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1. INTRODUCTION
Recent progress on building quantum computers [1] envis-

ages wide applications of quantum algorithms in the near
future. With the advantage of quantum computer, one can
speed up not only fundamental algorithms, e.g., unstructured
search [6] and factoring [11], but recent machine learning
algorithms [3] as well. In this paper, we study the quantum
speedup on a canonical task of reinforcement learning—best
arm identification in multi-armed bandits.

Multi-armed bandit (MAB)—initiated from Lai and Rob-
bins [8]—is an important sequential decision making model
(ref., [9]). In the stochastic case, a MAB consists of K arms,
each of which is associated with a reward distribution with
unknown mean µk. When querying an arm k ∈ K :=
{1, 2, . . . ,K}, one obtains a reward drawn from its reward
distribution, i.e.,

(Classic oracle) Xk ∼ B(µk), (1)

where we consider the Bernoulli distribution for simplicity,
and this can be easily generalized as MAB literature showed.
In this paper, we show that, the quantum oracle, followed
by some quantum computations, allows one to outperform
classic MAB algorithms. For simplicity, we assume these K
arms are ordered in descending order of their means: µ1 >
µ2 > · · · > µK , unknown to the learner.

Besides the regret minimization objective for studying
exploration-exploitation trade-off, the best arm identification
(BAI) is another important objective in MAB for studying pure
exploration. BAI was introduced to MAB by Even-Dar and
Mannor et al. [5]. This objective has two cases: (1) BAI
with fixed confidence—find the best arm with a confidence
of at least 1− δ (δ ∈ (0, 1)) with as small number of queries
as possible, and (2) BAI with fixed budget—given a fixed
budget of queries times T , find the best arm with a correct
probability as high as possible. In this paper, we focus on the
BAI with fixed confidence case, and, for brevity, hereinafter,
refer to it as best arm identification (BAI). Formally, the ob-
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jective of BAI is, given δ ∈ (0, 1), to design an algorithm that
minimizes the number of queries Q required for outputting
the best arm with a probability of at least 1− δ. To express
results, we denote a reward mean gap as follows,

∆k :=

{
µ1 − µk if k ̸= 1

µ1 − µ2 if k = 1
.

In this paper, we study this BAI objective in the quantum
multi-armed bandits model, where the reward distributions
of classic bandits are replaced with quantum oracles, and the
reward samples are replaced with quantum copies generated
from quantum oracles. We devise an elimination-based algo-
rithm for BAI with quantum oracles. Comparing to classic
BAI’s sample complexity bounds, our algorithm’s query com-
plexity bounds improve the coefficient before log(1/δ) from
∆−2

k to ∆−1
k , where δ is the given confidence parameter.

2. TWO QUANTUM ORACLES
Wang et al. [13] and Casalé et al. [4] first studied BAI in a

quantum MAB with a quantum oracle as follows,
(Strong quantum oracle)

Ostro : |k⟩I |0⟩R 7→ |k⟩I
(√

µk |1⟩R +
√

1− µk |0⟩R
)
, (2)

where I is the “arm index” register with K states corre-
sponding to K arms, and R is a single-qubit “bandit reward”
register. This oracle covers the reward feedback of classic MAB:
inputting a basis state to the oracle, i.e., |k⟩I |0⟩R, and then
measuring the oracle’s output |k⟩I (

√
µk |1⟩R+

√
1− µk |0⟩R)

yields an observation equivalent to drawing a sample from a
Bernoulli distribution with mean µk. A potential advantage
of this oracle is that it can provide information about all
arms when given an input that is a uniform superposition of
all arm indices. Taking advantage of that, Wang et al. [13]
proposed an algorithm that enjoys a quadratic speedup in
query complexity for BAI. We list their query complexity
results in Table 1.

However, the quantum oracle in Eq.(2) is too powerful in
the sense that it provide information regarding the reward
distributions of all arms in a single query. For example, when



Table 1: Comparison of BAI’s query complexity bounds of different oracles
Oracle Query complexity upper bound

Classic oracle (Eq.(1)) O
(∑

k(1/∆
2
k) log(1/δ)

)
[7]

Strong quantum oracle (Eq.(2)) Õ(
√∑

k(1/∆
2
k) log (1/δ)) [13]

Weak quantum oracle (Eq.(3), ours) Õ
(∑

k(1/∆k) log ((1/δ))
)

(Theorem 1)

the arm index register is queried in uniform superposition of
the arm indices

∑
k∈K(1/

√
K) |k⟩I |0⟩R, the oracle returns∑

k∈K(1/
√
K) |k⟩I

(√
pk |1⟩R +

√
1− pk |0⟩R

)
in which the

qubit in register R encodes the information of all arms’ re-
ward distributions. Such a query is impossible in a setting
where the arms are separated and can only be queried indi-
vidually. Therefore, algorithms based on the oracle in Eq.(2)
cannot give feasible insights about pure exploration in MAB.

Indeed, Wan et al. [12] proposed a more reasonable quan-
tum oracle to clearly separate arm exploration for regret
minimization. Associated with each arm k is an oracle Ok,
(Weak quantum oracle)

Ok : |0⟩ 7→ √µk |1⟩+
√

1− µk |0⟩ , k ∈ K. (3)

This quantum oracle models the query feedback of classic MAB
as quantum superposition as the strong oracle Ostro in Eq.(2),
but it does not provide the opportunity to simultaneously
explore multiple arms as the strong oracle Ostro allows. Al-
though one cannot query multiple arms simultaneously, this
oracle in Eq.(3) is still more informative than the classic
oracle in Eq.(1) because its superposition output encodes the
information of the whole reward distribution, instead of a
single reward sample as in Eq.(1). Therefore, this weak oracle
is a reasonable choice for studying the quantum version of
BAI. Wan et al. [12] devised regret minimization algorithms
for both multi-armed bandits and linear bandits with this
weak oracle that achieve O(log T ) problem-independent up-
per bounds, while in classic MAB, one only has O(

√
T ) bounds.

In this paper, we look into BAI with the weak quantum oracle.

2.1 Main Result and Comparison
In Table 1, we compare our result to prior works. Com-

paring the coefficient of these complexities, we have√∑
k∈K

1

∆2
k︸ ︷︷ ︸

Strong quantum oracle

⩽
∑
k∈K

1

∆k︸ ︷︷ ︸
Weak quantum oracle

⩽
∑
k∈K

1

∆2
k︸ ︷︷ ︸

Classic oracle

. (4)

Both quantum MAB models enjoy smaller query complexities
than that of traditional MAB. Secondly, our quantum query
complexity (via the weak quantum oracle Eq.(3)) is larger
than that of the strong quantum oracle Eq.(2); in the worst
case ours can be

√
K times larger by the Cauchy-Schmidt

inequality. This echoes the fact that our quantum oracle
(Eq.(3)) is weaker than the strong oracle in Eq.(2) in the sense
that we cannot query multiple arms at the same time.

3. ALGORITHM AND ANALYSIS
In this section, we propose an elimination-based algorithm

for BAI with weak quantum oracle in Algorithm 1 and prove
its query complexity upper bound in Theorem 1. Before pre-
senting our algorithms, we recall a useful quantum estimator

in Lemma 1 adapted from Montanaro [10] and compare it to
classic estimators in Remark 1.

Lemma 1. For any weak quantum oracle Ok in Eq.(3),
there is a constant C1 > 1 and a quantum estimator QE(Ok, ϵ, δ)
which returns an estimate µ̂ of µk such that P(|µ̂k − µk| ⩾
ϵ) ⩽ δ using at most (C1/ϵ) log(1/δ) queries to Ok and O†

k.

Remark 1. To achieve the P(|µ̂k − µk| ⩾ ϵ) ⩽ δ claim in
Lemma 1, a classic estimator (e.g., empirical mean) needs
O((1/ϵ2) log(1/δ)) (e.g., via Hoeffding’s inequality). The
quantum estimator QE enjoys a quadratic speedup in query
complexity regarding parameter ϵ. However, this QE is not as
flexible as a classic estimator: Before applying the QE, one
cannot get any classic information of the reward mean (since
all are in quantum superpositions), and after applying the
QE, all utilized quantum superpositions collapse and cannot
be reused anymore, while, for classic samples, one can im-
prove the estimation gradually as in the sample accumulation
process, and these samples can be reused freely.

Recall that the main idea of elimination algorithms is to
maintain a candidate arm set C (initiated as the full arm set
K), gradually eliminate identified suboptimal arms from the
candidate arm set C as the learning proceeds, and stop when
the candidate arm set C only containing one arm which is the
output optimal arm. We note that although there were some
elimination algorithms proposed for BAI with classic oracle,
e.g., successive elimination [5], one cannot obtain a feasible
quantum algorithm for BAI with the weak oracle by replacing
these known elimination algorithms’ classic estimator with
the quantum estimator in Lemma 1 due to the inconvenience
of quantum estimator mentioned in Remark 1.

One key challenge of designing our quantum algorithm
is to decide when to execute quantum estimation QE and
arm elimination. To address the challenge, we propose a
phase-based (batched) exploration and elimination scheme.
In each phase, we uniformly explore (query) all remaining
arms in candidate arm set C for a number of times (Line 4),
conduct QE to estimate reward means of these arms based
on these queries (Line 5), and eliminate the newly identified
suboptimal arms (Line 7) at end of the phase. As phase
increases, we gradually increase the number of queries and the
estimation accuracy of QE (Lines 4 and 8). We analyze the
query complexity upper bound of Algorithm 1 in Theorem 1.

Theorem 1. Given a confidence parameter δ ∈ (0, 1), the
query complexity of Algorithm 1 is upper bounded as follows,

E[Q] ⩽
∑
k∈K

log2

(
4

∆k

)
16C1

∆k
ln

K

δ
.

Proof of Theorem 1. Correctness: Note that if all
estimates of QE are correct, i.e., µk ∈ (µ̂k− r, µ̂k + r) always
hold for all arms in C, then the final output arm must be



Algorithm 1 Quantum elimination for BAI
1: Input: confidence parameter δ and arm number K
2: Initialize: empirical mean µ̂k ← 0, candidate arm set
C ← K, confidence width r ← 1/2

3: while |C| > 1 do
4: Query each arm in C for C1

r
log |C|

rδ
times

5: Run QE
(
O, r, rδ

|C|

)
for each arm in C and update

these arms’ estimates µ̂k

6: µ̂max ← maxk∈C µ̂k

7: C ← C \ {k ∈ C : µ̂k + 2r < µ̂max} ▷ Elimination
8: r ← r/2

9: Output: the remaining arm in C.

the true optimal arm. Hence, we only need the probability
that any of these QEs fail to be upper bounded by δ. Denote
phase index p as the number of times that the while loop
of Algorithm 1 runs. Then, we have r = 2−p. In pth round,
the probability that any QE estimate fails is upper bounded
by |C| × rδ

|C| = 2−pδ. Therefore, the total failure probability
over all rounds is upper bounded as follows

∑P
p=1 2

−pδ ⩽∑∞
p=1 2

−pδ = δ. This fulfills the fixed confidence requirement.
Query Complexity: Since the failure of QE estimate

are all taken account by the fixed confidence above, in this
part we assume that µk ∈ (µ̂k − r, µ̂k + r) always holds for
all arms in C. Fix a suboptimal arm k. Denote pk as the
phase that arm k is eliminated. We show that this arm must
have been eliminated when 4r < ∆k. Otherwise (this arm is
not removed), it would mean that

µk + 4r
(a)

⩾ µ̂k + 3r
(b)

⩾ µ̂max + r ⩾ µ̂k∗ + r
(c)

⩾ µk∗ ,

where inequalities (a) and (c) are due to the confidence
interval µk ∈ (µ̂k − r, µ̂k + r), and inequality (b) is because
the elimination condition of Line 7 does not hold. That is,
if the arm is not eliminated, we have 4r ⩾ µk∗ − µk = ∆k,
which contradicts 4r < ∆k. Therefore, we know that in the
phase before the arm k eliminated, i.e., phase (pk − 1), we
have 4r = 4 · 2−(pk−1) ⩾ ∆k.

After rearrangement, we have 2pk ⩽ 8/∆k. So, we can
bound the query times of this arm k as follows,
pk∑
p=1

C1

r
ln
|C|
rδ

⩽
pk∑
p=1

C1

2−p
ln

K

2−pδ
⩽ C1 ln

K

δ
log2

(
4

∆k

)
16

∆k
.

Summing the query times of all arms concludes the proof.

Remark 2. Compared to the classic oracle’s sample com-
plexity upper bound O(

∑
k∈K(1/∆k)

2 log(1/δ)) [7], the query
complexity upper bounds in Theorems 1 has a quadratic im-
provement of the dependence on 1/∆k for each individual
arm. For another thing, the strong quantum oracle’s sample
complexity upper bound Õ(

√∑
k 1/∆

2
k log(1/δ)) [13] enjoys

an overall quadratic speedup over all arms. That is, as the
first inequality of Eq.(4) shows, the coefficient of query com-
plexity lower bound of weak oracle is larger than that of strong
oracle, and in the worst case, can be

√
K times larger.

4. FUTURE DIRECTIONS
Besides BAI with fixed confidence studied in this paper and
Wang et al. [13], the BAI with fixed budget with the quantum
oracles is another interesting objective to study, which is

less understood even in classic MAB [2]. For another thing,
although the query complexity of weak oracle is worse than
that of strong oracle, the implementation cost of a strong
oracle (O(log2 K) qubits) can be far more expensive than
that of a weak oracle (1 qubit) due to the difficulty of building
large quantum circuits. Therefore, it is also worth to studying
the query cost complexity of both oracles
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