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Abstract—Wireless ad hoc networks enable the wireless devices
to directly communicate with each other. An emerging application
in such systems is video-on-demand service that can greatly
reduces the content server’s workload by utilizing the nodes’
resources. Such an application relies on the cooperation of all
participating nodes. However, the nodes are selfish in nature.
Therefore, a key design issue is to appropriately incentivize the
cooperation among each other. In this paper, we design a simple
yet effective reward based incentive mechanism so as to stimulate
the nodes to upload and/or forward data to one another. By
using a Stackelberg game model, we analyze the interactions
between the content provider’s rewarding strategy and the
nodes’ contributing behaviors. We derive a unique Stackelberg
equilibrium and show its efficiency. By using a repeated game,
we study the long term intelligent interaction between nodes
and the content provider. We also design a cheating prevention
mechanism and analyze its effectiveness under the repeated game

setting.

I. Introduction

Wireless ad hoc networks have become popular in the

recent years. Such systems are unstructured in nature wherein

the wireless devices can directly connect with each other

and transmit data packets. Two nodes can mutually upload

data to each other if they are geographically located within

the transmission range, or they can rely on the cooperative

intermediate nodes so that data packets can be sent to the

destination node via multihop transmissions.

With the increasing popularity of mobile devices and the

ease of their configuration, wireless ad hoc networks can

find numerous applications, e.g., military networks, sensor

networks, and emergency communications during natural dis-

asters. In this paper, we focus on another emerging application

in such systems, i.e., the Video-on-Demand (VoD) service,

wherein nodes share video data among each other to satisfy the

viewing requirement. Content servers may still exist in such

systems, and the collaboration among nodes greatly reduces

the workload of the content server. Such services can find

its applications in educational institutes where students can

share lecture videos on their phones or tablet computers, or in

museums where visitors get self-guided services by watching

the videos on demand using mobile electronic devices [9].

Note that data uploading and forwarding operations in a

wireless ad hoc VoD system incur a cost at the nodes (e.g.,

battery energy consumption). Due to the selfish nature of

nodes, free riding can happen in such systems wherein nodes

do not have the incentive to contribute resource for other

nodes. Thus, designing an effective and practical incentive

scheme becomes critical to encourage nodes to contribute to

the system, and thereby improving the system performance.

Authors in [2], [5], [12], [14] proposed various incentive

mechanism designs for general ad hoc architecture, however,

very limited work has addressed the VoD application in

such networks. The existing incentive schemes for wireline

VoD system cannot be directly applied to wireless ad hoc

networks. Designing such a mechanism is challenging due

to the following reasons. First, nodes in a wireless network

are randomly geographically distributed, so that the system

designer needs to make intelligent decisions on how to utilize

the system’s resources (e.g., using ad hoc transmission via

nodes or letting the content server directly delivers data to

requesting nodes). Second, VoD service needs to guarantee

each node receives the video at the playback rate, and this

requires a high transmission rate. Last but not least, it is

difficult to monitor the nodes’ behaviors in a wireless environ-

ment, so it is important to have guarantee that nodes honestly

contribute their local resources. In this paper we present a

simple yet effective incentive mechanism for wireless ad hoc

VoD systems. The incentive is based on reward according

to the data transmission rate that a node contributes. Our

contributions are:

• We propose an incentive scheme for nodes to contribute

their transmission rate. We model the interaction between

the content provider and the nodes by using a Stackelberg

game, and analyze the stability and efficiency of our

incentive scheme.

• We use a repeated game to analyze their interactions and

effectiveness of nodes’ threatening strategy.

• We design a cheat prevention mechanism and use re-

peated game model to validate its effectiveness.

Our paper is organized as follows. Section II and III

introduce the system model and the game theoretic model,

respectively. Then we analyze the Stackelberg game in Sec-

tion IV, and use a repeated game model to extend our results

for cheating prevention design and threatening analysis in

Section V. Section VI states related work and Section VII

concludes.

II. System Model

We consider a wireless ad hoc Video-on-Demand system

which consists of nodes and content servers. Peers in the
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system seek to download the video data at the playback rate

r. At the same time, they need to (1) upload their cached data

to other nodes, and/or (2) receive data from one node and

forward them to another node. Also, a node can download

the video data from (1) a nearby node within the transmission

range which caches the data (e.g., nodes that are within the one

hop transmission), or (2) a remote node out of the transmission

range which sends the data via intermediate nodes’ forwarding

operations. In this case, multiple hops transmission will occur.

Due to the mobility nature of nodes, a node may not be able

to receive the video data at the playback rate from the above

two sources. In such a case, a content server needs upload

the remaining data so as to guarantee the quality of service.

The content servers are geographically distributed in the whole

service area; however, in our model, we consider a single

logical server which provides the download service.

Contributing the local resources will incur a cost to the

energy, therefore, the selfish nodes are not willing to contribute

by default. Hence, they need to be incentivized to contribute

their (a) data transmission rate to upload and/or forward data;

and (2) storage space to cache some data. Both aspects are

equally important since a node will fail to contribute if it

either does not provide the transmission rate, or does not

cache the data. In this paper, we focus on incentivizing the

data transmission rate (i.e., upload and download rate) with an

ideal assumption that the system has implemented an incentive

mechanism for caching so that the video data are properly

cached by the nodes.

We design an incentive mechanism under which the content

provider rewards the nodes based on the data transmission

rate they contribute. The data transmission rate includes the

upload rate to other nodes, as well as the download rate for

data forwarding. Once a node dedicates its transmission rate, it

incurs an energy cost, while the content provider can benefit

from reducing the high workload at the content server and

hence reducing the operational cost. Therefore, the content

provider rewards the nodes to contribute. The reward can be

in various forms, e.g., real money rebate for the service fee

and virtual credits or reputation record for advanced services.

Note that any reward scheme can be represented by the

currency flow from the content provider to the nodes. Even

for rewards in virtual currency or reputation, they imply that

the P2P-VoD operator needs to invest money for developing

advanced/prioritized services for users. We do not restrict the

form of implementing the rewards in our paper; however,

we use an abstract model to describe the reward in terms of

monetary value.

We define the reward W to a node to be a function of its

dedicated data transmission rate u. In general, this function

can be in any form, in this presentation, we restrict it to the

linear case, i.e., W (u) = wu, where w is the unit reward. The

linear reward scheme can be easily understood by the nodes

and implemented by the content provider in practice.

III. Stackelberg Game Model

In this section, we present the Stackelberg game model to

analyze the interactions between the content provider and the

nodes. The content provider needs to decide the per rate reward

w to the nodes, while nodes need to decide the amount of

data transmission rate u. For simplicity of presentation, we

assume that nodes are homogeneous and use the same strategy

u in the game, and the model can be easily extended to the

heterogeneous case. In what follows, the game is between

the content provider and any particular node. Due to the

homogeneous assumption, it may seem like a game between

the content provider and a set of nodes, while in reality these

nodes are independent among themselves.

The content provider aims at minimizing its total cost, i.e.,

the cost of uploading and the cost of rewarding the nodes.

Assume the upload cost is a linear function in the upload rate

of the server, then we define the utility of the content provider

as the following:

πs(w, u) = −cs

(

Nr −N

∫ u

0

v(x)dx

)

−Nwu, (1)

where N denotes the total number of nodes, r denotes the

playback rate of a video, and v(x) denotes the marginal

reduction of upload rate at the server with respect to any

particular node’s dedicated transmission rate x. Note that we

implicitly assume the system can fully utilize all nodes’ rate

contributions. For simplicity of notations, we define

Cs(u) = cs

(

Nr −N

∫ u

0

v(x)dx

)

(2)

and therefore,

πs(w, u) = −Cs(u)−Nwu. (3)

Similarly, we define the utility of a node as the reward it

receives, minus its cost for data uploading and forwarding:

πp(u,w) = wu− Cp(u), (4)

where Cp(u) denotes the cost of dedicating u amount of

transmission rate.

To maximize their utilities, the content provider solves the

optimization problem maxw πs(w, u), and the nodes solves

maxu πp(u,w). We consider a Stackelberg game [8] where

the content provider decides w first, and after that, the nodes

decide u. It is natural to assume the content provider as

the first-mover whereas the nodes response to the reward w

accordingly. Once u is determined, the content provider will

keep its reward scheme stable so as to manage a creditable

service. To obtain the Stackelberg equilibrium of the game, we

use the backward induction technique [8]. In particular, each

node solves the problem u∗(w) = argmaxu πp(u,w) given

any w. By knowing the nodes’ best responses, the content

provider solves the problem w∗ = argmaxw πs(w, u
∗(w)).

In the following analysis, we assume Cp(u) satisfies the

following property:

• Cp(u) is continuous and twice differentiable in u.
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• Cp(0) = 0, C′

p(u) > 0, C′′

p (u) ≥ 0.

C′

p(u) > 0 means that a node’s cost increases with its

dedicated transmission rate. While C′′

p (u) > 0 means the

marginal cost also increases with the dedicated rate. The above

assumptions reflect the fact that a node’s viewing performance

would not be affected too much if it contributes a small amount

of transmission rate; however, if a node dedicates a large

amount of transmission rate, its battery may drain quickly,

and the performance of video might be substantially reduced

as much of the bandwidth is used for uploading and forwarding

data to other nodes.

IV. Analysis of Stackelberg Equilibrium

In this section, we will discuss the properties of our Stack-

elberg equilibrium, in particular, its existence, uniqueness and

efficiency. We start by a simplified scenario to explore the

feature of v(u).

A. Simplified scenario

We first assume there is no transmission or congestion

loss. Data transmission can always reach the destination as

long as it is within the transmission range of the sender.

Assume the server is aware of the geographical distribution

of nodes and use deterministic routing, i.e., a routing flow

(Ps, P1, ..., Pn, Pd) is determined before transmission starts

where Ps is the source and Pd is the destination. Note that a

request may need multiple hops transmission since the source

and destination can be far from each other. Obviously, one

hop transmission is the most efficient utilization of node’s

contribution, where one unit transmission volume requires one

unit volume from node’s contribution. However, if the data

packet is transmitted via k hops, then the k − 1 intermediate

nodes need to receive the packet and forward it, which causes

2(k−1) unit volume of nodes’ transmission rate contribution.

Adding the upload contribution of the source node, one unit

of a k hops transmission requires 2k − 1 units of nodes’

contribution in total. Let Uk be the total rate of data packets

whose required transmission hops is larger than or equal to k.

In this paper, we do not address the data scheduling policy,

but assume Uk is known and that the system utilize the nodes’

rate resources to satisfy smaller hops transmission first (since

the utilization is more efficient). Then the marginal reduction

of server’s upload rate at the node’s transmission rate u is

v(u) =
1

2k − 1
if Uk−1 ≤ u < Uk. (5)

Using backward induction for the Stackelberg game, we can

have the following claim.

Theorem 1: Assume C′′

p (u) = 0. At the Stackelberg Equi-

librium, we have u∗ = argmaxUk
{C′

p(Uk) ≤ cs
2k−1}, and

w∗ = C′

p(u
∗).

Proof: Denote by (u∗, w∗) as the nodes’ transmission rate

and the content provider’s unit reward at the Stackelberg

equilibrium, respectively. Then from a node’s perspective, for

any given w, it chooses u∗(w) that maximizes its utility, i.e.,

r∗(w) = argmax
u

πp(u,w) = argmax
u

[wu − cp(u)]. (6)

Due to the continuity assumption on Cp(u), we have

∂πp(u,w)

∂u

∣

∣

∣

∣

u∗

= w − C′

p(u
∗). (7)

By letting the above formula equal zero, we have

Cp(u
∗) = w. (8)

From the content provider’s perspective, it aims at maximizing

its own utility. Given Eq. 8, we can write down the utility of

the content provider in terms of u∗:

πs(w, u
∗(w))=πs(u

∗)

=−cs

(

Nr −N

∫ u∗

0

v(x)dx

)

−NCp(u
∗)u∗.(9)

Therefore,

∂πs(u
∗)

∂u∗
= N [csv(u

∗)− C′

p(u
∗)− C′′

p (u
∗)u∗]. (10)

Let C′′

p (u) = 0. It is easy to verity that
∂πs(u

∗)
∂u∗

is

deceasing in u∗. Hence, the content provider will set

w such that the corresponding u∗(w) is the maximal

value to guarantee
∂πs(u

∗)
∂u∗

≥ 0. Noting Eq. 5, we have

u∗ = argmaxUk
{C′

p(Uk) ≤
cs

2k−1}, and w∗ = C′

p(u
∗).

Denote k∗ such that u∗ = Uk∗ . It is obvious to see that at

the Stackelberg equilibrium, the content provider will direct

all data requests that can be transmitted within k∗ hops to

other nodes using ad hoc transmission, while the server will

upload to the nodes which request data k hops away.

B. General case analysis

The analysis in the previous subsection provides a neat

form of the Stackelberg equilibrium. Nevertheless, in a realist

wireless ad hoc system, transmission loss cannot be neglected,

and the system may implement sophisticated routing poli-

cies (e.g., optimistic routing [1]). Hence, Eq. (5) may not

be realistic. However, we can still assume similar features

on v(u). In particular, we assume v(u) is a non-increasing

continuous function in u. For technical simplicity, we also

assume the nodes’ and content provider’s decision are upper

bounded by u and w, respectively. In what follows, we relate

the Stackelberg equilibrium and an optimization problem,

and analyze the existence, uniqueness and efficiency of the

Stackelberg equilibrium.

Optimization framework: We first state the following lemma,

which establishes the relationship between the Stackelberg

equilibrium with an optimization problem:

Lemma 1: If u∗ is a solution to the following problem:

min
u

Cs(u) +NuC′

p(u), (11)

then there exists a Stackelberg equilibrium (u∗, u∗C′

p(u
∗));

further, if (u∗, w∗) is a Stackelberg equilibrium, then u∗ is

the solution to problem (11).

Proof: We start by showing the first half of the statement. De-

note u∗ = argminu[Cs(u) +NuC′

p(u)] and w∗ = u∗C′

p(u
∗).
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We show that (u∗, w∗) is a Stackelberg equilibrium. Since

πp(u,w) is strictly concave in u, so for any given w∗, if

u∗ satisfies u∗C′

p(u
∗) = w∗, then u∗ maximizes the nodes’

utility πp(u,w
∗). Hence, the nodes do not have incentives to

deviate from u∗. Suppose the content provider has an incentive

to deviate from w∗ and can obtain higher utility by setting

w = w0, where the nodes’ response is to set u = u0 so that

u0 maximizes πp(u,w0). Because of the strict concavity of

πp(u,w), there are only three possible cases:

(1) C′

p(u0) = w0 if C′

p(0) ≤ w0 ≤ C′

p(ū); or

(2) u0 = 0 if C′

p(0) > w0; or

(3) u0 = ū if C′

p(ū) < w0.

For any of the above cases, we have

Cs(u0) +Nu0C
′

p(u0) ≤ Cs(u0) +Nu0w0

< Cs(u
∗) +Nu∗w∗ = Cs(u

∗) +Nu∗C′

p(u
∗). (12)

The first inequality holds for the above three cases. The second

inequality holds because we assume the content provider can

have higher utility by setting u = u0 instead of u = u∗.

However, Cs(u0) + Nu0C
′

p(u0) < Cs(u
∗) + Nu∗C′

p(u
∗)

contradicts the fact that u∗ is a solution of (11). This implies

that the content provider has no incentive to deviate from w∗.

Given that we have shown the nodes do not have any incentive

to deviate from u∗ given any w∗, we conclude (u∗, w∗) is a

Stackelberg equilibrium1.

To show the second half of the statement, suppose

there exists a Stackelberg equilibrium (u∗, w∗), but u∗

is not a solution to (11), i.e., there exists u0 6= u∗

such that Cs(u0) + NuC′

p(u0) < Cs(u
∗) + NuC′

p(u
∗).

Assume the content provider sets w0 = u0C
′

p(u0).
Taking the derivative in (4) and noting the strict

concavity of πp(u,w), we have the nodes’ unique

best response is u = u0 for given w0 = u0C
′

p(u0).
Therefore, πs(w0, u0) = −Cs(u0) − Nu0C

′

p(u0) >

−Cs(u
∗) − Nu∗C′

p(u
∗) = πs(w

∗, u∗), which contradicts

to the fact that (u∗, w∗) is a Stackelberg equilibrium. This

implies u∗ must be a solution to (11).

Existence and uniqueness: The following theorem states the

existence and condition for the uniqueness of the Stackelberg

equilibrium.

Theorem 2: The Stackelberg equilibrium always exists. If

uC′

p(u) is strictly convex in u, then the nodes’ solution u∗

at the Stackelberg equilibrium is unique.

Proof: We first show the existence. The nodes solve

maxu πp(u,w) = wu − Cp(u). For any given w, πp is

continuous and strictly concave in u over the compact set

[0, ū]. Hence, the optimal solution u∗(w) = argmaxu πp(u,w)
exists and is unique. Substituting u by u∗(w) in πs(w, u), the

provider’s utility πs(w, u
∗(w)) is continuous in w over the

compact set [0, w̄], so w∗ = argmaxw πs(w, u
∗(w)) exists.

1Noting the above three cases and that the content provider aims at
maximizing its utility, if u∗ > 0, then the corresponding Stackelberg
equilibrium is unique where w∗ = u∗C′

p
(u∗). If u∗ = 0, then any (u∗, w∗)

where 0 ≤ w∗ ≤ C′

p
(0) is a Stackelberg equilibrium.

Next we show the uniqueness of u∗ when uC′

p(u) is strictly

convex in u. Since v(u) is non-increasing, Cs(u) is convex

in u, and uC′

p(u) is strictly convex in u, we can observe

that the problem (11) is a strictly convex minimization over

a compact set, which has a unique solution. According to

Lemma 1, any Stackelberg equilibrium (u∗, w∗) satisfies that

u∗ is a solution to (11). Therefore, we conclude that the

nodes’ solution in the Stackelberg equilibrium is unique2.

Efficiency: For simplicity, in the rest of this subsection, we

assume Cs(u) and Cp(u) are both twice differentiable in u.

We define the social welfare, πw, as the sum of the content

provider’s and all nodes’ utilities:

πw(u) = πs+Nπp = −cs

(

Nr −N

∫ u

0

v(x)dx

)

−NCp(u).

(13)

Define uw = argmaxu πw(u), and u∗ as the nodes’ solution

at the Stackelberg equilibrium. We have the following result.

Lemma 2: The nodes’ transmission rate at the Stackelberg

equilibrium is no larger than the value that maximizes the

social welfare, i.e., u∗ ≤ uw.

Proof: Denote CSW (u) = −πw(u) = Cs(u) +NCp(u), and

CSE(u) = Cs(u)+uC′

p(u). Maximizing the social welfare is

equivalent to solving minu CSW (u), u ∈ [0, ū]. According to

Lemma 1, u∗ can be obtained by solving minu CSE(u), u ∈
[0, ū]. Therefore, uw and u∗ are the minimizers to CSW (u)
and CSE(u), respectively. By taking the first order derivative,

we have

C′

SW (u) = C′

s(u) +NC′

p(u), (14)

C′

SE(u) = C′

s(u) +NC′

p(u) +NuC′′

p (u). (15)

There are only two possible cases regarding C′

SW (u):

(1) If C′

SW (u) > 0, ∀u ∈ [0,∞), then uw = 0. Since

NuC′′

p (u) ≥ 0, we have C′

SE(u) = C′

SW (u)+NuC′′

p (u) > 0,

∀u ∈ [0,∞), so u∗ = 0 = uw.

(2) If there exists a uSW ∈ [0,∞) such that C′

SW (uSW ) =
0, then uSW must be unique due to the strict convexity

of CSW (u). We have uw = max(uSW , ū). By the con-

cavity assumption on Cp(u) and non-increasing assumption

on v(u), C′

s(u) and NC′

p(u) are both non-decreasing in u

and NuC′′

p (u) > 0. Hence, for any u > uSW , we have

C′

SE(u) > C′

SW (u) > C′

SW (uSW ) = 0. This implies any

u > uw = max(uSW , ū) cannot be the minimizer of CSE(u),
u ∈ [0, ū]. Therefore, u∗ ≤ uw.

Combining the results in the above two cases, we have

u∗ ≤ uw.

Define the rate utilization (RU) as the ratio of the trans-

mission rate at the Stackelberg equilibrium, to the value which

2We do not claim the Stackelberg equilibrium is unique. The only chance
of having multiple Stackelberg equilibria is u∗ = 0, where any (u∗, w∗)
with 0 ≤ w∗ ≤ C′

p
(0) is a Stackelberg equilibrium. When u∗ > 0, the

Stackelberg equilibrium is unique, where the content provider sets w∗ =
u∗C′

p
(u∗).
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maximizes the social welfare, i.e.,

RU =
u∗

uw

. (16)

According to the above lemma, we know that in general,

RU ≤ 1, and when RU approaches 1, it indicates that the

system is in an efficient state. In particular, we have the

following theorem.

Theorem 3: If u∗ > 0 and C′′

p (u) is increasing in u, then

RU ≥ 1
2 .

Proof: Since uw ≥ u∗ > 0, there must exist unique uSW and

uSE such that C′

SW (uSW ) = 0, C′

SE(uSE) = 0. Thus, we

have uw = max(uSW , ū) and u∗ = max(uSE , ū).
Since uw ≥ u∗, we have BU = u∗

uw
≥ uSE

uSW
. Noting the

form of C′

SW (u) and C′

SE(u), we have

C′

s(uSW ) +NC′

p(uSW ) = 0, (17)

C′

s(uSE) +NC′

p(uSE) +NuSEC
′′

p (uSE) = 0. (18)

Since C′

s(u) and C′

p(u) are both continuous functions in u,

there must exist u1, u2 ∈ [uSE , uSW ] such that

C′′

s (u1)(uSW − uSE) +

NC′′

p (u2)(uSW − uSE)−NuSEC
′′

p (uSE) = 0. (19)

Hence, we have

uSW − uSE

uSE

=
NC′′

p (uSE)

C′′

s (u1) +NC′′

p (u2)
≤

C′′

p (uSE)

C′′

p (u2)
. (20)

Since Cp(u) is increasing in u and uSE ≤ u2, we have

uSW

uSE

≤ 1 +
C′′

p (uSE)

C′′

p (u2)
≤ 2, (21)

and thus

BU =
u∗

uw

≥
uSE

uSW

≥
1

2
. (22)

The above theorem requires that C′′

p (u) increases in u.

If this condition does not satisfy, it is in general difficult

to characterize RU . In the following theorem, we choose

a special form of the nodes’ cost function and derive a

corresponding efficiency bound.

Theorem 4: If u∗ > 0 and Cp(u) = cpu
β(1 ≤ β ≤ 2), then

RU > β−1
β

.

Proof: Using the similar approach in the previous proof, we

have
uSW

uSE

≤ 1 +
C′′

p (uSE)

C′′

p (u2)
≤ 1 +

C′′

p (uSE)

C′′

p (uSW )
, (23)

where u2 ∈ [uSE , uSW ]. The second “≤” holds because

C′′

p (u) is a decreasing function in u and u2 ≤ uSW .

Noting the form of Cp(u), we have

uSW

uSE

≤ 1 +
u
β−2
SE

u
β−2
SW

= 1 +

(

uSW

uSE

)2−β

. (24)

Define x = uSW

uSE
and f(x) = x−x2−β . Let g(x) = f(x)−(β−

1)x+β−1. Then it is easy to verify that g′(x) > 0, ∀x ≥ 1 and

g(0) = β−1 > 0. Hence, f(x) > (β−1)x− (β−1), ∀x ≥ 1.

Hence, in order to satisfy f(x) ≤ 1, we must have

(β − 1)x− (β − 1) < 1, (25)

which indicates x = uSW

uSE
< β

β−1 . Therefore,

BU =
u∗

uw

≥
uSE

uSW

>
β − 1

β
. (26)

Numerical examples: We use numerical examples to verify

the efficiency of the Stackelberg equilibrium. We have the

following settings:

• Cs(u) = N(r − uγ); Cp(u) = cpu
β;

• N = 10, 000, r = 500kbps, γ = 0.8, u ∈ [0, 1000]kbps.

In Fig. 1(a), we set β = 2.2 (corresponding to Theorem 3),

vary cp ∈ [0.00006, 0.00028] and plot the corresponding u∗

and uw. We can observe that u∗ is always smaller than uw.

In Fig. 1(b), we compare the social welfare at the Stackelberg

equilibrium vs. the maximal social welfare, which are close to

each other in general. In Fig. 2(a) and Fig. 2(b), we set β = 1.2
(corresponding to Theorem 4) and vary cp ∈ [0.06, 0.28]. We

can observe very similar results as the previous example. These

numerical results validate the efficiency of the Stackelberg

equilibrium.

V. Extensions under Repeated Game Model

A. Peer threatening

In the previous section, we use one-shot interaction of

content provider and the nodes using a Stackelberg game.

In general, this interaction can last a long time. We use a

repeated game model to discuss whether the nodes can perform

“smarter” in this case.

Assume the game is played infinitely long. At round t, the

utilities of the content provider and the nodes are denoted by

πs(t) and πp(t) respectively. Their utilities in the repeated

game are

Πs =

∞
∑

t=1

δtsπs(t), Πp =

∞
∑

t=1

δtpπp(t); (27)

where δs and δp denote their discount factors.

An interesting difference of the repeated game from the

one-shot game is that the nodes may have incentives to

deviate from the Stackelberg equilibrium: the nodes may

threaten to punish the content provider (e.g., contributing zero

transmission rate) unless the content provider sets the reward

higher than that in Stackelberg equilibrium.

Assume the nodes request the content provider to set

w = w̃, and threaten that if the content provider refuses to

do so, they will set u = 0. We first consider what are the

possible interactions in a particular round. Responding to this

threat, the content provider has two possible strategies: (1) it

compromises and sets w = w̃; or (2) it resists the threat and
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Fig. 1. Efficiency of Stackelberg Equilibrium (β = 2.2)

sets w = w∗ where w∗ is the Stackelberg equilibrium. We

denote by C and R the compromising and resisting strategy

of the content provider. If the content provider plays R,

then the nodes have two possible choices: (1) they punish

the content provider, i.e., setting u = 0; or (2) they do

not carry out the threat at all; rather, they accept w∗ and

set u∗ = argmaxu πp(u,w
∗). We denote by P and A the

punishing and accepting strategy of the nodes. If the content

provider plays C, then the nodes will surely accept this reward

and set ũ = argmaxu πp(u, w̃). We still use A to denote this

accepting strategy for u = ũ. Therefore, there are three cases

of possible interactions in a particular round: (R,P), (R,A)
and (C,A), where the two elements in each pair denote the

content provider’s and the nodes’ strategies, respectively. We

use π̂s, π∗

s and π̃s (resp. π̂p, π∗

p and π̃p) to denote the one-shot

utility of the content provider (resp. the nodes) for the above

three cases respectively. In general, we have π∗

s > π̃s > π̂s

and π̃p > π∗

p > π̂p = 0.

We define a threat to be credible if, under the triggering

condition, the threat-claimer would obtain no less utility by

indeed carrying out the threat than not carrying out the threat.

In particular, the nodes’ threat is credible if the nodes can

achieve higher (or at least equal) utility by playing P compared

to A if the content provider plays R in an arbitrary round. Now

we discuss under what condition the nodes’ threat is credible.

Theorem 5: If ⌊logδs
π̃s−π̂s

π∗

s−π̂s
⌋ ≤ ⌊logδp

π∗

p−π̂p

π̃p−π̂p
⌋, then the

0.05 0.1 0.15 0.2 0.25 0.3
0

100

200

300

400

c
p

u*
 a

nd
 u

w

u
w

u*

(a) Comparing u∗ and ue

0.05 0.1 0.15 0.2 0.25 0.3
−5

−4.9

−4.8

−4.7

−4.6

x 10
6

c
p

so
ci

al
 w

el
fa

re

maximal social welfare

social welfare at
Stackelberg equilibrium

(b) Comparing social welfare

Fig. 2. Efficiency of Stackelberg Equilibrium (β = 1.2)

nodes’ threat is credible; otherwise, it is not credible.

Proof: Suppose the content provider and the nodes have

played (C,A) in the first (t0− 1) rounds, and that the content

provider plays R in round t0. There are two possibilities

regarding the nodes: (1) the nodes play P , resulting that

πs(t0) = π̂s and πp(t0) = π̂p; or (2) the nodes play A,

resulting πs(t0) = π∗

s and πp(t0) = π∗

p . Whether the nodes

really punish the content provider depends on how many

rounds they need to play P before the content provider plays

C. In particular, denote by tp the number of rounds the node

can afford playing P . After that, the content provider changes

back to C. We have:

t0−1
∑

t=1

δtpπ̃p+

t0+tp−1
∑

t=t0

δtpπ̂p+
∞
∑

t=t0+tp

δtpπ̃p ≥

t0−1
∑

t=1

δtpπ̃p+
∞
∑

t=t0

δtpπ
∗

p.

(28)

The left side term represents a particular node’s total utility

if the nodes play tp rounds of punishing strategy P when the

content provider plays resisting strategy R, and after that, the

content provider compromises to set back w = w̃; the right

side term represents a particular node’s total utility if the nodes

accept w = w∗ and set u = u∗ from t0 onwards. If (28) holds,

it is beneficial for the nodes to play P for tp rounds; otherwise,

the nodes are better off by playing A from t0 onwards.

Similarly, denote by ts the number of rounds that the content

provider can afford playing R and being punished by the
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nodes. After that, the nodes play A from round t0+ts onwards

and the content provider continues playing R. We have:

t0−1
∑

t=1

δtsπ̃s +

t0+ts−1
∑

t=t0

δtsπ̂s +

∞
∑

t=t0+ts

δtsπ
∗

s ≥

∞
∑

t=1

δtsπ̃s. (29)

If this condition holds, then the content provider has an

incentive to play R from round t0 onwards; otherwise, it is

better for the content provider to play C in all time rounds.

The maximal value satisfying the above inequalities are

ts = ⌊logδs
π̃s−π̂s

π∗

s−π̂s
⌋ and tp = ⌊logδp

π∗

p−π̂p

π̃p−π̂p
⌋. When ts > tp,

it means the nodes will give up playing P before the content

provider changes back to C. In this case, the threat of the

nodes is not credible: it is better for the nodes to accept

w = w∗ when the content provider plays R in round t0.

Otherwise, i.e., when ts ≤ tp, the nodes can play P for

no larger than tp rounds whereas the content server has to

compromise and accept w = w̃, and therefore, the threat is

credible.

From Theorem 5, we can see that a larger gap between π̃p

and π∗

p , or a larger discount factor δp, will induce a larger tp,

implying that the nodes’ threat is more likely to be credible.

Physically, it means if the potential benefit after threatening

is large, or if the nodes care much about utility in future,

the nodes will have higher incentives to punish the content

provider in a few rounds so as to force it to reward more than

in the Stackelberg equilibrium.

B. Cheating prevention guarantee

One important issue in ad hoc wireless networks is that

transmissions have certain loss probability so that nodes may

take this advantage to cheat. A node may declare that it has

not received the data from its upstream node although it has

already successfully received; or it may declare to have sent

the data to downsreaming nodes while dropping the packets

quietly. Once the data packets are lost, it is very difficult

for the system to identify if any node dropped the packets

intentionally.

We use the similar idea in [7]. For any node Pj , denote

by Pj−1 its upstream node and by Pj+1 its downstream

node. Define a unit time slot during which Pj receives dj
data packets from the upstream node. Define the following

“reporting policy” bj(dj) for node Pj : bj(dj) = 1 if dj ≥ mj

and bj(dj) = 0 otherwise, where mj is a pre-defined thresh-

old. Physically, bj represents whether a node receives enough

number of packets as expected. If a node receives packets from

its upstream node but cheats by dropping them intentionally,

then bj−1 6= bj+1 and we regard it as cheating. If this node

receives packets, honestly reports and forwards the data, then

its upstream and downstream nodes are expected to have the

same report bj−1 and bj+1. However, note that the data loss

can also be caused by transmission loss, hence we need to find

suitable thresholds so as to prevent cheating while minimize

the probability of misjudgment. Numerical computations in [7]

show that one can decide such suitable thresholds. In this

paper, we assume the following proposition satisfies.

Proposition 1: Let P (dl|dl−1) be the conditional probability

that Pl receives dj packets given that its upsreaming node

receives dl−1 packets. Then for any given P (dl|dl−1) for j−
1 ≤ l ≤ j + 1, there exists m∗

j−1,m
∗

j and m∗

j+1 such that

P (bj−1 = bj = bj+1) is maximized.

Let α be the maximal probability P (bj−1 = bj = bj+1)
achieved in the above proposition. We develop a new repeated

game framework to prohibit cheating. For every unit time slot,

each node Pj reports bj to the server. Once the server finds

bj−1 = bj = bj+1 does not hold for any data flow through Pj ,

Pj is regarded to have cheated in the previous round (which

might be misjudged with a small probability 1−α). If a node

cheats, it can obtain a higher utility in this round; however, the

content provider can receive the report soon and will punish

Pj from the next time round and for T continuous rounds. We

assume the nodes contributes no rate and receives no reward

during the punishing rounds, leading to a utility of 0. After

T rounds of punishment, this node still receives reward if it

behaves normally. Denote π0 as the one-shot utility of an

honest node in a time round when bj−1 = bj = bj+1, and

denote πh as the one-shot utility that a cheating node can

obtain in its cheating round. Let α be the discount factor in this

repeated game. Intuitively, a node will not have an incentive to

cheat if the punishment during the following rounds incurs a

high utility deduction comparing with the extra utility achieved

during the cheating round. Formally, we have

Theorem 6: If αδT−δT+1−αδT+1

αδT−δT+1−αδ
π0 − πh > 0 satisfies, then

a node does not have an incentive to cheat.

Proof: We investigate whether a node has an incentive to cheat

during time round t0. Assume in round t0, a node is regarded

as honest. We first investigate its utility if it does not cheat

in this round. Let Π0(t0) be the expected total utility from

t0 until infinity if it does not cheat in round t0. Note the

one-shot utility of the node in this round is π0δ
t0 . In round

t0+1, this node is regarded as honest with probability α, and

if this happens, the expected utility from t0+1 until infinity is

Π0(t0)δ. This node may also be misjudged as cheating with

probability 1 − α. If this happens, this node receives zero

utility in the following T rounds. The expected total utility

from round t0 + T − 1 until infinity is (Π0(t0) − π0δ
t0)δT .

Therefore, we have

Π0(t0) = π0δ
t0 + αΠ0δ+ (1− α)(Π0(t0)− π0δ

t0)δT . (30)

Hence,

Π0(t0) = π0δ
t0

1− δT (1− α)

1− αδ − (1− α)δT
. (31)

Next we investigate the expected total utility if the node

cheats in round t0. In that case, the node receives a high one-

shot utility πhδ
t0 in this round, but it is punished in the next T

rounds. The expected utility from t0 until infinity if the node

cheats in round t0 is

Πh(t0) = πhδ
t0 + (Π0(t0)− π0δ

t0)δT . (32)

If Π0(t0) > Πh(t0), then the node does not have an

incentive to cheat. Substituting Eq. 31 and Eq. 32 into the
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condition, we obtain the claim in the theorem.

The above theorem points out the condition under which our

cheating prevention mechanism is effective. Intuitively, when

T is large, the punishment is significant so that nodes do not

have incentives to cheat. A limiting case is when α = 1, this

condition satisfies if and only if

T > logδ(1−
πh

π0
(1− δ))− 1.

VI. Related Work

Ad hoc wireless networks have received lots of research in-

terests. Many incentive frameworks have been focus on ad hoc

networks. A general model was proposed in [2] to understand

the cooperation among nodes in a mobile ad hoc network.

The authors in [7] utilized the theory of imperfect private

monitoring for the dynamic Bertrand oligopoly and derived

conditions for collusive packet forwarding, truthful routing and

packet acknowledgments in a multi-hop environment. In [12],

the authors proposed a credit-based secure incentive mecha-

nism in mobile ad hoc networks which is immune to various

attacks and is of low communication overhead. Similarly, the

work in [5] propose a secure and objective reputation-based

incentive scheme where the reputation of a node is quantified

by objective measures. An asymmetric cooperative caching

mechanism was proposed in [13] which reduces not only

the overhead of data copying but also the end-to-end delay.

The authors in [14] proposed a cooperation-optimal protocol

consisting of a routing protocol and a forwarding protocol and

demonstrated that the protocols provide incentives for nodes

to forward packets.

The emerging application of VoD services have also been

implemented in ad hoc wireless networks. The authors in [9]

designed a novel system that provides video-on-demand ser-

vices to mobile ad hoc clients, which allows the clients to

access video data anytime anywhere. Some recent works [3],

[4], [6] have been focusing on various technical aspects of

ad hoc wireless VoD systems. However, we have not found

any incentive model for the specific application of VoD in

ad hoc wireless environment. Our previous works [10], [11]

focused on VoD incentives in a wired P2P environment, which

differs from ad hoc wireless network although they share some

common features. In this paper, we adopt similar ideas to

design and analyze incentive mechanism in ad hoc wireless

VoD systems.

VII. Conclusion

In this paper, we focus on the incentive mechanism design

and game theoretic analysis in a wireless ad hoc environment.

We design a reward based incentive scheme and analyze the

interaction between the content provider and nodes using a

Stackelberg game. We show the stability and efficiency of

the Stackelberg equilibrium, and use repeated game models

to analyze the threatening strategy and cheating prevention

mechanisms. Our paper provides some important insights for

incentive design principles in ad hoc wireless VoD systems.
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