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ABSTRACT
In this paper, we consider the problem of optimal scheduling
for quantum switches with dynamic demand and random en-
tanglement successes. Different from prior results that often
focus on (known) fixed entanglement success probabilities,
we assume zero prior knowledge about the entanglement suc-
cess probabilities and allow them to vary from time to time
in an adversarial manner. We propose a learning-based al-
gorithm QSSoftMW based on the framework developed in [1],
which combines adversarial learning and Lyapunov queue
analysis. We show that QSSoftMW is able to automatically
adapt to the changing system statistics and ensure quantum
switch stability.

1. INTRODUCTION
The design and control of quantum networks have received

much attention recently, due to its potential to establish an
interconnection foundation for future quantum computing.
Among the many important problems that have been in-
vestigated, the optimization of quantum switches has been
studied in several prior works, e.g., [6, 5, 3, 4].

Specifically, the quantum switch scheduling problem con-
siders a quantum switch connecting a set of users. The
switch is capable of establishing link-level entanglements be-
tween itself and the users. At every time, random requests
arrive at users asking to set up entanglements with target
users. By performing entanglement swapping operations,
the switch turn link-level entanglements with users into end-
to-end entanglements between users (in a probabilistic way).
The objective of the switch is to find a scheduling policy,
which determines which user pairs to connect, so as to serve
as many requests as possible.

In this paper, we consider the quantum switch scheduling
problem assuming that the arrival and entanglement dynam-
ics can be adversarial. This setting is particularly useful for
non-stationary systems without prior knowledge of the envi-
ronment or having only inaccurate estimation. On the other
hand, this formulation also poses new challenges compared
to existing works that assume knowledge of the entangle-
ment success probabilities, e.g., [3, 4]. In particular, the
common Lyapunov analysis technique requires that at each
decision making time, some form of accurate service rate
estimation (either exact or in expectation) is available.

To tackle the above difficulties, we propose a learning-
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based scheduling policy QSSoftMW, which builds upon a re-
cent framework in [1] that provides a systematic technique to
incorporate adversarial learning into queueing network con-
trol. QSSoftMW can provably stabilize the quantum switch
under mild technical assumptions. The algorithm and re-
sults in our paper shed light into designing robust quantum
switch scheduling algorithms.

2. PROBLEM FORMULATION
We present the problem formulation in this section. We

consider a discrete-time quantum switch connecting a set of
N users via quantum links, e.g., fiber optic cables, as shown
in Figure 1. At each time t, entanglement requests arrive
at the users. We denote by Aij(t) the number of requests
coming to user i requesting to establish entanglement with
user j at time t. We assume 0 ≤ Aij(t) ≤ Amax for all
1 ≤ i < j ≤ N .
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Figure 1: An example of a quantum switch connect-
ing to four users. The switch can turn two link-level
entanglements (dotted lines) into an end-to-end en-
tanglement (solid line) via entanglement swapping.

The quantum switch can decide to generate quantum en-
tanglement with a selected set of users at each time. We as-
sume that both the switch and the users have enough qubits
for establishing entanglements. For simplicity, we assume
that if a switch decides to establish entanglement with user
i, it always tries to set up the maximum number of con-
nections. However, it is known that each attempt succeeds
with certain probability at each time, and the subsequent
entanglement swapping operation for end-to-end connection
is also probabilistic, e.g., [4].

To capture these aspects, we denote by µij(t) the number
of entanglements successfully established between user i and
user j, if the switch decides to connect them at time t via
entanglement swapping over two switch-user connections.
We assume 0 ≤ µij(t) ≤ µmax. We also assume that at each
time, the switch can only choose to setup entanglements
between one pair of users. As in prior works, e.g., [4, 3], we



assume that each entanglement connection remains valid for
a slot.

Depending on the outcome of the attempts, some of the
entanglement requests will be served. We denote by Qij(t)
the number of requests that are still pending at the end of
the t-th time slot. These unserved requests will be buffered
in the request queues and wait for service. Thus, we see that
Qij(t) evolves according to

Qij(t) = max[Qij(t− 1)− µij(t), 0] +Aij(t), ∀ t. (1)

The goal of the switch is to look for a scheduling policy,
which determines to serve one user-pair each time, with the
objective of stabilizing the request queues, formally defined
as:

lim sup
T→∞

1

T

T−1∑
t=0

∑
i<j

E{Qij(t)} <∞. (2)

One important feature of our formulation is that it does
not assume stationarity of both the arrival and service amounts,
i.e., the values {Aij(t)}∞t=1 and {µij(t)}∞t=1 are chosen by an
adversary (the environment) at t = 0, before any schedul-
ing decision being made, and they are only assumed to be
bounded and can vary from time to time in an arbitrary
manner. This is very different from existing quantum switch
scheduling works, e.g., [6, 5, 3, 4]. Such a setting is not un-
common in practice, e.g., due to unknown interference or
inaccurate estimation of the entanglement success probabil-
ities.
Notations. [N ] = {1, 2, · · · , N} denotes the set of first N
positive integers. We denote the N dimensional probability
simplex by ∆[N ] , {x ∈ RN :

∑N
i=1 xi = 1, xi ≥ 0 ∀i ∈

[N ]}. For any 0 ≤ β ≤ 1/N , ∆[N ],β denotes the set {x ∈
∆[N ] : xi ≥ β ∀i ∈ [N ]}. We denote K =

(
N
2

)
for all

feasible user pairs for entanglement and [K] = {1, 2, · · · ,K}.
We also abuse the notation Qt as a K-dimension vector to
denote the backlog sizes for all user pairs at the end of the
t-th time slot. Similarly, we use At and ~µt to represent
the vectors of entanglement request arrivals and successful
services at time t, respectively.

3. ALGORITHM
In this section, we present our algorithm QSSoftMW, which

is a restated version of the SoftMW algorithm developed in
our recent work [1] that combines adversarial learning and
Lyapunov analysis.

The high level idea of the algorithm design is as follows.
In the classical MaxWeight scheduling [2], where the values
of {µij(t)} need to be known beforehand, at each time t,
the scheduler picks a pair of users (i, j) such that the term
Qij(t− 1)µij(t) is the maximum among all user pairs. The
fact that Qij(t − 1)µij(t) are maximized at each time step
allows one to upper-bound MaxWeight’s quadratic Lyapunov
function value by comparing it with any queue-length un-
aware randomized policy in a Lyapunov drift analysis frame-
work [2]. Then, by choosing an appropriate stationary and
randomized stabilizing policy, the inequalities on Lyapunov
function values can solve to a queue length upper-bound,
and queue stability is thus established.

In our setting, µij(t) can be observed only at the end of the
t-th time slot, i.e., after the decision has been made. More-
over, only the service rate of the user pair selected at this
time slot is observable, and the service rates of other user

pairs remain unknown to the scheduler (i.e., bandit feed-
back). To handle this markedly different setting, we adopt
an adversarial MAB algorithm into the scheduling process.
Specifically, we use the algorithm proposed in [1], which
can generate scheduling decisions under the bandit feedback,
and guarantee that, the term

∑T
t=1 Qij(t−1)µij(t), i.e., the

cumulative sum of the queue-length-service-rate-products,
is either larger than or sufficiently close to any queue-length
unaware randomized policy (called reference policy) in ex-
pectation. This reference random policy is even allowed to
be time-varying, as long as the time-variation of the proba-
bility to serve each user pair is not too large. This weaker
form of

∑T
t=1 Qij(t− 1)µij(t) lower-bound allows one to re-

cover the remaining steps in a common Lyapunov-drift based
average queue length analysis (see next section for details).

The formal pseudo-code of the algorithm is given in Al-
gorithm 1 below, which is a restated version of the SoftMW

algorithm developed in [1]. In Section 4, we provide the for-
mal average queue length bounds and technical assumptions
for Algorithm 1.

Algorithm 1: QSSoftMW (Quantum Switch Soft
MaxWeight)

Input: One-step arrival upper-bound Amax > 0 and
service upper-bound µmax > 0, number of
users N , problem instance smoothness
parameter δ > 0

Output: A sequence of user pairs to establish
entanglments at each time step
(i1, j1), (i2, j2), . . . ∈ [N ]2

1 M ← max{Amax, µmax}
2 K ←

(
N
2

)
= N(N − 1)/2 // number of user pairs

3 Denote by A the set of all K feasible user pairs,
choose a bijection φ from [K] to A

4 Ψ(x) ,
∑K
i=1(xi lnxi − xi)

5 x1 = 1/K ∈ ∆[K]

6 for t = 1, 2, . . . do
7 βt ← t−3/K

8 ηt =

(
t−( 1

4
− δ

2
)M

√
86M2K6t

3
2 +

∑t−1
s=0‖Qs‖22

)−1

9 et = Qt−1/‖Qt−1‖1
10 γt = Mηt‖Qt−1‖1 =

‖Qt−1‖1
(
t−( 1

4
− δ

2
)

√
86M2K6t

3
2 +

∑t−1
s=0‖Qs‖22

)−1

11 pt ← (1− γt)xt + γtet
12 Sample at ∼ pt
13 (it, jt)← φ(at)
14 Setup entanglements between it and jt, observe

the actual successful entanglements µit,jt(t)
15 g̃t ←{

Qit,jt (t−1)µit,jt (t)

pt,at
the at-th coordinate

0 the other K − 1 coordinates

16 xt+1 ← arg minx′∈4[K],βt 〈−ηtg̃t,x′〉+DΨ(x′,xt)

4. PERFORMANCE ANALYSIS



Results and technical assumptions in this section are all
from our recent work [1] (the SoftMW algorithm in the paper).
Readers may refer to [1] for more detailed discussion. As we
briefly described in Section 3, the analysis of QSSoftMW (Al-
gorithm 1) is mainly two-fold. Firstly, the embedded MAB
algorithm guarantees that (when inspected in the Lyapunov-
drift analysis framework), QSSoftMW is no worse than any
reference random policy whose time-variation satisfies some
smoothness condition. The stability of QSSoftMW then largely
reduces to the stability of the reference random policy, for
which we found a sufficient condition, generalizing the com-
mon depiction for the capacity region in stationary queue-
ing systems. Below, we specifically give these two categories
of technical assumptions for QSSoftMW to provide stability
guarantees.

Assumption 1 (Piecewise Stabilizability [1]). There

exist CW ≥ 0, ε > 0, ~θ1, ~θ2, · · · ∈ ∆[K] and a partition of N+

into intervals W0,W1, · · · , such that for any T ≥ 1 we have∑
i:mint∈Wi t<T

(|Wi| − 1)2 ≤ CWT (3)

and for any τ ≥ 0 and i < j ∈ [N ] we have

1

|Wτ |
∑
t∈Wτ

θij(t)µij(t) ≥ ε+
1

|Wτ |
∑
t∈Wτ

Aij(t). (4)

Intuitively speaking, Assumption 1 states that we can par-
tition the infinite time-horizon into finite-length intervals.
The interval lengths may not be the same, as long as the
growth rate is within O(

√
T ). Moreover, there exists a

queue-length unaware scheduling policy, under which the
probabilities to serve each user pair are encoded in the se-

quence {~θt : t ≥ 1}, such that for each user pair i, j, when
we run this policy, in each time interval Wτ in the partition,
the average service rate (the 1

|Wτ |
∑
t∈Wτ θij(t)µij(t) term

in Eq. (4)) is at least ε more than the average arrival rate
(the 1

|Wτ |
∑
t∈Wτ Aij(t) term in Eq. (4)).

Remark. Assumption 1 is indeed a sufficient stability con-

dition for the above randomized policy induced by {~θt : t ≥
1} (refer to Proposition 5.5 of [1] for details). Below we call
this policy the reference randomized policy.

Assumption 2 (Reference Policy Stationarity [1]).

For the reference policy encoded by {~θt} in Assumption 1,
there exist some δ > 0 and CV > 0 such that

T−1∑
t=1

‖~θt+1 − ~θt‖1 ≤ CV T
1
2
−δ

for any T ≥ 1.

Intuitively speaking, Assumption 2 says that the sequence

{~θt} (and hence the environment) does not change too fast
(the sum of l1-distances between the probability vector suc-

cessive time steps is O(T
1
2
−δ)).

Now we are able to present the theoretical average queue
length bound (and hence stability) result of QSSoftMW (Al-
gorithm 1), as the following Theorem 1 which is a direct
corollary of Theorem 5.2 of [1]:

Theorem 1. For quantum switch scheduling problem in-
stances satisfying Assumptions 1 and 2, QSSoftMW (Algo-
rithm 1) guarantees

1

T
E

[
T∑
t=1

‖Qt‖1

]
≤ N2M2 + 2CW (N2M2 + εN2M)

ε
+ o(1)

where M = max{Amax, µmax}. In particular, the system is
stable.

Proof. QSSoftMW is a special instance of the SoftMW in
[1] with the number of available actions being K =

(
N
2

)
.

Thus, we can apply Theorem 5.2 of [1] for QSSoftMW, and
the claimed bound is a direct corollary.

We see that the queueing bound scales as O( 1
ε
), which is sim-

ilar to that under the MaxWeight [2] algorithm for settings
where the success probabilities are stationary and known.
This shows that by incorporating a proper adversarial learn-
ing mechanism, one can obtain a queueing bound that is of
the same order (with respect to ε).

5. CONCLUSION
We propose a learning-based algorithm QSSoftMW for quan-

tum switch scheduling, based on the framework developed
in [1]. QSSoftMW combines adversarial learning and Lya-
punov queue analysis, and is able to achieve queue stability
under unknown and adversarial entanglement success prob-
abilities.
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