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Abstract

In this work, we show that the current termination con-
dition of the Probabilistic Packet Marking (PPM) algo-
rithm is not correct for general networks, and this implies
the estimation of expected number of marked packets is
not accurate. As a result, this may lead to an incomplete
attack graph construction. To remedy this problem, we
propose a Markov chain modelling of the PPM algorithm.
By applying the fundamental matrix theory, one can re-
sult in an accurate estimation of the expected number of
marked packets. Our simulation results show that the
Markov chain modelling technique is effective in calculat-
ing the expected number of marked packets.

Keywords: Denial-of-service attack, IP traceback, Markov
chain model, PPM algorithm

1 Introduction

The denial-of-service (DoS) attack is a pressing problem
for recent years [2]. DoS defense research blossomed into
one of the main stream in the computer security fields.
Various techniques such as the pushback message [7, 9],
ICMP traceback [15], and the packet filtering techniques
[5, 10, 17] are the results from this active field of research.

The Probabilistic Packet Marking (PPM) algorithm by
Savage [12] et al. had attracted the most attentions in
contributing the idea of IP traceback [1, 4, 8, 11, 13, 14].
The most interesting point of this IP traceback approach
is that it allows routers to mark certain information on at-
tack packets based on a pre-determined probability. Upon
receiving enough marked packets, the victim (or a data
collection node) constructs an attack graph, which is the
set of paths the attack packets traversed.

In [12], authors proposed a criterion to determine how
many packets are enough for the PPM algorithm to con-
struct a meaningful attack graph, which requires a victim
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to collect at least one marked packet from every router on
the attack graph. Let d be the distance between the fur-
thest router and the victim, and let pm be the marking
probability of every router. Also, let X be the random
variable representing the number of marked packets re-
ceived before the victim can construct to a meaningful
graph. Then, the criterion suggested by Savage [12] is
given by:

E[X ] <
ln d

pm(1 − pm)d−1
, (1)

and we name it the Savage’s Equation. The Savage’s
Equation is working in a single-attacker environment.
Further, in a multi-attacker environment, the author
claims that:

“the number of packets needed to reconstruct
each path is independent, so the number of pack-
ets needed to reconstruct all paths is a linear
function of the number of attackers.”

However, one can easily find that Equation (1) cannot
be applied to all kinds of network topologies. More specif-
ically, unless the network is a linear one, i.e., a connected
acyclic graph with degree at most two, then Equation (1)
always under-estimates the number of marked packets re-
quired and the result may lead to wrong attack graph
construction.

We illustrate our finding through the following exam-
ple. Let there be two network graphs G1 and G2 as shown
in Figures 1 and 2 respectively. G1 contains three routers
while G2 contains 14 routers. Nevertheless, the furthest
distance d in both networks are the same, i.e., d = 3.

In determining the marking probability, a corollary can
be derived from Equation (1): the upper bound of E[X ]
reaches the minimum when pm = 1

d
(the proof can be done

by differentiating the equation with respect to pm). This
result suggests that routers should choose pm to be 1

d
since

a smaller upper bound of E[X ] implies an earlier attack
graph reconstruction. Hence, we choose pm = 0.3333 and
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Figure 1: G1: A linear network with three routers
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Figure 2: G2: A complete binary tree-network with 14 routers

we have E[X ] < 7.42 for G1. For G2, since there are eight
identical paths, we have E[X ] < 7.42 × 8 = 59.36.

We have implemented a simulator to verify the correct-
ness of such bound, and it is performed with the marking
probability 0.3333 and with networks G1 and G2. The
result shows that, with the graph G1, the average num-
ber of marked packets is 6.50, thus, it is consistent with
Equation (1). Nevertheless, when the simulation is per-
formed with network G2, the conclusion is totally different
as the average number of marked packets is 103.27, which
is quite far from the estimated upper bound based on the
Savage’s Equation.

The reason for the outstanding result of the later simu-
lation is that: the assumption that “the number of packets
needed to reconstruct each path is independent” is wrong.
It is quite easy to observe that, in the example network,
the paths have shared edges and the number of packets
needed for each path is no longer independent.

Now, the problem we are facing is that there does not
exist an accurate estimation of the expected number of
marked packets E[X ]. This problem implies a more se-
rious outcome: the graph constructed is incorrect with
a high probability, where an incorrect constructed graph
means the constructed graph does not contains all the
routers nor all the links that the attack packets traversed.

In this work, we aim to derive an accurate estimate
for the expected number of marked packets E[X ]. Our
proposed solution is to model the PPM algorithm as a

discrete-time Markov chain with an absorbing state. Sec-
ondly, we calculate the expected time till absorbing using
the theory of the fundamental matrix [16].

2 Proposed Solution

In this section, we present in detail of how one can accu-
rately calculate the expected number of received packets
so as to construct an attack graph. First, we state the
assumptions of our solution. Second, we revise the packet
marking procedure of the PPM algorithm before introduc-
ing the Markov chain modelling technique. Then, we de-
scribe how one can correctly model the PPM algorithm as
a Markov chain, and hence can formulate the correspond-
ing transition probabilities. Next, we calculate E[X ], the
expected number of marked packets, through the use of
the fundamental matrix. Lastly, we provide an example
to illustrate the computation process.

2.1 Assumptions

In our work, we assume that all routers in the network
are equipped with the ability to mark incoming packets
following the packet marking procedure of the PPM algo-
rithm. We also assume that by the time the victim starts
collecting packets, all routers have already invoked the
PPM algorithm.
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Packet Marking Procedure(Packet w)

1. let x be a random number in [0 . . . 1)
2. if x < pm, then
3. write router’s address into w.start and 0 into

w.distance
4. else
5. if w.distance = 0 then
6. write router’s address into w.end

7. end if
8. increment w.distance by one
9. end if

Figure 3: The packet marking procedure of the PPM al-
gorithm

For every router, we assume that they share the same
marking probability (as a matter of fact, our solution can
handle the cases that there are different marking prob-
abilities among the routers). Also, the network should
be a tree, so every router only has one outgoing edge.
Lastly, we assume that all leaf routers are the sources of
the attack packets.

2.2 A Brief Revision on the Packet Mark-

ing Procedure

Before we describe the details of the Markov chain mod-
elling technique, we would like to revisit the details of the
packet marking procedure of the PPM algorithm. The pur-
pose of this subsection is to let the readers to get familiar
with how the routers participate in the PPM algorithm,
and hence generate different types of packets.

The purpose of this procedure is to let router to mark
information on a packet such that a packet can represent
one of edges in the network graph, and the information is
contained in the marking fields of a marked packet. There
are three mark fields of a packet: the start field, the end
field, and the distance field1. These fields together repre-
sent an edge. In the following, we present how the routers
can encode an edge in a packet, and the pseudocode of
the packet marking procedure is given in Figure 3 for ref-
erence.

When a packet arrives at a router, the router deter-
mines how to process the packet based on a random num-
ber x (line number 1 in the pseudocode). If x is smaller
than the pre-defined marking probability pm, then the
router chooses to start encoding an edge. The router sets
the start field of the incoming packet to the router’s ad-
dress, and resets the distance field of that packet to zero.
Then, the router forwards the packet to the next router.
When the packet arrives at the next router, the router
again chooses if it should start encoding another edge.

1Interested readers should refer to [12] for the design of a marked
packet.

Table 1: The list of all possible marked packets arrived
at the victim given that the real network graph is G1 in
Figure 1.

Type Start field End field Distance
field

Marked by R1 R1 v 1
Marked by R2 R2 R1 2
Marked by R3 R3 R2 3

Say, in this time, it chooses not to start encoding a new
edge. Then, the router will find out that the previous
router has started marking an edge because the distance
field of the packet is zero. Therefore, the router sets the
end field of the packet to the router’s address. In addition,
the router increments the distance field of the packet by
one so as to indicates the end of the edge encoding pro-
cess. Now, the start and the end field together encode
an edge of the attack graph. For this encoded edge to be
received by the victim, successive routers should choose
not to start encoding an edge, i.e., the case x > pm in
the pseudocode, because a packet can only encode one
edge. Last but not least, every successive router should
increment the distance field by one so that the victim will
know the distance of the encoded edge.

2.2.1 Types of Packets

According to the above description, when a packet ar-
rives at the victim, the packet should contain either the
information of one of the edges that the packet has passed
through or no information (because there is a chance that
no router chooses to mark that packet). In the following,
we name the different types of packets.

We call a packet a marked packet if the marking fields
of that packet is initialized. Also, we call that a packet
is “marked by the router Ri” if R1 is the last router that
marks the start field of the packet. On the other hand,
if none of the routers mark the start field of an incoming
packet, then we call that packet an unmarked packet.

To illustrate, let us consider the network G1 in Figure 1
as an example. Table 1 shows a complete set of all possible
marked packets arrived at the victim. Let us take the last
type of marked packets, i.e., “marked packets marked by
R3”, as an example to show how to obtain this kind of
marked packets.

When an attack packet arrives at the router R3, R3

chooses to mark the start field and initializes the distance
field to be zero based on the pre-defined marking prob-
ability pm. Next, on the successive router R2, R2 does
not chooses to update the start field. Thus, by the packet
marking procedure, R2 updates the end field and incre-
ments the distance field by one. On R1, the start field is
not updated again, and the distance field becomes two.
At last, the victim increments the distance field to three.
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Eventually, the victim has collected a packet marked by
the router R3. By similar steps, we have all kinds of
marked packets as shown in Table 1.

Having denoted different types of packets, we are ready
to define the Markov chain modelling of the PPM algo-
rithm.

2.3 Markov Chain Modelling

The PPM algorithm collects marked packets from a set
of routers, and this process terminates when there are at
least one marked packets from every router. Let us now
define the underlying Markov process M.

In our model, each Markov state represents a combi-
nation of the collected marked packets. Let R be the set
of routers. The state space S of the Markov process M
is the power set of R and is stated as follows:

S = {Rs | Rs ⊆ R}.

For the example network G1 in Figure 1, the state space
is as follows:

{φ, (R1), (R2), (R3), (R1, R2), (R1, R3),

(R2, R3), (R1, R2, R3) },

where, without loss of generality, (Ri, Rj) represents the
victim has collected two types of marked packets: pack-
ets marked by Ri and packets marked by Rj . On the
other hand, φ represents the victim has not collected any
marked packets.

The physical meaning of the Markov states in M is
as follows. The state which represents the victim has
collected none of the marked packets is the start state,
while the state which represents the victim has collected
the complete set of marked packets is the absorbing state.
When the process reaches the absorbing state, it means
the PPM algorithm can construct the attack graph. The
remaining state represents the intermediate or transient
states of the PPM algorithm.

According to the above descriptions, if the set of
routers contains n routers, then there will be totally 2n

Markov states. The total number of Markov states is large
and may be computationally expensive to model as the
number of routers grows. Nevertheless, one can employ ef-
ficient techniques such as aggregation/dis-aggregation [3]
and stochastic complementation [6] to reduce the state
space of the model.

A discrete-time Markov chain also includes its one-step
transition probability matrix, and, in our Markov model,
a transition implies an arrival of a packet. A transition oc-
curs if one of the following two situations happens: (1) an
arrival of an unmarked packet, or an arrival of a marked
packet but the victim has received this type of packet al-
ready. Under these two cases, the process stays in the
same state; (2) an arrival of a marked packet which was
never received by the victim. In this case, the process
advances to another state. For example, considering the
graph G1 again, if the current state is (R1) and the victim

receives a packet marked by R2, then the process transits
from (R1) to (R1, R2).

Let there be n routers in the router set R, and denote
a router in R as Ri where i ∈ [1, n]. The transition struc-
ture in Equation (2) formally defines the transitions when
the Markov process advances from one state to another.

φ −→ Ri;
(Ri1) −→ (Ri1 , Ri2), where Ri1 6= Ri2 ;

(Ri1 , Ri2) −→ (Ri1 , Ri2 , Ri3), where Ri3 6= Ri1

&Ri3 6= Ri2 ;
...

...
(Ri1 , . . . , Rin−1

) −→ (Ri1 , Ri2 , . . . , Rin−1
, Rin

),
where i1, i2, . . . in ∈ [1, n].

(2)

Lastly, every transition is associated with a transition
probability. In turns, the transition probability involves
the formulations of the probability that a packet is marked
by one of the routers and the probability that a packet
is not marked by any routers. In the next subsection, we
specify the packet-type probabilities which represent the
mentioned probabilities.

2.4 Packet-type Probability

Let Ri be a router of the network graph G. Denote
P (T (G)=Ri) as the packet-type probability which rep-
resents the probability that a packet is marked by Ri.
Also, denote P (T (G)=φ) as the probability that a packet
is unmarked. Let the distance between Ri and the victim
v be d(Ri, v). Lastly, let n be the total number of par-
ticipating routers. Then, the packet-type probability for
a packet marked by Ri is given by Equation (3) and the
packet-type probability for an unmarked packet is given
by Equation (4).

P (T (G)=Ri) = (
Number of sources reachable to Ri

Total number of sources
)

×[pm(1 − pm)d(Ri,v)−1], (3)

P (T (G)=φ) = 1 −

n
∑

i=1

P (T (G)=Ri). (4)

The fractional term in Equation (3) represents the por-
tion of attack packets that a router can receive from dif-
ferent sources. To illustrate the concept, let us consider
the two example networks in Figures 1 and 2 again. For
G1, there is only one source, and, for any router Ri in G1,
all packets can reach Ri. Hence, that fractional part is al-
ways one. However, in G2, there are totally eight sources
and an intermediate router may not be reachable for ev-
ery source. For example, half of the sources can reach R2

while only a quarter can reach R3. Thus, the fractional
part for R2 and R3 are 0.5 and 0.25 respectively.

Note the packet-type probability takes unmarked pack-
ets into account, and this implies that successive steps in
calculating E[X ] will include unmarked packets. Never-
theless, one can exclude the unmarked packets by normal-
izing the packet-type probabilities. Let the normalized
packet-type probability be P (T ′(G)). Equations (5) and
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Figure 4: Markov chain model of network G1 in Figure 1

(6) are the normalized packet-type probabilities for un-
marked and marked packets respectively, and we will use
the normalized packet-type probability throughout the re-
maining context.

P (T ′(G)=Ri) =
P (T (G)=Ri)

1 − P (T (G)=φ)
; (5)

P (T ′(G)=φ) = 0. (6)

We now show the formulation of the transition proba-
bility matrix of the PPM algorithm. Denote the transition
probability matrix of the Markov chain as P, and denote
an entry at the ith row and the jth column as P[i, j]. With
the packet-type probability formulated, we can formally
define the transition probability matrix P according to
the Markov state transitions defined in Equation (2) as
follows:

P[φ, φ] = P (T ′(G)=φ);
P[φ, (Ri1)] = P (T ′(G)=Ri1);

P[(Ri1), (Ri1)] = P (T ′(G)=Ri1);
P[(Ri1), (Ri1 , Ri2)] = P (T ′(G)=Ri2);

...
...

P[(Ri1 , . . . , Rir
), (Ri1 , . . . , Rir

)] =
∑r

k=1 P (T ′(G)=Rik
);

P[(Ri1 , . . . , Rir
), (Ri1 , . . . , Rir+1

)] = P (T ′(G)=Rir+1
);

...
...

P[(Ri1 , . . . , Rin−1
), (Ri1 , . . . , Rin−1

)] =
∑n−1

k=1 P (T ′(G)=Rik
);

P[(Ri1 , . . . , Rin−1
), (Ri1 , . . . , Rin

)] = P (T ′(G)=Rin
);

P[(Ri1 , . . . , Rin
), (Ri1 , . . . , Rin

)] = 1.

Before we apply the fundamental matrix technique to
calculate the expected number of marked packets E[X ],
we illustrate the steps in modelling the PPM algorithm
into a Markov chain in the following subsection.

2.5 Example on Discrete-time Markov

Chain Modelling

We present an example of the discrete-time Markov chain
model using the network G1 in Figure 1. When one fol-
lows the modelling rules stated in the previous subsection,
one can construct the Markov chain as shown in Figure 4.
Every state except the start state, state 1, has a set of
boxes along side with it. For example, state 2 has a ‘1’
in the box. These boxes indicates which types of packets
the victim has received. Then, for state 2, the box states
that the marked packets from R1 have been received. For
state 8, all types of marked packets are collected with the
three boxes appeared, and it is the absorbing state. Its
stationary transition probability is equal to one, and this
implies that further packet arrivals will not change the
state of the process.

In the next step, we set the marking probability to be
pm = 1

d
= 1

3
again, and, then, the packet-type probabili-

ties are then given by Equation (7). Accordingly, one can
construct the transition probability matrix according to
both Figure 4 and Equation (7) as shown in Figure 5.

P (T (G)= i) =















0.4737 i = R1;
0.3158 i = R2;
0.2105 i = R3;
0 i = φ.

(7)

The transition probability matrix is a vast source of
information about the PPM algorithm. Let the transi-
tion probability matrix to be P. If we raise the matrix to
a certain power, say k, then Pk represents the system’s
states after k packets have been arrived, and the entry
Pk[1, 8] in Pk represents the probability that, the system
transits from state 1 to state 8 after k packets have been
arrived. More importantly, this entry represents the ac-
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P =

























0 0.4737 0.3158 0.2105 0 0 0 0
0 0.4737 0 0 0.3158 0.2105 0 0
0 0 0.3158 0 0.4737 0 0.2105 0
0 0 0 0.2105 0 0.4737 0.3158 0
0 0 0 0 0.7895 0 0 0.2105
0 0 0 0 0 0.6842 0 0.3158
0 0 0 0 0 0 0.5263 0.4737
0 0 0 0 0 0 0 1.0000

























Figure 5: Transition probability matrix formulated by the Markov chain in Figure 4
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cumulative probability that k marked packets are enough
to construct an attack graph, i.e,

Pk[1, 8] =

k
∑

i=0

P [X=i].

Further, one can obtain the probability P [X = k] as
follows:

P [X=k] = Pk[1, 8] − Pk−1[1, 8]. (8)

By Equation (8), one can construct the probability
density function of P [X ] as shown in Figure 6. This fig-
ure shows a close result between the simulation data (the
distribution of the number of required marked packets
generated by 10,000 individual simulation samples) and
the density function.

Also, in Figure 7, it shows the probability density func-
tion and the plot of the simulation with 10,000 individual
simulation samples of the example network G2. The fig-
ure not only show a close relation between the two plots,
but it also suggests that the PPM algorithm requires far
more packets for network G2 than that for network G1.
In this next subsection, we show how one can calculate
the expectation E[X ].
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2.6 Fundamental Matrix

The calculation of the fundamental matrix [16] is the last
and essential step to obtain E[X ]. In here, we describe
the steps involved in the calculations of the fundamental
matrix and E[X ], the expected number of marked pack-
ets received before the victim can construct a meaningful
attack graph.

To calculate the fundamental matrix, one has to first
partition the state space of the Markov chain into two
mutually exhaustive and exclusive partitions: St is the
partition for all transient states while Sa is the partition
for the absorbing states (e.g., state wherein all marked
packets are received by the victim). After the partition,
the one-step transition probability matrix can be repre-
sented as:

P =

(

Q C
0 1

)

.

In other words, in the case that there is only one ab-
sorbing state, and if P is of size n × n, then Q is of size
n−1 × n−1 wherein Q is the transition sub-matrix for
all transient states in St (e.g., these are states which have
less than n received marked packets). The sub-matrix Q
is used to calculate the fundamental matrix M as:

M = (I − Q)−1 =

∞
∑

k=0

Qk. (9)
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M =





















1.0000 0.9001 0.4616 0.2666 2.3890 0.9999 0.3829
0 1.9001 0 0 2.8505 1.2665 0
0 0 1.4616 0 3.2890 0 0.6495
0 0 0 1.2666 0 1.8999 0.8444
0 0 0 0 4.7506 0 0
0 0 0 0 0 3.1666 0
0 0 0 0 0 0 2.1110





















Figure 8: Fundamental matrix calculated by Equation (9) with transition probability matrix P shown in Figure 5

Theorem 1. Let M be the fundamental matrix of the un-
derlying Markov chain describes by the one-step transition
probability matrix P. The (i, j)th entry of M, denote as
M[i, j], represents the expected number of visits from the
transient state i to the transient state j before entering
the absorbing state.

Proof. Note that Qn represents the probability of going
from the transient state i to the transient state j in n
steps without leaving the partition St. Consider all pos-
sible sample paths of moving from state i to state j. One
can move from state i to state j with probability Q[i, j]

in one transition, or with probability
∑n−1

k=1
Q[i, k]Q[k, j]

in two transitions, etc. In general, let M[i, j] be the prob-
ability of moving from state i to state j without leaving
the partition St, we have

M[i, j] =

{

Q[i, j] + Q2[i, j] + Q3[i, j] + · · · for i 6= j,
1 + Q[i, i] + Q2[i, i] + Q3[i, i] + · · · for i = j.

Also, M[i, j] has the probabilistic interpretation as the
expected number of visits to state i to state j before exist
to Sa given that the process starts from state i.

Based on the theorem above, one can calculate the ex-
pected number of visits from the starting state to every
transient states before entering the absorbing state, which
is E[X ] in our application. Thus, E[X ] can be expressed
as:

E[X ] =

n−1
∑

i=1

M[1, i] (10)

where state 1 is the initial state that the victim has
not received any marked packet.

2.7 Example on Calculating E[X]

We continue the example in Section 2.5 to calculate E[X ].
By following the method in Equation (9), one can calcu-
late the fundamental matrix M as shown in Figure 8.
Lastly, by following Equation (10), E[X ] is calculated as
follows:

E[X ] = 1.0000 + 0.9001 + 0.4616 + 0.2666 + 2.3890

+0.9999 + 0.3829

= 6.4001,

where E[X ] is very close to the simulation result of 6.50.

For the example network G2 shown in Figure 2, the
number of state is too large to be presented in this
work. Instead, we employ the stochastic complementa-
tion technique to reduce the state space and the result
is E[X ] = 103.57, which is very close to the simulation
result of 103.27, as compare with the result of Savage’s
formula of 56.36.

2.8 Further Examples

We present more examples of the comparison between the
Savage’s equation, the simulation results, and the results
via the Markov chain modelling. Figures 9 and 10 are
slightly more complex networks with the furthest router
distance being three hops from the victim, and there are
totally two paths leading from the attackers to the vic-
tim. Our solution shows close results to the simulations,
for both the cases of unmarked and marked packets. It
is interesting to observe that the networks G1, G3, and
G4 are quite simple and similar, however, according to
Table 2, the value of E[X ] for these networks are not the
same, or even not close to each other.

3 Conclusion

In this work, we have shown that there is a termina-
tion problem in PPM algorithm: the calculation of the
expected number of marked packets E[X ] is not accu-
rate for general networks. Without a correct calculation
of the expected number of marked packets, one cannot
judge when is the right time to start the attack graph re-
construction procedure, or an incomplete attack graph is
reconstructed. We propose to model the PPM algorithm
as a discrete-time Markov chain, and, by using the theory
of the fundamental matrix, E[X ] can be found precisely.
Also, the Markov chain model can be simplified by the
efficient techniques like the aggregation/dis-aggregation
and the stochastic complementation. Lastly, the simula-
tion results and the theoretical results from the Markov
chain model are consistent. This shows that the proposed
method is effective in calculating E[X ].
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