	NONE of the above
	at is a symmetry? * 'k only one oval.
	Mapping assignments in a solution to another set of assignments results in a solution
	Mapping variables in a solution to other variables results in a solution
	Mapping values in a solution to other values results in a solution
	Mapping constraints in the model to other constraints still produces a solution
	Mapping variables in the model still produces a solution

Mark only one oval.	
Mapping assignments in a solution to another set of assignments results in a solution	
Mapping variables in a solution to other variables results in a solution	
Mapping values in a solution to other values results in a solution	
Mapping constraints in the model to other constraints still produces a solution	
Mapping variables in the model still produces a solution	
12. What is a value symmetry? * Mark only one oval.	
Mapping assignments in a solution to another set of assignments results in a solution	
Mapping variables in a solution to other variables results in a solution	
Mapping values in a solution to other values results in a solution	
Mapping constraints in the model to other constraints still produces a solution	
Mapping variables in the model still produces a solution	
13. How many row and column symmetries are there in an n x m matrix model? *	
Mark only one oval.	
n + m	
n + m - 1	
n + m - 2	
nm	
(n-1)(n-1)	
n!m!	
(n-1)!(m-1)!	
(n-1)!(m-1)!14. How many symmetry breaking constraint does the LexLeader method add for an n x m matrix model? *	(
14. How many symmetry breaking constraint does the LexLeader method add for an n x m matrix	<
14. How many symmetry breaking constraint does the LexLeader method add for an n x m matrix model? *	«
14. How many symmetry breaking constraint does the LexLeader method add for an n x m matrix model? * Mark only one oval.	(
14. How many symmetry breaking constraint does the LexLeader method add for an n x m matrix model? * Mark only one oval. n + m	(
14. How many symmetry breaking constraint does the LexLeader method add for an n x m matrix model? * Mark only one oval. n + m n + m - 1	K
14. How many symmetry breaking constraint does the LexLeader method add for an n x m matrix model? * Mark only one oval. n + m n + m - 1 n + m - 2	ĸ
14. How many symmetry breaking constraint does the LexLeader method add for an n x m matrix model? * Mark only one oval. n + m n + m - 1 n + m - 2 nm	×
14. How many symmetry breaking constraint does the LexLeader method add for an n x m matrix model? * Mark only one oval. n + m n + m - 1 n + m - 2 nm (n-1)(n-1)	ĸ
14. How many symmetry breaking constraint does the LexLeader method add for an n x m matrix model? * Mark only one oval. n + m n + m - 1 n + m - 2 nm (n-1)(n-1) n!m!	
14. How many symmetry breaking constraint does the LexLeader method add for an n x m matrix model? * Mark only one oval. n + m n + m - 1 n + m - 2 nm (n-1)(n-1) n!m! (n-1)!(m-1)! 15. How many symmetry breaking constraint does the Double Lex method add for an n x m matrix model? *	
14. How many symmetry breaking constraint does the LexLeader method add for an n x m matrix model? * Mark only one oval. n+m n+m-1 n+m-2 nm (n-1)(n-1) n!m! (n-1)!(m-1)! 15. How many symmetry breaking constraint does the Double Lex method add for an n x m matrimodel? *	
14. How many symmetry breaking constraint does the LexLeader method add for an n x m matrix model? * Mark only one oval. n + m n + m - 1 n + m - 2 nm (n-1)(n-1) n!m! (n-1)!(m-1)! 15. How many symmetry breaking constraint does the Double Lex method add for an n x m matrix model? * Mark only one oval.	
14. How many symmetry breaking constraint does the LexLeader method add for an n x m matrix model? * Mark only one oval. n+m n+m-1 n+m-2 nm (n-1)(n-1) n!m! (n-1)!(m-1)! 15. How many symmetry breaking constraint does the Double Lex method add for an n x m matrix model? * Mark only one oval. n+m	
14. How many symmetry breaking constraint does the LexLeader method add for an n x m matrix model? * Mark only one oval. n + m n + m - 1 n + m - 2 nm (n-1)(n-1) n!m! (n-1)!(m-1)! 15. How many symmetry breaking constraint does the Double Lex method add for an n x m matrimodel? * Mark only one oval. n + m n + m - 1	
14. How many symmetry breaking constraint does the LexLeader method add for an n x m matrix model? * Mark only one oval. n + m n + m - 1 n + m - 2 nm (n-1)(n-1) n!m! (n-1)!(m-1)! 15. How many symmetry breaking constraint does the Double Lex method add for an n x m matrimodel? * Mark only one oval. n + m n + m - 1 n + m - 2	
14. How many symmetry breaking constraint does the LexLeader method add for an n x m matrix model? * Mark only one oval. n + m n + m - 1 n + m - 2 nm (n-1)(n-1) n!m! (n-1)!(m-1)! 15. How many symmetry breaking constraint does the Double Lex method add for an n x m matrix model? * Mark only one oval. n + m n + m - 1 n + m - 2 nm	

11. What is a variable symmetry? *

16. How can we break value symmetries in a permutation problem? You can tick more than one. * Check all that apply.		
Use <		
Use lex_lesseq		
Use LexLeader		
Use value_precede_chain		
ALL of the above		
17. Given two feasible solutions, s1 and s2, of an optimization problem. Which of the following statement is true? You can tick more than one.		
Check all that apply.		
A feasible solution is an optimal solution		
An optimal solution is a feasible solution		
If s1 dominates s2, then s1 is symmetric to s2 and s2 is symmetric to s1		
If s1 is symmetric to s2, then s1 dominates s2 or s2 dominates s1		
NONE of the above		
18. Have you attempted Workshop 8 yet? * Mark only one oval. No Thought about it Completed it		
19. How much of Assignment 8 have you completed? * Mark only one oval.		
What? There is another ASSIGNMENT!?		
Seen it.		
Thought about it.		
Tried it.		
Finished it!!		

