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Abstract—We consider a Web server that can provide differentiated services to clients with different quality of service (QoS)

requirements. The Web server can provide N � 1 classes of proportional-delay differentiated services (PDDS) to heterogeneous

clients. An operator can specify fixed performance spacings between classes, namely, ri;iþ1 > 1, for i ¼ 1; . . . ; N � 1. Requests in

class iþ 1 are guaranteed to have an average waiting time which is 1=ri;iþ1 of the average waiting time of class i requests. With PDDS,

we can provide consistent performance spacings over a wide range of system loading and this simplifies many pricing issues. In

addition, each client can specify a maximum average waiting time requirement to be guaranteed by the PDDS-enabled Web server.

We show that, in general, the problem of assigning clients to service classes in order to optimize system efficacy is NP-complete. We

propose two efficient admission control algorithms so that a Web server can provide the QoS guarantees and, at the same time,

classify each client to its “lowest” admissible class, resulting in lowest usage cost for the admitted client. We also consider how to

perform end-point dynamic adaptation such that admitted clients can submit requests at a lower class and further reduce their usage

costs without violating their QoS requirements. We propose two dynamic adaptation algorithms: one is server-based and the other is

client-based. The client-based adaptation is distributed and is based on a noncooperative game technique. We carry out experiments

to illustrate the effectiveness of these algorithms under different utility functions and traffic arrival patterns (e.g., Poisson, MMPP, and

Pareto). We report extensive experimental results to illustrate the effectiveness of our proposed algorithms.

Index Terms—Proportional differentiated service, admission control, dynamic adaptation, performance evaluation, quality of service.
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1 INTRODUCTION

THE Internet is becoming more commercially oriented
and businesses are now using Web servers to dissemi-

nate information. Therefore, the effect of access latency at
Web servers has become more important. Conventional
Web servers use a single class approach in serving client
requests. This does not provide adequate performance
when different clients may have different QoS requirements
and are willing to pay different prices to attain their desired
QoS. Hence, there is a need to support multiple classes of
service at a Web server in order to extend network level
service differentiation (e.g., the DiffServ model) to true end-
to-end application level service differentiation.

There are several ways for a Web server to provide
differentiated services. For example, a strict priority policy
can be used in which clients submit requests in different
priority classes and the Web server always serves the next
request from the highest priority class that is backlogged.
Some drawbacks of the strict priority policy are 1) the
possibility of starvation for requests in the lower priority
classes and 2) the performance spacings between different
classes are load dependent, introducing pricing complication.
For example, if a client X is charged at a rate of R1 and

another client Y is charged at a rate of R2, where R2 > R1,
then Y should expect its performance to be proportionately
better than that of X (i.e., the performance of Y is R2=R1

that of X), regardless of system loading. This type of
performance guarantees cannot be easily achieved with a
strict priority policy.

We target a Web server which can provide a differ-

entiated service that has the following properties:

. Consistency: service differentiation is consistent (i.e.,
higher classes receive better service) and the
performance differentiation is independent of varia-
tions in class load.

. Controllability: the operator of the Web server can
specify and control the performance spacings be-
tween offered classes of service according to the
pricing structure.

In [10], the authors propose an Internet service model

called proportional-delay differentiated services, which has

the above mentioned consistency and controllability prop-

erties. In the service model, the performance spacing

between class iþ 1 and class i can be specified as a fixed

ratio ri;iþ1. If this ratio can be maintained over a wide range

of system loading, then a user of class iþ 1, who is paying

at a rate ri;iþ1 higher than a user of class i, will consistently

have a performance that is ri;iþ1 better than the class i user.

To realize proportional-delay differentiated services, the

authors in [10] propose to use the time-dependent priority

(TDP) service discipline. In [15], [16], the authors illustrate

the necessary and sufficient conditions under which the
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controllability and consistency properties can be main-
tained when the requests are of Poisson arrivals.

In this paper, we consider proportional-delay differen-
tiated services at aWeb server, sayS.S provideswaiting time
differentiation for N > 1 classes of requests. Let Wi be the
expectedwaiting time of class i requests, for i ¼ 1; . . . ; N . The
operator of the Web server S specifies a fixed performance
spacing ri;iþ1 > 1 such that

Wi=Wiþ1 ¼ ri;iþ1 for i ¼ 1; 2; . . . ; N � 1:

For example, if ri;iþ1 ¼ 1:5, then the operator can legiti-
mately charge class iþ 1 clients a usage rate 50 percent
higher than that of class i clients. In addition to this
performance spacing guarantee, each client specifies a
maximum average waiting time for its requests to be
guaranteed by S. We consider the following technical
issues.

. Efficient admission control so that S can provide
the requested performance differentiation and
guarantees.

. Efficient assignment or mapping of client requests
into the service classes so that an admitted client’s
performance requirement can be satisfied.

. Dynamic adaptation such that, depending on the
server workload, a client can assign requests to a
lower service class (i.e., lower than the class which
was initially prescribed at admission control time)
and can still receive service consistent with its
performance requirement. This way, a client can
pay a lower usage cost while still obtaining
satisfactory service.

The balance of the paper is organized as follows: In
Section 2, we provide the necessary background of
proportional-delay differentiated services. We also formu-
late the problem of admission control, client classification,
and dynamic adaptation. We show that, in general, the
client classification problem to optimize system efficacy is
NP-complete. In Section 3, we present two efficient
admission control algorithms and state their important
properties. In Section 4, we present two adaptation
algorithms: One is server-based (i.e., a centralized algo-
rithm) while the other is client-based (i.e., a distributed
algorithm). The client-based algorithm is based on a
noncooperative game approach and has a low computational
complexity. In Section 5, we present experimental results to
illustrate the effectiveness of the proposed algorithms.
Related work is presented in Section 6. Section 7 concludes.

2 BACKGROUND AND PROBLEM FORMULATION

Let us present the background of proportional-delay
differentiated services (PDDS) [10], [15], [16]. Under PDDS,
there are N > 1 service classes such that class iþ 1 requests
will receive better performance compared with class i

requests, for i ¼ 1; . . . ; N � 1. In general, the response time
of a request at a Web server consists of the waiting time as
well as the corresponding service time. The waiting time of
a request is the time the request spends in the server’s
queue before it receives service. For a popular Web server,

the aggregate traffic loading can be very high and waiting

time contributes a significant portion of the request’s

response time.1 Controlling the waiting time will, therefore,

be highly useful in providing service differentiation. Let Wi

be the achieved long-term average waiting time of class i

requests. A PDDS Web server tries to guarantee that the

ratio of the achieved long-term average waiting time

between classes i and iþ 1 is equal to a fixed and prespecified

ratio, ri;iþ1, where

Wi=Wiþ1 ¼ ri;iþ1 for i ¼ 1; . . . ; N � 1: ð1Þ

The objective is to maintain ri;iþ1 > 1 across a wide range of

system loading. As mentioned, PDDS can be achieved using

the time-dependent priority (TDP) scheduler [10]. In

general, TDP is a nonpreemptive priority scheduling algo-

rithm with a set of control variables bi; 1 � i � N , where

0 � b1 � b2 � � � � � bN . The control variable bi dictates the

instantaneous priority of a class i request. Specifically, if the

kth request of class i arrives at time �k, then its priority at

time t (for t � �k), denoted by qki ðtÞ, is

qki ðtÞ ¼ ðt� �kÞbi: ð2Þ

To clearly illustrate the concept, we use a two-class TDP as

depicted in Fig. 1. Assume that the first request of class 1

arrives at time 0 and the first request of class 2 arrives at

time t1. Both requests remain in the system until time t3.

During the time interval ðt1; t2�, the class 1 request will have

a higher priority than the class 2 request. But, since the

control parameter b2 is larger than b1, after time t > t2, the

class 2 request will have a higher priority. Because of this

property, requests in higher classes cannot monopolize the

system resources and cause the starvation problem.
Let NiðtÞ denote the number of class i requests waiting in

the queue at time t and qiðtÞ the priority of the request at the

head of the class i queue. When a Web server S is ready to

service a request at time t, it chooses a request from class i�,

where

i�ðtÞ ¼ arg max
i¼1::N;NiðtÞ>0

qiðtÞf g: ð3Þ
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1. To be precise, response time should also include any queueing and
transfer delay along the communication path. However, since the
communication overhead cannot be controlled by the Web server, we will
not consider it in this paper. Please refer to [16] on how to provide
proportional-delay differentiated service for the underlying communication
network.

Fig. 1. A two-class TDP where b1 < b2.



Ties for the highest priority are broken by serving the
request that has been waiting the longest in the system. If
there is no request in the system, the server is idle and will
be activated by any newly arriving request. Note that for
the TDP scheduler, a class i request increases in priority at a
faster rate than requests of any class j, where j < i. In [15],
[16], the authors derive the necessary and sufficient condi-
tions for feasible delay ratios when the requests are of
Poisson arrivals. Specifically, for a two-class system, if the
system loading � satisfies 1� 1=r1;2 < � < 1, then by setting
the control parameters b1 ¼ 1 and b2 ¼ �=ð�� 1þ 1

r1;2
Þ, one

can achieve the desired waiting time spacing. For a system
with more than two classes of traffic, the authors give the
necessary conditions for feasible spacings, and an efficient
iterative algorithm for determining the values of the control
parameters bi, i ¼ 1; . . . ; N . Please refer to [15], [16] for a
detailed derivation of these parameter values.

Consider the utility of a PDDS-enabled Web server
offering, say, video-on-demand service. In this case, a class i
client who wants to access a video will experience a smaller
start-up latency than a client in class i� 1. In exchange, the
class i client will be charged at a higher usage rate than the
class i� 1 client. Our focus is on providing fundamental
understanding for the design of such a PDDS-enabled Web
server.

Assume that there are M > 0 potential clients requesting
service from a PDDS-enabled Web server S. Each of these
clients can be viewed as an aggregation of many individual
users (e.g., users from the same company or organization).
A client, say j, specifies two parameters for its desired QoS:

. �max
j : j’s maximum offered traffic rate to the server.

. Wmax
j : the maximum average waiting time for client

j’s requests before service is obtained.

If a client is admitted to the system and is assigned to class
i, the client is charged an admission cost of Ai, where
A1 � A2 � � � � � AN . S also charges a usage cost of �i for
each request in class i, where �1 � �2 � � � � � �N .

The problems we want to address are:

1. Admission control and class assignment: Given the
workload (�max

j ) and the QoS requirement (Wmax
j ) of

client j requesting service, should S admit this client
such that the QoS requirements of all the admitted
clients will be satisfied? Also, when a system decides
to admit client j, what is the lowest possible class
assignment for j, such that j will pay the lowest
possible usage cost?

2. Dynamic class adaptation: For those admitted clients,
their request arrival rates may be less than their
specified maximum request arrival rates. Therefore,
rather than use the assigned class obtained during
the admission control process, a client may choose to
submit requests at a lower class. This way, the client
may enjoy its desired level of service at a reduced
usage cost. We consider the problem of how each
client can adapt to the traffic loading at a Web server
S and adjust its service class dynamically. The main
challenge is to guarantee that we will not violate the
maximum average request waiting time required by
the client.

Before we proceed, let us define the following notation.

Let M 0 be the number of clients admitted to S. In general,

we have M 0 � M. The admitted class vector, denoted by

CCa ¼ ½Ca
1 ; C

a
2 ; . . . ; C

a
M 0 �, represents the class assignment of

each admitted client after the admission control and class

assignment process.2 The class assignment for client i is

Ca
i 2 f1; 2; . . . ; Ng for i ¼ 1; . . . ;M 0. After the admission

control, an admitted client may dynamically adapt to the

loading at S and lower its assigned class. The class vector at

time t > 0 for all the admitted clients is denoted by

CCðtÞ ¼ ½C1; C2; . . . ; CM 0 �, where Ci 2 f1; . . . ; Ng is the class

chosen by client i. It is easy to observe that CCð0Þ ¼ CCa and

CCðtÞ � CCa for t > 0. The total maximum arrival rate of class

k, denoted as �max
ck

, is:

�max
ck

¼
XM
j¼1

�max
j 1fCj ¼ kg k ¼ 1; 2; . . . ; N:

Let Wck be the average waiting time of class k requests.

Based on the conservation law in queueing system, we

have:

XN
k¼1

�max
ck

Wck ¼
XN
k¼1

�max
ck

Wð�Þ; ð4Þ

whereWð�Þ represents the average waiting time that would

result if the aggregate traffic were serviced by a work-

conserving FCFS server of the same capacity as S. Define

�1 ¼ 1 and �i ¼ �i�1=ri�1;i for i ¼ 2; . . . ; N . Based on (1), we

have ri�1;i ¼ Wci�1
=Wci . Therefore,

�i ¼ Wci=Wc1 i ¼ 1; . . . ; N:

Based on the above equation, we can expressWci in terms of

Wck as:

Wci ¼ �i
Wck

�k
i ¼ 1; 2; . . . ; N: ð5Þ

Substituting (5) into (4), we have

Wck

�k

XN
i¼1

�max
ci

�i ¼
XN
i¼1

�max
ci

Wð�Þ:

After rearranging terms, we can express Wck as

Wck ¼
�k

PN
j¼1 �

max
cj

� �
Wð�ÞPN

j¼1 �j�max
cj

for k ¼ 1; . . . ; N: ð6Þ

Let Ui be a function representing the utility of client i.

Each client can have a different utility function. In this

paper, the utility function we consider has a form which is

illustrated in Fig. 2. Let Si be the cost of client i. The net

utility of client i is then Ui � Si. For the server, the utility is

the amount of cost paid by all admitted clients, i.e.
PM 0

i¼1 Si.

Let R be the maintenance cost of the server. We define the

system efficacy V as the sum of the net utilities of all the

admitted clients and the Web server. Our objective is to
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maxV ¼
XM 0

i¼1

ðUiðWckÞ � SiÞ þ ð
XM 0

i¼1

Si �RÞ

¼
XM 0

i¼1

UiðWckÞ �R

s:t: Wck � Wmax
i i ¼ 1; . . . ;M 0 and k ¼ Ca

i ;

ð7Þ

i.e., we seek to maximize the system efficacy V under the
constraint that the expected waiting time of an admitted
client i is less than or equal to its QoS requirement Wmax

i . In
[17], the authors show that, if a request has a utility function
with the form similar to Fig. 2, then one needs to apply
admission control to maximize the system efficacy V . In the
following, we show that the above optimization problem is
NP-hard.

Theorem 1. The constructed optimization problem given in (7) is
NP-hard.

Proof. Consider the decision version of the optimization
problem in (7). Assume that 1) there is only one service
class in the system, so that a client is in class 1 if it is
admitted and in class 0 otherwise, 2) the maximum
average waiting time requirements of all clients are the
same, and 3) the utility function of each client is a
constant function. Because of the first two restrictions,
we can find the maximum arrival rate allowed in the
system, say �max. Now, the question is if there is a class
vector C such that the system efficacy is larger than a real
number V 0, while the aggregate arrival rate is less than
�max.

Given a class vector CC, it can be checked in linear time
if the aggregate arrival rate is larger than �max. The
average waiting time can be calculated in polynomial
time.3 The system’s efficacy can then be found byPM 0

i¼1 UiðWciÞ in polynomial time. Clearly, the whole
process can be done in polynomial time and so the
decision problem is in NP. Now, we want to transform
the decision problem to a known NP-complete KNAP-
SACK problem. The arrival rate constraint is trans-
formed to the size constraint of KNAPSACK. The
summation of system efficacy is transformed to the
summation of values in KNAPSACK. Clearly, the
transformation can be done in polynomial time. There-
fore, our decision problem is in NP-complete.

Since the above decision problem is only a decision
version of the optimization problem in (7) with three
restrictions, the optimization problem in (7) must be in
NP-hard. tu

In general, finding the solution to the optimization
problem in (7) can be computationally expensive. A
straightforward approach is to perform an exhaustive
search. The class value of a client can be 0; 1; . . . ; N , where
a class value of 0 means the client is not admitted into the
system. There are a total of M potential clients. The search
has a computational complexity of �ððN þ 1ÞMÞ in evaluat-
ing the expression of (6) so as to choose the optimal
configuration. Since the number of clients M can be very
large, the computation cost is prohibitive even for a small
number of classes N . In the following, we propose two
efficient admission control algorithms such that, at the end
of the admission control process, we can determine 1) the
clients that the Web server can admit and 2) the lowest
possible admitted class vector CCa ¼ ½Ca

1 ; C
a
2 ; . . . ; C

a
M 0 � for

those admitted clients.

3 ADMISSION CONTROL AND RESOURCE

PROVISIONING

In this section, we explain how to perform the admission
control and the class assignment for a PDDS-enabled Web
server.

3.1 Admission Control and Class Assignment

To subscribe service from the server S, each client has to go
through the admission control procedure. Each client j will
provide the information, �max

j and Wmax
j , to the server S. In

return, the server S will indicate whether it can admit client
j or not. If the system can admit client j, it will also notify
client j of the assigned class index, Ca

j 2 f1; . . . ; Ng. As long
as client j marks all its requests to S in class Ca

j , the server S
can guarantee that the long term average waiting time for
client j is less than or equal to the QoS requirement Wmax

j .
We propose the following two admission control/class
assignment algorithms.

3.2 Maximum Profit Algorithm (MPA)

The first algorithm is MPA (see Fig. 3). The objective is to
admit a client having a more stringent maximum average
waiting time requirement first. The rationale is that if there
are two clients i and j with requirements of Wmax

i and
Wmax

j , respectively, and Wmax
i < Wmax

j , it is reasonable to
assume client i is willing to pay a higher usage cost than
client j so as to receive better service. By admitting client i,
the service provider may obtain a higher profit. The MPA
algorithm is given below.

Let us explain the rationale of the MPA algorithm. Under
MPA admission control, we test whether we can admit a
tagged client (line 3). For this tagged client i, we first assign
it to class one (line 5). By adding this client i, we may
change the waiting times of previously admitted clients. We
test whether this new additional client will violate the QoS
of other clients in �0 (line 7). If the addition does not violate
the QoS of any client, we can admit this tagged client i
(line 9). On the other hand, if there is any QoS violation and
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3. The value of Wð�Þ can be precomputed offline and values can be
obtained via table lookup with polynomial time complexity.

Fig. 2. General form of client’s utility function versus inverse of the

waiting time.



the unsatisfied clients are already in class N , this implies
that we cannot admit the tagged client i (line 11-12). If there
is QoS violation and none of the unsatisfied clients is in
class N , we can upgrade all the unsatisfied clients by one
class (line 14) and test whether we can admit the tagged
client i again. In the following, we present some important
properties of the MPA admission control algorithm,
including the computational complexity, and the property
that it guarantees an admitted client the minimum class
level that can satisfy its QoS requirement.

Lemma 1. The MPA admission control has a computational
complexity of OðNM2Þ.

Proof. ForMPA,wehave to testwhetherwecanadmit eachof
the M clients (line 3). When we test the kth client, the
maximumnumber of clients in�0 is equal to k (line 4). Each
of these clients in�0maygo throughclassupgrade (line 14)
but never class downgrade. Since there areN classes in the
system,we have to testOðkNÞ configurations in theworst-
case. To test for all M clients, we need to test at mostPM

k¼1 kN configurations, which is OðNM2Þ. tu

To present the properties of MPA admission control, we
first need todefine the followingnotation and then state some
preliminary results. Let � ¼ ½�max

c1
; � � � ;�max

cN
� be the arrival

rate vector of different classes of requests. We define eei as a
row vector of zero with the ith entry being one. If a client m
changes its requests fromclass i toclass j,where j > i, then the
arrival rate vector is�0 ¼ �� �max

m eei þ �max
m eej. LetWckð�Þ be

the average waiting time of class k requests under loading�.

Lemma 2. If a client m performs a class upgrade from class i to j
(j > i), thenWckð�0Þ � Wckð�Þ for all classes k ¼ 1; 2; . . . ; N .

Proof. Equation (6) expresses the average waiting time for
each class of traffic under a PDDS system. Since �1 ¼ 1
and �i ¼ �i�1=ri�1;i, we have 1 ¼ �1 > �2 > � � � > �N , and

so �i > �j. When a client m upgrades from class i to class
j, it is easy to observe that the denominator of (6) will not
increase while the numerator will remain unchanged.
Therefore, Wckð�0Þ � Wckð�Þ. tu

Lemma 3. If a client m performs a class downgrade from class j
to i (i < j), then the average waiting times for all classes will
not increase.

Proof. Equation (6) expresses the average waiting time for
each class of traffic under a PDDS system. Since �1 ¼ 1
and �i ¼ �i�1=ri�1;i, we have 1 ¼ �1 > �2 > � � � > �N , and
so �j > �i. When a client m downgrades from class j to
class i, we can easily observe that the denominator of (6)
will not decrease while the numerator will remain
unchanged. Therefore, Wckð�0Þ � Wckð�Þ. tu

Definition 1. Let WckðCÞ and Wmax
j ðCÞ be the average waiting

time of class k requests and the maximum average waiting
time of client j’s requests, respectively, under the class vector
C. Also, let �ðCÞ be the arrival rate under the class vector C.

Definition 2. Let CC and CC0 be two class vectors. We say that
CC > CC0 iff Ci � C0

i and 9 j, where Cj > C0
j.

Defintion 3. A class vector CC is a feasible admitted class
vector if the class assignment in CC can guarantee the
maximum average waiting time requirements for all admitted
clients.

Definition 4. A minimum feasible admitted class vector CC�

is a class vector such that there is no other feasible admitted
class vector CC0 where CC0 < CC�.

Theorem 2. The MPA admission control guarantees that, at the
end of every stage of testing whether to admit a client, the class
vector is always a minimum feasible admitted class vector.

Proof. Let CCaðkÞ and �ðkÞ be the admitted class vector and
the set of admitted clients after testing whether we can
admit the kth client. Initially, we have CCað0Þ ¼ ½0; � � � ; 0�
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where 0 indicates rejection and �ð0Þ ¼ ;. We proceed to

prove the theorem by induction. Consider the first client

(or k ¼ 1). If MPA rejects this client because the system

cannot satisfy its QoS requirement, CCað1Þ ¼ ½0; . . . ; 0�,
which is a minimum class vector. If the system admits

this client, then because MPA assigns class 1 to the client

initially (line 5) and upgrades the class one at a time, the

resulting admitted client vector CCað1Þ is obviously a

minimum feasible class vector.
Assume this property holds for k ¼ i� 1. When the

system tries to admit the ith client, there are three cases
to consider:

1. The system can admit client i without changing the
class assignment in �ði� 1Þ: In this case, since
CCaði� 1Þ is a minimum feasible class vector and
we assign the minimum class to client i (line 5),
CCaðiÞ is the minimum admitted class vector for
�ðiÞ.

2. The system cannot admit client i because there is at
least one client in �ði� 1Þ whose class is in class N
(line 11): In this case, client i will be rejected and
we restore the previous admitted class vector
(line 12). Therefore, CCaðiÞ ¼ CCaði� 1Þ, which is
the minimum admitted class vector for �ðiÞ.

We divide the analysis of this case into two

stages: the present stage and the later stage. In the

present stage, there exists a client l � i and a class

vector CCT such that CT
l ¼ N and WcN ðCCT Þ �

Wmax
l ðCCT Þ.
Based on Lemma 2, we have:

WcN ðCC0Þ � Wmax
l ðCCT Þ � Wmax

l ðCCT Þ 8CC0 � CCT :

So, there exists no feasible admitted class vector for

�ðiÞ. In the later stage,wemay admit client jwhere

j > i. But, admitting client j will not make client i

admissible. The reasons are: 1) �ðCCaðjÞÞ � �

ðCCaði� 1ÞÞx implies that WckðCCaðjÞÞ � WckðCCaði�
1ÞÞ and 2) admitting client j may result in class

upgrade for the clients in�ði� 1Þ. ByLemma2, this

will increase the waiting time for all the clients in

�ði� 1Þ. Since admitting client j will not decrease

thewaiting time of clients in�ði� 1Þ, if client iwas

not admissible, it will not become admissible after

the system has admitted client j.
3. There are L � 1 unsatisfied clients in �ði� 1Þ, but

none of them is in class N (line 13): In this case, the
MPA will simultaneously upgrade the class of all
these L unsatisfied clients by one (line 14). Note
that we do not need to upgrade the class of each
unsatisfied client sequentially.

Consider that there are more than one unsatis-

fied clients in class vector CT , say i and j. We have

WckðCCT Þ � Wmax
i ðCCT Þ and WclðCCT Þ � Wmax

j ðCCT Þ
where k ¼ CT

i and l ¼ CT
j . If only client i does class

upgrade and gives the new class vector C0, then

based on Lemma 2, we have:

WclðC0Þ � WclðCT Þ � Wmax
j ðCT Þ:

Client j is still unsatisfied with the new class
vector C0. The proof for more than two clients is
similar. After the class upgrade, some of these
clients may still be unsatisfied, in which case we
repeat the process until we reach case 1 or case 2
above. Since we perform class upgrade incremen-
tally, the resulting admitted class vector CCaðiÞ is a
minimum feasible class vector. tu

Remark. The implication of Lemma 1 and Theorem 2 is that,
not only do we have a computationally efficient
admission control algorithm, but the resulting admitted
vector CCa is also a minimum feasible class vector.
Therefore, we can ensure to provide QoS guarantees to
all admitted clients and, at the same time, not overcharge
these clients by assigning them to higher classes than
needed.

The MPA algorithm assumes that a client with a
tighter QoS requirement (i.e., smaller maximum average
waiting time) is willing to pay a higher cost for the Web
service. On the other hand, a Web server operator may
want to maximize the number of admitted clients so as to
popularize the Web service. In this case, we propose the
following admission control algorithm (see Fig. 4).

3.3 Maximum Admission Algorithm (MAA)

The second admission control algorithm is called MAA. The
objective is to admit as many clients as possible into the
Web server. The rationale is that by admitting more clients,
the Web service will be more popular and the content
provider will be able to charge more and generate more
profit in the long run. Under MAA, we try to admit those
clients with a less stringent QoS requirement (i.e., large
maximum average waiting time) first. The MAA algorithm
is shown below.

Let us explain the operation of the MAA algorithm.
Under MAA admission control, we test whether we can
admit a tagged client (line 3). For this tagged client i, we
first assign it to class one (line 5). By adding this tagged
client i, we may change the waiting times of previously
admitted clients. We test whether this new additional client
will violate the QoS of other clients in �0 (line 7). If the
addition does not violate the QoS of any client, we can
admit this tagged client i (line 9). On the other hand, if there
is any QoS violation and the unsatisfied clients are already
in class N , this implies that we cannot admit the tagged
client i (lines 11-12). If there is QoS violation and none of the
unsatisfied clients is in class N , we can upgrade all these
unsatisfied clients by one class (line 14) and test whether we
can admit the tagged client i again. Once we find the first
client that we cannot admit (we call this client i�), we go to
the second phase of the algorithm by testing whether we
can admit the remaining clients (clients i� þ 1 to M).
Because of the initial sorting, the remaining clients will
have a maximum average waiting time requirement smaller
than or equal to that of client i�. Therefore, we can do much
pruning by skipping those clients whose arrival rates are
larger than the arrival rate of client i� because the server S
cannot admit these clients for sure. In the following, we
present some important properties of the MAA admission
control: its computational complexity and the property of
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guaranteeing an admitted client the minimum service class

for its QoS requirement.

Lemma 4. MAA admission control has a computational

complexity of OðNM2Þ.
Proof. Under the MAA, we have to test whether we can

admit each of the M clients (lines 3). The algorithm is

divided into two phases, 1) lines 3-17 and 2) lines 18-34.

In the first phase, when we test whether we can admit

the kth client, the number of clients in �0 is equal to k.

Each of these clients in �0 may go through class upgrade

(line 14), but never class downgrade. Since there are N

classes in the system, we have to test OðkNÞ configura-

tions in the worst-case. The end of the first phase is

signaled by an unsatisfied client in class N (lines 11-12).

There are at most M clients to be tested in the first phase.

We need to test at most
PM

k¼1 kN configurations, which is

OðNM2Þ. When the unsatisfied client (we call this client

i�) is found in the first phase, its arrival rate is marked so

that we can perform pruning in the second phase. In the

second phase, a user will be tested only if its arrival rate

is less than the arrival rate of client i�. We can perform

this pruning because for client j > i�, we have Wmax
j <

Wmax
i� (due to initial sorting) and if �max

j > �max
i� , the

server S cannot admit client j for sure. If client j has a

smaller arrival rate than client i�, the maximum number

of clients in �0 is equal to j, and each of these clients in �0

may go through class upgrade (line 30), but never class
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downgrade. Since there are N classes in the system, we

have to test OðjNÞ configurations in the worst case. As

there are at most M clients to be tested in the second

phase, we need to test at most
PM

k¼1 kN configurations,

which is OðNM2Þ. Therefore, the worst-case computa-

tional complexity is OðNM2Þ for the MAA algorithm. tu
Theorem 3. MAA admission control guarantees that, at the end

of every stage of testing whether to admit a client, the class

vector is always a minimum feasible admitted class vector.

Proof. Please refer to [14]. tu

4 DYNAMIC CLASS ADAPTATION

Based on the admission control algorithms proposed in

Section 3, the PDDS-enabled Web server S can provide QoS

guarantees to all the admitted clients. In other words, the

expected waiting time of each client is guaranteed to be

upper bounded by its specified maximum average waiting

time. One important point to observe is that the admission

control is carried out based on the maximum arrival rate

specified by each client. It is possible that the average

arrival rate of the admitted client is less than or equal to its

specified maximum arrival rate. Let �j denote the average

arrival rate of the admitted client j. If
PM 0

j¼1 �j <
PM 0

j¼1 �
max
j ,

it implies that there is an opportunity for an admitted client,

say j, to submit requests to the PDDS-enabled Web server S
with a class value which is less than or equal to Ca

j and still

be able to attain its QoS requirement (i.e., the average

waiting time is less than Wmax
j ). In this section, we propose

two dynamic adaptation algorithms so that the admitted

clients can dynamically adapt to the system loading at S.
Before we present these two dynamic adaptation algo-

rithms, let us present the general framework wherein the

PDDS-enabled Web server S can measure the necessary

information and send feedback control information back to

all admitted clients. Fig. 5 illustrates the general framework.

Assume that the server S has completed the admission

control process (either via MPA or MAA) at time t ¼ 0. Each

admitted client will submit requests to S based on its class

assignment in CCa. For every measurement window of

length T , the server S measures the request arrival rates. At

the end of each period, the server S either sends back a new

class vector CC to all the admitted clients, or sends back the

arrival statistics to all the admitted clients, who can then

perform their own class adaptation.

4.1 Centralized Approach: Server-Based Dynamic
Adaptation (SBDA)

Under server-based adaptation, the Web server estimates
the arrival rate of each client within a measurement
window, and then computes a new class vector for each
admitted client at the end of the measurement period. The
new class assignment will be sent to each admitted client.
Each admitted client can then submit requests to the PDDS-
enabled Web server in a class range that is between the new
class value and the original admitted class value.

Formally, let CCðnT Þ denote the class vector at the end of
the nthmeasurement period. We have CCð0Þ ¼ CCa, the initial
class vector after the admission control process. Within a
measurement window, the server S estimates the arrival
rate of client j. Let NjðnT Þ be the number of requests
submitted by client j during the nth measurement period.
The estimated arrival rate of client j at the end of this
measurement period is:

�̂�j ¼
NjðnT Þ

T
j ¼ 1; 2; . . . ;M 0: ð8Þ

To generate a new class vector CCðnT Þ, the server can use
either the MPA or the MAA algorithm described in the
previous section. Once the new class vector is computed,
the server S sends the new class value CjðnT Þ to client j,
j ¼ 1; 2; . . . ;M 0.

Upon receiving the new class value, the client j can choose
to tag the request in class C�

j where CjðnT Þ � C�
j � Ca

j . Here,
we consider that a client j will initially tag its requests as
CjðnT Þ. During the process of request submission, client j
also estimates itswaiting time. If it ismore than themaximum
average waiting time requirement Wmax

j , then client j will
upgrade its requests by one class. The maximum class value
that class j can tag its requests isCa

j . Note that if the estimated
average waiting time is less thanWmax

j , then client jwill not
perform any class downgrade and will continue to submit
requests based on the current class value. This way, client j
can reduce its usage cost for S. Fig. 6 illustrates an example in
which client j performs a class upgrade at instants �1; �2; �3,
and �4.

We like to stress two important points here:

. First, CjðnT Þ is guaranteed to be less than or equal to
Ca

j . The reason is that the original class vector CCð0Þ
(or CCa) was computed based on the “maximum”
arrival rate of each admitted client. Since the arrival
rates of all admitted clients within the measurement
period are less than or equal to their maximum
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arrival rates, the resulting class vector CCðnT Þ is
guaranteed to be less than or equal to CCa.

. Second, if client j tags its requests in class Ca
j , j is

assured that its requests will definitely satisfy its
QoS requirement. The procedure of SBDA is shown
in Fig. 7.

If the future arrival rates of all admitted clients will not
change, the SBDA algorithm can find the minimum feasible
admitted class vector. SBDA assigns each client i to Ca

i first.
Every client then tries to do class downgrade sequentially. If
a client finds that the average waiting time of class C0

i�1,
where i� 1 � 1, can still satisfy its maximum average
waiting time requirement, the client will perform class
downgrade. When all admitted clients stop downgrading,
the process terminates. The class vector C0 computed
satisfies the waiting time requirements of all admitted
clients and allows them to submit at the lowest possible
class. In this paper, the lowest possible class is the class
satisfying the waiting time requirement of the admitted
client and, at the same time, allowing it to pay the lowest
cost. In the following, we present some important proper-
ties of the SBDA algorithm.

Theorem 4. If the future arrival rates of all admitted clients will
not change, the class vector computed in SBDA satisfies the
waiting time requirements of all admitted clients, and these
clients will submit at the lowest possible class.

Proof. When a client tests if it needs to perform a class
downgrade (lines 8-9), there are only two possibilities.
Either 1) it moves to one class lower if it finds that its QoS
requirement can be satisfied in the lower class, or 2) it
remains in the same class if the requirement cannot be
satisfied in the lower class. In case 1), when a client
performs a class downgrade, the average waiting time of
other classes will not increase by Lemma 3. Hence, no
user needs to perform class upgrade. In case 2), when a
client remains in the same class, this causes no change to

the average waiting times of other classes and so no
client needs to do class upgrade. Clients always submit
at the lowest class. Once two consecutive groups withM 0

clients not performing any class downgrade are found,
the waiting times of all clients will not be changed any
more. Therefore, the waiting time requirements of all the
admitted clients are guaranteed. tu

Lemma 5. The SBDA algorithm has a computational complexity
of OðNM 02Þ.

Proof. In theworst-case, for an iteration ofM 0 clients, there is
only one client who needs to perform a class downgrade.
As there are M 0 clients and N classes, the maximum
number of class downgrade isNM 0. Therefore, the worst-
case computational complexity is OðNM 02Þ. tu

There are some major drawbacks about the server-based
dynamic adaptation approach. For example, it is computa-
tionally expensive to estimate the arrival rate of each
admitted client in (8). Another disadvantage is that the
server S needs to send the new class value CCðnT Þ to each
admitted client, which implies that the server needs to
perform M 0 operations to reach all the admitted clients. On
the other hand, the advantage of the SBDA approach is that
the new class vector CCðnT Þ is very precise. If there is no
major change in the future workload, then each admitted
client will pay the lowest usage cost and still be able to
receive service within its QoS requirement.

4.2 Distributed and Game-Theoretic Approach:
Client-Based Dynamic Adaptation (CBDA)

The SBDA algorithm can be computationally expensive,
both in tracking the arrival rates of all M 0 clients and in
sending the new class vector to all the clients. We propose
an alternative client-based dynamic adaptation algorithm
(CBDA), which is a distributed adaptation algorithm wherein
each client can choose the appropriate class in submitting
its requests.

Unlike the SBDA algorithm, the Web server S does not
need to track the arrival rate of each admitted client, but
rather estimate the arrival rates of individual classes of
requests. Therefore, rather than track M 0 variables as in
SBDA, CBDA only tracks N variables. Since N << M 0, this
results in a major saving for the computation overhead. Let
�ck;n be the interarrival time between the ðn� 1Þth and the
nth requests in class k. We use an exponential weighted
time average method to estimate �̂�ckðnÞ, the arrival rate of
class k at the nth request arrival. The estimate is

�̂�ckðnÞ ¼ ð1� �Þ�̂�ckðn� 1Þ þ �ð�ck;nÞ
�1 k ¼ 1; . . . ; N;

ð9Þ

where 0 � � � 1. At the end of each measurement period,
the Web server S multicasts this class vector �̂�c ¼
½�̂�c1 ; �̂�c2 ; � � � ; �̂�cN � to all the M 0 admitted clients.

Each client, upon receiving the new class vector �̂�c, can
determine the minimum class for its future requests. To
illustrate, consider that client j receives �̂�c from the server
S. Let �̂�j;ck be the class k traffic rate submitted by client j in
the previous measurement period. Then, the traffic rate
vector of client j in the previous measurement period is
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�̂�j ¼ ½�̂�j;c1 ; �̂�j;c2 ; � � � ; �̂�j;cN �. Upon receiving �̂�c, client j exe-
cutes the following code (see Fig. 8).

Lemma 6. The CBDA has a computational complexity of OðNÞ
for each client.

Proof. Since an admitted client j only needs to test from
class 1 to class Ca

j , and Ca
j is upper bounded by N , the

worst-case computation complexity for an admitted
client is OðNÞ. tu

In other words, client j tries to maximize its utility by
finding the lowest class such that the average waiting time
is less than or equal to the maximum average waiting time
requirement, Wmax

j . In essence, this is a noncooperative game
problem in which distributed optimization is performed by
each client. (For an introduction to the basic concepts of
game theory, please refer to [11].) We assume that clients
ignore how they influence the class adaptation of other
clients when optimizing their own utility. This simplifying
assumption corresponds to the standard competitive price
taking assumption of economic theory. Also, the above
assumption can be justified when:

1. The traffic loading of an individual client is
considered to be small, as compared to the overall
traffic loading at the Web server, so that the class
adaptation by a client is considered to be negligible.

2. It is impractical or computationally expensive for a
client to determine how to perform class adaptation
based on all the other clients’ class adaptation
decisions.

There are several important properties of the CBDA
algorithm as follows:

. Guaranteed termination: Each client j searches for
the lowest suitable class, from class 1 to Ca

j . In the
worst-case, the algorithm will terminate when the
class is equal to Ca

j , which is the assigned class
during the admission control process. The reason is
that the admission control decision was made based
on the specified maximum arrival rates for all
clients. Therefore, if client j is admitted, by selecting
its class equal to Ca

j , we can guarantee that the QoS
requirement of client j will be met.

. Low computational complexity: Unlike the SBDA
approachwhere the serverhas to track thearrival rates

of allM 0 clients and then recompute a new class vector
(in essence, reexecute the admission control algo-
rithm), the workload under the CBDA approach is
distributed among all the clients. The server S only
needs to track the arrival rates forN classes and class
adaptation is carried out by the individual clients. If
some clients do not want to perform class adaptation,
they can simply ignore this optimization step.

One can argue that the adaptation based on the SBDA
algorithm is more precise than the CBDA algorithm because
it uses all available information (i.e., arrival rates of all
clients) in making an adaptation decision. We illustrate the
performance difference between the two algorithms in the
next section.

5 PERFORMANCE EVALUATION

In this section, we compare the performance of the MPA
and MAA admission control algorithms. We also present
performance results for the SBDA and CBDA adaptation
algorithms under various settings—e.g., different arrival
rates under Poisson, MMPP, and Pareto arrival process,
different waiting time spacing ratios (i.e., ri;iþ1), and
different utility functions. The simulation is done in CSIM.
In Section 5.1, we only investigate the class assignment
under different system parameters. In Sections 5.2 and 5.3,
the simulation is carried out for 50� 106 time units. The
transient period is defined to be the first 5 percent of the
total simulation time units. Data collected during the
transient period are not used in the data analysis. For
experiments with “tagged” clients (i.e., Sections 5.2, 5.3.1,
and 5.3.2, and Sections 5.1.2 and 5.1.3), we illustrate the
performance of those tagged clients. For the other experi-
ments, the reported results are the averages over 100 in-
dependent runs. Table 1 shows the default values and
ranges of the system parameters.

5.1 Comparison of MPA and MAA
Admission Control

In this experiment, we compare the performance of the
MPA and MAA algorithms. In particular, the performance
metrics that we are interested in are

1. the number of admitted clients M 0,
2. the admitted arrival rates of different classes,
3. the achieved waiting times for different classes of

requests, and
4. the achieved system efficacy.
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Fig. 8. Adaptation algorithm for client j.

TABLE 1
Default Values and Ranges of System Parameters



Unless otherwise stated, we assume that the service times of
all the requests are exponentially distributed with mean
equal to unity. The aggregate request rate from all clients is
modeled as a Poisson process with rate �r. Note that �r is
the workload before the admission control procedure. The
PDDS-enabled Web server supports N ¼ 3 classes of
requests and their waiting time differentiations are
r1;2 ¼ 1:4; r2;3 ¼ 1:4.

5.1.1 Under Different Number of Clients

We vary the number of potential clients that wish to access
the server S to be M = 1,000, 2,000, and 5,000. The
maximum average waiting time requirements of these
clients are drawn uniformly from ½1:5; 5:5� seconds and
the aggregate request rate �r is set to one. Since this arrival
rate can saturate the system (� ¼ 1), it is necessary for us to
perform admission control. Table 2 illustrates the total
number of admitted clients M 0 for the MPA and MAA
algorithms under different values of M. We can see that
MAA can admit more clients because this algorithm tries to
admit clients with less stringent maximum average waiting
time requirements first. One can argue that, if the admission
cost is fixed on a per class basis, it makes sense to use the
MAA algorithm so as to maximize the total admission
revenue.

5.1.2 Under Different Arrival Rates

Weset the number of potential clientsM to 1,000.Wevary the
aggregate request arrival rate �r as 0.5, 0.75, and 1.0. The
maximum average waiting time requirements of all clients
are drawn uniformly from ½2; 10� seconds. Tables 3 and 4
illustrate that, after the admission control and client
classification, the arrival rates and the achieved waiting
times of the three classes of requests. From Table 3, we
observe that at low and moderate workload (e.g., �r ¼ 0:5 or
0:75), both theMPAandMAAcan effectively assign clients to

the appropriate class so that these admitted clients will pay

the lowest possible usage cost. For example, at lowworkload

(�r ¼ 0:5), both algorithms assign all clients to class one

(therefore, it becomes single queue scheduling). Under single

queue scheduling, the achievedwaiting timewill be less than

themaximumwaiting time requirements of all clients. When

the system is under high workload (�r ¼ 1), MPA and MAA

can filter out those clients whose maximum average waiting

time requirements are unrealizable and classify admitted

clients to the lowest admissible class.
Table 4 depicts the achieved waiting times for different

classesunder theMPAandMAAalgorithms. Thenumbers in

parentheses indicate the two extremes (i.e., themost stringent

and the least stringent) of themaximumaveragewaiting time

requirements of the admitted clients in that particular class.

For example, under �r ¼ 0:5 and MPA, the most stringent

(respectively, least stringent)maximumaveragewaiting time

requirement is 2.000 (respectively, 9.991) seconds and the

achieved waiting time is 1.008 seconds. From Table 4, we

observe that both the MPA and MAA algorithms can

effectively classify clients to the lowest admissible classes so

that their QoS can be satisfied. At the same time, the achieved

waiting time ratio is equal to the specified ratio of ri;iþ1 ¼ 1:4.

5.1.3 Under Different Waiting Time Spacings

We compare the effectiveness of the MPA and MAA

algorithms under different waiting time spacings. We vary

the waiting time spacing ri;iþ1 to be 1.3, 1.4, and 1.5. The

aggregate request arrival rate is �r ¼ 1:0 and the maximum

average waiting time requirements of the clients are drawn

uniformly from ½2:0; 5:0� seconds. From Table 5, we observe

that both the MPA and MAA algorithms can effectively

classify clients to the lowest admissible classes so that their

QoS requirements are satisfied. Also, the achieved waiting

time ratio is very close to the specifiedwaiting time ratio ri;iþ1.
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TABLE 2
MPA versus MAA for the Number of Admitted Clients M 0

TABLE 3
MPA versus MAA: Arrival Rates of Different Classes

For �v ¼ 0:5, all clients are assigned to Class 1.

TABLE 4
MPA versus MAA: Achieved Average
Waiting Times of Different Classes

The numbers in parenthesis indicate the two extremes (i.e., the most
stringent and the least stringent) of the maximum waiting time
requirements of the admitted clients in that class.



5.1.4 Under Different Utility Functions

This experiment illustrates the effect of the utility function

on the system efficacy. The usage cost of each class

corresponds to the waiting time ratio; e.g., if r1;2 ¼ 1:4, the

usage costs of classes 1 and 2 are 1.0 and 1.4, respectively.

The general form of the utility function is

UðA;B;C;D;wtÞ ¼ D� tan�1 C � wt

A

� �
þB; ð10Þ

where wt is the achieved waiting time of the client, and

A;B;C;D are the utility function parameters. (Because of

the lack of space, the detailed description of these

parameters are presented in [14]). The number of potential

clients M is set to 1,000. The aggregate request arrival rate

�r is 1.2. The maximum average waiting time requirements

of clients are drawn uniformly from [6, 20] seconds. Table 6

illustrates the system efficacy of admitted clients for the

MPA and MAA algorithms with different utility functions.

First, we compare the effect of sensitivity to the waiting
time on system efficacy. Utility templates U1, U2, and U3
have the same average utility and maximum increase in
utility, but U1 is twice as sensitive to the waiting time as U2,
while U2 is twice as sensitive as U3. We see that the system
efficacy is the largest in U2 both for MPA and MAA. But,
MAA always give a larger system efficacy than MPA. For
the comparison between utility templates U1 and U4 (both
U1 and U4 have the same sensitivity and average utility, but
U1 has a larger maximum increase in utility than U4), we
see that the decrease of system efficacy in MAA is larger
than that in MPA. Hence, the “maximum increase in utility”
parameter seems to have a larger effect on MAA than MPA.

5.2 Necessity for Adaptation

In this experiment, we illustrate the necessity to perform
class adaption. Consider the scenario wherein after the
admission control at t ¼ 0, all admitted clients only submit
requests to the PDDS-enabled Web server at rates which are
only 70 percent of their maximum arrival rates (or �max

j ).
Fig. 9 depicts the waiting times of three “tagged” clients
from each of the three classes as well as their maximum
average waiting time requirements. Each point of the plot is
the average waiting times of the previous 200 requests of
the tagged client. As we can observe, rather than enforce
each client to submit requests based on the assigned class,
we can simply serve all requests in the system based on a
FCFS policy. In other words, if all clients submit requests in
class 1, the system can still satisfy all their QoS require-
ments. This illustrates the necessity of dynamic adaptation.
Because the instantaneous workload at the server S is less
than the maximum specified workload, if there is class
adaptation, different clients can pay a lower usage cost
while still satisfying their QoS.

Another scenario we consider is that, after the
admission process, all admitted clients submit requests
based on their specified maximum arrival rates. However,
at t� ¼ 25� 106 seconds, 30 percent the of admitted
clients stop submitting requests to the Web server. The
other “active” clients still submit requests based on their
specified maximum arrival rates. Fig. 10 illustrates the
waiting times of the three tagged clients from their
respective classes. One can observe, if all these three
clients can mark their requests as class 1 after t�, they
will pay a much lower usage cost and their waiting time
requirements can still be satisfied.
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TABLE 5
MPA versus MAA: Achieved Waiting Times of Different Classes

under Different Waiting Time Spacings ri;iþ1

The numbers in parenthesis indicate the two extremes (i.e., the most
stringent and the least stringent) of the maximum waiting time
requirements of the admitted clients in that class.

TABLE 6
MPA versus MAA: System Efficacy under Different Utility

Functions and Waiting Time Spacings ri;iþ1

Fig. 9. Waiting times for three different clients wherein the aggregated

workload is only half of the maximum specification.



5.3 Comparison of SBDA and CBDA
Adaptation Algorithms

We compare the performance of the SBDA and the CBDA
adaptation algorithms. The waiting time requirements of
the clients are drawn uniformly from ½6; 20� seconds. The
aggregate request rate is �r ¼ 1:2. After admission control
(by either MPA or MAA), we classify clients into
N ¼ 3 classes. We simulate the system for 50� 106 seconds.
During the simulation period, admitted clients can change
class by using either the SBDA or CBDA algorithms
described in the previous section. The arrival rate of each
client can change during the simulation. Specifically, within
a measurement period of length T , each client can change
its arrival rate five times—with probability of 0.8 that the
arrival rate is equal to the maximum arrival rate, with
probability of 0.1 that the arrival rate is equal to 90 percent
of the maximum arrival rate, and with probability of 0.1
that the arrival rate is equal to 80 percent of the maximum
arrival rate. We consider a “tagged” client from each of the
three classes and we plot their waiting times. Each point of
the plot is the average waiting time of the previous
200 requests by the tagged client.

5.3.1 Using MPA and MAA under Poisson Arrivals

Figs. 11 and 12 illustrate the waiting time of the three
tagged clients under the SBDA and CBDA adaptation
algorithms. The aggregate request rate �r (before admission

control) is generated by a Poisson process with rate
�r ¼ 1:2. For Fig. 11, we use MPA as the admission control
algorithm at time t ¼ 0. The three tagged clients have
maximum waiting time requirements of 12.996, 10.171, and
7.404 seconds, respectively. For Fig. 12, we use MAA as the
admission control algorithm at time t ¼ 0. The three tagged
clients have maximum average waiting time requirements
of 15.771, 12.988, and 8.775 seconds, respectively. From
these figures, we observe that both SBDA and CBDA are
very effective in adapting to the workload of the server. All
three tagged clients achieve an average waiting time less
than their maximum average waiting time requirements.
However, note that since CBDA has a much lower
computation complexity, it is the preferred algorithm.

5.3.2 Using MAA under Markov-Modulated

Poisson Arrivals

We consider the capability of the proposed adaptation
algorithms when the input traffic is non-Poisson. In this
experiment, the aggregate request arrival rate has a mean of
�r ¼ 1:2. However, the traffic generation of each client is by
a Markov-modulated Poisson Process. Figs. 13 and 14
illustrate the waiting time and probability density function
of SBDA and CBDA algorithms under MMPP, respectively.
The admission control was carried out using the MAA. The
three tagged clients have the maximum average waiting
time requirements of 15.771, 12.988, and 8.775 seconds,
respectively. From Figs. 13 and 14, we observe that both
SBDA and CBDA can adapt to the workload and their
waiting time averages are less than their maximum average
waiting time requirements. Note that, since CBDA has a
much lower computational complexity, we should use
CBDA to perform end point adaptation.

5.3.3 Aggregate Utility under Poisson, Pareto,

Markov-Modulated Poisson Arrivals

We compare the aggregate utility of all the admitted
requests for the SBDA and CBDA adaptation algorithms.
The waiting time requirements of the clients are drawn
uniformly from ½6; 20� seconds. The aggregate request rate is
�r ¼ 1:0. The arrival process can be generated by a Poisson,
Pareto, or Markov-modulated Poisson process. The desired
differentiation ratios are r1;2 ¼ r2;3 ¼ 1:4. After admission
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Fig. 10. Waiting times for three differents clients wherein the system

workload is reduced by 30 percent at t ¼ 25 ? 106 seconds.

Fig. 11. Waiting times for three different clients under MPA admission control. (a) SBDA: Admission control using MPA. (b) CBDA: Admission control

using MPA.



control (by either MPA or MAA), we classify clients into

N ¼ 3 classes. We simulate the system for 50� 106 seconds.

During the simulation period, admitted clients can change

class by using either the SBDA or CBDA algorithms

described in the previous section. The arrival rate of each

client can change during the simulation. Each client has the

same arrival rate within a measurement period of length T .

At the end of each measurement period, each client will

change the arrival rate with probability of 0.8 that the

arrival rate is equal to the maximum arrival rate, with

probability of 0.1 that the arrival rate is equal to 90 percent

of the maximum arrival rate, and with probability of 0.1 that

the arrival rate is equal to 80 percent of the maximum

arrival rate. Table 7 illustrates the aggregate utility of

transmitted packets under the SBDA and CBDA adaptation

algorithms with different arrival processes. Irrespective of

the adaptation algorithm (MPA or MAA) and the arrival

process (Poisson, Pareto, or MMPP), CBDA obtains a larger

aggregate utility and the achieved differentiation ratios

ri;iþ1 are also nearer to the desired ratios.
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Fig. 12. Waiting times for three different clients under MAA admission control. (a) SBDA: Admission control using MAA. (b) CBDA: Admission control

using MAA.

Fig. 13. Waiting time for three different clients under MAA admission control, MMPP arrival process. (a) SBDA: Admission control using MAA.

(b) CBDA: Admission control using MAA.

Fig. 14. Probability density function for three different clients under MAA admission control, MMPP arrival process. (a) SBDA: Admission control

using MAA. (b) CBDA: Admission control using MAA.



5.3.4 Aggregate Utility under Real Web Traces

We compare the aggregate utility of all admitted requests
for the SBDA and CBDA adaptation algorithms using real
Web trace data. There are 200 potential clients. The waiting
time requirements of the clients are drawn uniformly from
½6; 20� seconds. The arrivals of request are obtained from real
traces of Web requests (UC Berkeley home IP Web traces
[1]). The target differentiation ratios are r1;2 ¼ r2;3 ¼ 1:4. The
service rate is normalized to one. After admission control by
MAA, we classify clients into N ¼ 3 classes. During the
simulation period, admitted clients can change class by
using either the SBDA or CBDA algorithms described in the
previous section. The arrival rate of each client is drawn
from the Web trace data. Each client has the same arrival
rate within a measurement period of length T . At the end of
each measurement period, each client will change the
arrival rate with probability of 0.8 that the arrival rate is
equal to the maximum arrival rate, with probability of 0.1
that the arrival rate is equal to 90 percent of the maximum
arrival rate, and with probability of 0.1 that the arrival rate
is equal to 80 percent of the maximum arrival rate. Table 8
illustrates the aggregate utility of all the admitted clients
under the SBDA and CBDA algorithms. CBDA usually
obtains a larger aggregate utility than SDBA. The achieved
differentiation ratios ri;iþ1 are also closer to the target ratios.
Once again, since the CBDA algorithm has a much lower
computational complexity as compared to the SBDA
algorithm, we should use CBDA for performing the end
point adaptation.

6 RELATED WORK

We briefly summarize related research. Recently, various
authors have suggested that it is important to consider
differentiated services for Web servers [3], [8], [18] in order
to complement the Internet differentiated services model. In
[3], the authors propose a centralized algorithm to perform
server partitioning so as to provide differentiated services.
In [8], the authors propose to use the shortest-connection-
first algorithm. Differentiation is made for short and long
connections. Using their algorithm, short connections have
a significant performance gain while long connections pay
relatively little penalty. In [18], the authors consider a server
that provides prioritized service to different classes of users.
In [13], the authors use performance isolation and admis-
sion control to design a front-end algorithm to support a
new Web service model. In [4] and [7], the authors work on

session-based traffic. They propose a dynamic scheduling
algorithm to discriminate the scheduling of requests so as to
control overload in Web servers. The idea of the algorithm
is to admit requests seeming to have a larger contribution in
the future. In [6], the authors propose a Service Differentiat-
ing Internet Server which uses prioritized services to
differentiate services. It consists of two trials of admission
control processes: the latter one sends feedback to clients to
reduce further retrying from clients so as to reduce
congestion. In [5], the authors propose an admission control
algorithm, PACERS, to provide delay bounds and different
levels of service to incoming requests. It uses estimation of
request rates and response time. Inaccurate estimations are
dynamically adjusted. In [2], the authors apply control
theory to Internet server performance control. They imple-
ment a utilization control loop to satisfy a prespecified
bound and individual time constraints. They also demon-
strate extensions to provide performance isolation, service
differentiation, excess-capacity sharing, and QoS guaran-
tees. In [12], the authors consider a Web service which
provides bounded latency for different classes of requests.
In particular, the authors consider isolation among service
classes as well as session control to protect classes from
performance degradation due to overload. The latency
requirements and service model considered in [12] are not
PDDS, but it is interesting to see how one can incorporate
the proposed algorithms into our work. Last, the authors in
[9] propose an elegant method to select classes under PDDS
so that requests can achieve absolute QoS performance. Our
work on admission control uses a similar analytical model
and similar definitions as their work. The major differences
between our work and theirs are: 1) we provide admission
control so that we can guarantee the QoS requirements of all
admitted clients, and 2) our class selection algorithms (MPA
and MAA) have lower (polynomial time) computational
complexity.

7 CONCLUSION

We consider a PDDS-enabled Web server. The advantage of
this type of service is that the operator of the Web server can
provide fixed and prespecified performance spacings between
different classes of requests. Based on the performance
spacings, the operator can legitimately charge a higher
usage cost for clients in a higher service class. Each client
has a maximum average waiting time QoS requirement. We
prove that the general assignment problem is NP-complete.
We present two efficient admission control algorithms that
either maximize the potential profit or maximize the
number of admitted clients into the system. We show that
these admission control algorithms are computationally
efficient and, at the same time, the resulting class vector is a
minimum feasible admitted class vector. To further reduce

LEE ET AL.: A PROPORTIONAL-DELAY DIFFSERV-ENABLED WEB SERVER: ADMISSION CONTROL AND DYNAMIC ADAPTATION 15

TABLE 7
SBDA versus CBDA: Aggregate Utility

of All Transmitted Packets

The numbers in parenthesis indicate the two achieved differentiation
ratios.

TABLE 8
SBDA versus CBDA: Aggregate Utility of All Admitted Clients

and Achieved Waiting Time Ratios



the usage cost, we also present two end point adaptation
algorithms. One is server-based while the other is dis-
tributed. The distributed approach is based on a noncoo-
perative game technique. We show that the distributed
approach has lower computational cost and can dynami-
cally adapt to the server’s workload. Experiments are
carried out to illustrate the effectiveness of these algorithms
under different parameters, e.g., different traffic generation
processes (Poisson, MMPP, or Pareto), different waiting
time ratio specifications and different utility functions. Last,
we believe that a similar proportional delay model [10], [9],
[16] can be applied to any system for which request waiting
time may significantly impact end user performance, such
as P2P, database, and networking systems.
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