Survey 11 * Required

1.	Please give your name *		
2.	Please give your CUHK student ID *		
3.	How much of Assignment 10 have you completed? * Mark only one oval.		
	What? There is an assignment!?		
	Seen it.		
	Thought about it.		
	Tried it.		
	Finished it!!		
4.	How many Course 3 Module 3 lectures have you watched? * Mark only one oval.		
	None		
	1		
	2-3		
	All		
5.	What are the main differences between a linear program and a discrete optimization problem? You can tick more than one. * Check all that apply.		
	A linear program encodes only a satisfaction problem		
	A linear program can have disequality constraints		
	The constraints in a linear program are linear		
	The objective in a linear program are linear		
	The decision variables in a linear program are linear		
	The decision variables in a linear program are positive		
	The decision variables in a linear program are non-negative		
	The decision variables in a linear program are real		
	The decision variables in a linear program are faked		
	The decision variables in a linear program are integers		

6. What is the geometrical interpretation of the linear inequalities in a linear program with n variables? *
Mark only one oval.
A bounding box in the n+1 dimensional space
A bounding box in the n dimensional space
A bounding hyperplane in the n+1 dimensional space
A bounding hyperplane in the n dimensional space
NONE of the above
7. Where do the feasible solutions (if exist) of a linear program lie? * Mark only one oval.
The vertices of the bounding polytope
The edges of the bounding polytope
The origin of the n dimensional coordinate system
The surfaces of the bounding polytope
The interior (including the surfaces) of the bounding polytope
8. Where do the optimal solutions (if exist) of a linear program lie? * Mark only one oval.
The vertices of the bounding polytope
The edges of the bounding polytope
The origin of the n dimensional coordinate system
The surfaces of the bounding polytope
The interior (including the surfaces) of the bounding polytope
9. Which of the following is not true about a Basic Feasible Solved Form? You can tick more than
one. * Check all that apply.
Basic variables appear on the LHSs
Non-basic variables appear on the RHSs
Constants are positive
Has a corresponding Basic Feasible Solution
The corresponding Basic Feasible Solution satisfies all constraints
The corresponding Basic Feasible Solution corresponds to a vertex on the bounding polytope
10. Which of the following is true about the pivoting step in the Simplex Algorithm? You can tick more than one. Think about why! * Check all that apply.
Transform the linear program to another which has a better optimal solution
Transform the linear program to another preserving all solutions
Transform the linear program to another preserving only optimal solutions
Jump from one basic feasible solution to another which has a better objective value
Jump from one basic feasible solution to another which corresponds to a point inside the
bounding polytope

11. Why can't we use the Simplex Algorithm to solve a discrete optimization problem in general? You can take more than one. * Check all that apply.
A discrete optimization problem may have non-linear constraints
A discrete optimization problem may have -ve decisions
A discrete optimization problem may have a non-linear objective function
The Simplex Algorithm solves a linear program, which have real number solutions in general
The Simplex Algorithm solves a linear program, which have non-negative solutions in general
12. What are the main differences between a mixed integer program (MIP) and a discrete optimization problem? You can tick more than one. * Check all that apply.
An MIP encodes only a satisfaction problem
An MIP can have disequality constraints
The constraints in an MIP are linear
The objective in an MIP are linear
The decision variables in an MIP are linear
The decision variables in an MIP are positive
The decision variables in an MIP are non-negative
The decision variables in an MIP are real
The decision variables in an MIP are faked
The decision variables in an MIP are integers
13. What is the basic working principle of the Branch and Bound Algorithm for solving MIPs? * Mark only one oval.
Repeatedly dividing the MIP into small problems until an integer solution is found, and use search to find the optimal solution of the entire problem
Repeatedly labeling variable with values and use bounding to find the optimal solution
Repeatedly pruning away non-integer optimal solutions until the remaining problem has an integer optimal solution
Repeatedly dividing variables domain into halves and solving each sub-problem until a sub-problem has an integer solution
NONE of the above
14. What is the basic working principle of the Gomory's Cutting Plane Method for solving MIPs? Mark only one oval.
Repeatedly dividing the MIP into small problems until an integer solution is found, and use search to find the optimal solution of the entire problem
Repeatedly labeling variable with values and use bounding to find the optimal solution
Repeatedly pruning away non-integer optimal solutions until the remaining problem has an integer optimal solution
Repeatedly dividing variables domain into halves and solving each sub-problem until a sub-problem has an integer solution
NONE of the above

ve you attempted Workshop 11 yet? * ork only one oval.
No
Thought about it
Completed it
w much of Assignment 11 have you completed? * ark only one oval.
What? There is another ASSIGNMENT!?
Seen it.
Thought about it.
Tried it.
Finished it!!

