

CSCI 5240

Combinatorial Search and Optimization with Constraints

CSCI 5240

When Traditional Classroom Lectures Meet MOOCs/SPOCs

Discrete Optimization with Fable-Based Learning

Brotherhood at the Peach Garden

The Celestial Old Man

The Magical Tablet

Power of the Magical Tablet

Through the Wormhole

Starting Every MOOC Lecture

Video Lectures

After Each Module

Live-coding Workshops

Challenging Assignments

Fable-Based Learning

- By following and becoming part of a story plot
- Problem-based and Immersive
- A form of Anchored Learning
 - Situated, interesting and realistic
 - A single fable plot to serve as anchor/context throughout the course for all learning

Production Planning

Rostering

Assignment Problems

Routing

Scheduling

Carpet Cutting (Packing)

Course Objectives

- Part 1: modeling complex and difficult reallife discrete/combinatorial optimization problems
 - ◆ You can already solve many interesting and practical problems ... without knowing how!!

■ Part 2: technologies/algorithms to solve these problems

Course Objectives

- Part 1: modeling complex and difficult reallife discrete/combinatorial optimization problems
 - ♦ You can already solve many interesting and practical problems ... without knowing how!!

■ Part 2: technologies/algorithms to solve these problems

MiniZinc

■ A declarative modeling language based on mathematical notations

- Developed at the Monash/Melbourne University
- www.minizinc.org
 - → MiniZinc IDE
 - ◆ The MiniZinc Handbook

Flipped Classroom

Traditional Classroom

- Instructor prepares material to be delivered in class.
- Students listen to lectures and other guided instruction in class and take notes.
- Homework is assigned to demonstrate understanding.

Flipped Classroom

- Instructor records and shares lectures outside of class.
- Students watch / listen to lectures before coming to class.
- Class time is devoted to applied learning activities and more higher-order thinking tasks.
- Students recieve support from instructor and peers as needed

Out-Class Activities

■ Watch the videos

Attempt the workshop problems

■ Attempt the assignments

■ Fill in a weekly questionnaire: required and part of the assessment!

Survey 7	
Form description	
Please give your name	*
Short answer text	
Please give your CUHK student ID *	
Short answer text	
How much of Assignment 6 have you completed?*	
What? There is an assignment!?	
O Seen it.	
Thought about it.	

Which of the following basic components of a MiniZinc model do you know? Tick as many as you want.	*
Variables	
Constraints	
Output statment	
Objective	
Do you know the difference between a satisfaction and an optimization problem? Yes No	*
Do you know how to run MiniZinc with the IDE?*	

Have you attempted Workshop 3 yet? *
○ No
Thought about it
Completed it

How much of Assignment 3 have you completed?*
What? There is another ASSIGNMENT!?
Seen it.
Thought about it.
Tried it.
Finished it!!
Have you ever encountered errors in MiniZinc related to something called * "option types"?

Which of the following is an example of unary resources? You can tick more * than one.
A 7-seater car
Prof. Jimmy Lee
A soldier
Zhuge Liang
You yourself
What is a cumulative resource? *
A resource that can be used by only one party at a time
A resource that can increase efficiency of solving
A resource that has multiple identical copies
A resource that can be used by multiple parties at the same time
NONE of the above

What would the attached MiniZinc model print?*

```
var 0..3: x;
constraint x = x + 1;
solve satisfy;
```

- x = 0;
- x = 1;
- x = 2;
- x = 3;
- =====UNSATISFIABLE=====

What would the attached MiniZinc model print?*

```
var 0..3: x;
constraint 2*x = x + 1;
solve satisfy;
```


■ You ask me questions

■ I ask you questions

■ Group problem-solving exercises

Only Half the Class Hours

- Classroom meeting only every other week
 - Sept 2 & 3
 - ◆ Sept 16 & 17
 - Sept 30, Oct 8 (spanned across two weeks)
 - → Oct 14 & 15
 - → Oct 28 & 29
 - → Nov 11 & 12
 - ◆ Nov 25 & 26

Only Half the Class Hours

- Classroom meeting only every other week
 - Sept 2 & 3
 - ◆ Sept 16 & 17
 - Sept 30 & Oct 8 (spanned across two weeks)
 - → Oct 14 & 15
 - → Oct 28 & 29
 - → Nov 11 & 12
 - → Nov 25 & 26

The 3 MOOCs

- Coursera
- Three courses consisting of short modules
 - Basic Modeling for Discrete Optimization (4 modules)
 - Advanced Modeling for Discrete Optimization (5 modules)
 - Solving Algorithms for Discrete Optimization (4 modules)

A Module = Roughly a Week

■ Short video lectures

■ Module summary

■ Workshop (Exercise with solution video)

■ Assignment (autograding engine)

Administrative Tidbits

- Instructor: Jimmy Lee, SHB 1009, x38426, <jlee@cse.cuhk.edu.hk>
- Course homepage at <course.cse.cuhk.edu.hk/~csci5240>
- Evaluation criteria
 - → 12 assignments
 - → 12%: 1, 3, 5, 7, 9, (11 or 12) non-zero score to get 2% each
 - + 38%: 2, 4, 6, 8, 10, (11 or 12)
 - → 10%: weekly survey
 - ◆ 40%: final examination (≥ 20/40 to pass the course)

Plagiarism will not be tolerated!

Immediate things to do ...

■ Go to the course homepage and enroll in the private MOOC sessions on Coursera using your CUHK official email (no aliases)

■ Download and install MiniZinc

■ Start enjoying the MOOCs