
1

Multi-class Multi-Server Threshold-based Systems: a

Study of Non-instantaneous Server Activation∗

Cheng-Fu Chou, Leana Golubchik, and John C. S. Lui

Abstract

In this paper, we consider performance evaluation of a system which sharesK servers (or resources) amongN heteroge-

neous classes of workloads, where server allocation and de-allocation for classi is dictated by a class specific threshold-based

policy with hysteresis control. In particular, the server activation time for classi is non-instantaneous. There are many sys-

tems and applications where a multi-class threshold-basedqueueing system can be of great use. One important utility of

using threshold-based approaches is in situations where applications may incur server usage costs. In these cases, oneneeds

to consider not only the performance aspects but also the resulting cost/performance ratio. The motivation for using hysteresis

control is to reduce the unnecessary cost of server setup (oractivation) and server removal (or deactivation) wheneverthere

are momentary fluctuations in workload. Moreover, servers in such systems and applications are often needed by multiple

classes of workloads, and hence, it is desirable to find good approaches to sharing server resources among the different classes

of workloads, preferably without statically partitioningthe server pool among these classes. An important and distinguishing

characteristic of our work is that we consider the modeling and analysis of a multi-class system withnon-instantaneousserver

activation, which is of use in studying many important applications. The main contributions of this work are (a) in developing

an efficient approximation method for solving such models, (b) in verifying the convergence of our iterative method, and(c)

in evaluating the resulting accuracy of the technique for computing performance measures of interest, which can subsequently

be used in making system design choices.

I. INTRODUCTION

In this paper, we consider performance evaluation of a multi-class multi-server system, in whichK

servers are shared amongN heterogeneous classes of workloads andK ≥ N . In this multi-class multi-

server system, servers (resources) are needed by multiple classes of workloads (applications) and we

also note that not all classes of requests are operating at high load at the same time. That is, when the

traffic loading of classi is low, it is not desirable to operate unnecessarily many servers for that class, due

to the incurred usage costs as well as due to the performance consequences of that class under-utilizing

the servers while other classes are (possibly) experiencing high traffic workloads. On the other hand,
∗C. F. Chou ccf@csie.ntu.edu.tw is with National Taiwan University. and L. Golubchik leana@cs.usc.eduis with University of Southern

California and J. C. S. Lui cslui@cse.cuhk.edu.hk is with Chinese University of Hong Kong. Contact author L. Golubchik.Research has

been funded in part by the NSF ANI-0070016 grant (part of the joint NSF/CNPq program), by the RGC and the CUHK Mainline Research

Grant, as well as by the Integrated Media Systems Center, a National Science Foundation Engineering Research Center, Cooperative

Agreement No. EEC-9529152. Any Opinions, findings and conclusions or recommendations expressed in this material are those of the

author(s) and do not necessarily reflect those of the National Science Foundation.

2

it is also not desirable for a system to exhibit very long delays, which can result from lack of servers

under heavy loads. Therefore, it is an important issue for the system to figure out a good approach to

use few resources to serve those requests from allN classes and still attain a good cost/performance

ratio instead of statically partitioning the server pool among the classes. To deal with the above issue

and efficiently utilize system resources for such multi-class multi-server system, we propose a threshold-

based approach to dynamically assign servers to services ofdifferent class requests , i.e., how to allocate

or de-allocate servers to different classes is governed by aset of thresholds. In this work we use “multi-

class multi-server threshold-based system” to refer to ourproposed threshold-based system which is able

to adaptively share the servers among different workloads without statically partitioning the server pool

among the classes.

The motivation for using a threshold-based approach in a system is that applications may incur server

usage costs. Thus, one not only needs to consider the performance but also the cost/performance ratio.

One approach to improving the cost/performance ratio of a multi-class multi-server system is todynam-

ically react to changes in workload through the use ofthresholds. For instance, one can maintain the

expected response time of an application at an acceptable level and at the same time, maintain an accept-

able cost for operating that system by dynamically adding orremoving servers depending on the traffic

loading. To possess the above property, one can use the threshold-based server allocation approach to

reduce the sensitivity of performance characteristics of aclass of customers to the workload of other

classes without having to statically partition resources between the classes. Note that in many cases, a

“simple” threshold-based system may not suffice since it is prone to workload oscillations. One reason

for avoiding oscillations in the above mentioned system is that there may be server setup and removal

costs. Such workload oscillations coupled with non-negligible server setup and removal costs can result

in a poor cost/performance ratio of a system. Ideally, one wants to add servers only when a system is

moving toward a heavily loaded operation region, and one wants to remove servers only when a system

is moving to-wards a lightly loaded operation region — it is not appropriate to alter the number of servers

during momentary and small changes in workload. Such oscillation behavior can be avoided by adding

hysteresisbehavior. Hence the motivation of this work is looking for efficient analysis techniques of

threshold-based queueing systems with hysteresis control.

There are many applications where threshold-based resource management policies can be employed,

and thus performance evaluation of such systems through analysis ofmulti-classthreshold-based queue-

ing systems with hysteresis control can be of great use. For example, the Novell file server maintains

a memory pool wherein a fraction of it is used for communication buffers and a fraction is used for

file buffers, where threshold-based policies are implemented in order to make decisions about when to

increase the number of network buffers and when to decrease it; the threshold values are based on per-

3

ceived packet losses due to increases in network traffic activity. Similarly, OS design has been moving

toward maintaining a common buffer space pool that can be dynamically managed between the various

I/O processes. Another example application is server replication for different classes of Internet services

for an overlay network. As the number of requests for a particular class of service increases, the number

of servers needed to maintain an acceptable level of quality-of-service guarantees also increases. The

use of a threshold-based approach can result in a cost-controlled creation/deletion of servers based on

the changes in the workload for a particular class of request. Thus, the model presented in this paper and

its efficient solution will be beneficial for many systems andapplications.

Now, we begin to give an overview of the multi-class multi-server threshold-based system, which

has a total ofK servers. In particular, the number of servers employed for servicing classi customers,

i ∈ {1, . . . , N}, is governed by aforward thresholdvectorF i = [Fi(1), Fi(2), . . ., Fi(Ki − 1)] (where

Fi(1)<Fi(2)<· · ·<Fi(Ki−1)) and areverse thresholdvectorRi =[Ri(1), Ri(2), . . ., Ri(Ki−1)] (where

Ri(1)<Ri(2)< · · ·<Ri(Ki − 1)), whereKi is the maximum number of servers that can be allocated

to serve classi customers (i.e., the system includes hysteresis control).The service time of classi

customers is represented by an exponential random variablewith meanµ−1
i . The server activation time

for classi is non-instantaneous, and it is represented by an exponential random variable with meanβ−1
i .

In general,µi 6= µj andβi 6= βj for i, j ∈ {1, . . . , N}. Next, we explain how to allocate or de-allocate

servers to classes in the system as follows. Initially, eachclass is allocated a minimum of one server.

When a classi customer arrives to an empty system (i.e., when there are no other classi customers), this

newly arrived classi request is served by a single server. Arrival of a classi customer when there are

alreadyFi(j) classi customers in the system (withj servers already allocated to serve classi), causes

an attempt to allocate one additional server to classi, wherej = 1, . . . , Ki − 1. Departure of a classi

customer which leaves behindRi(j) classi customers (withj + 1 servers already allocated to this class

prior to this departure event), causes a de-allocation of a server from classi, wherej = 1, . . . , Ki−1. In

other words, this forces the return of a server, which was earlier allocated to classi, back to the pool of

“free” servers which are available for allocation to all classes of customers. Therefore, allN classes of

applications share a common pool ofK servers, withdynamicallocation of servers to classes governed

by a set of thresholds with hysteresis behavior. Note that when
∑N

i=1 Ki ≤ K, then the classes do not

“interfere” with each other since the total peak resource demand is less than or equal to the total number

of resources in the system. Of course, a more interesting andchallenging case is when
∑N

i=1 Ki > K.

In other words, we want to investigate the performance of each class of workload when the number

of common servers is less than the total peak resource demandof all classes. By taking advantage of

the fact that not all classes are operating at high load at thesame time, one may use fewer resources

(than with static resource partitioning) to serve requestsfrom all N classes and still achieve a good

4

cost/performance ratio.

Here arises another challenging problem, i.e., how to determine what are “good” values for these

forward and reverse threshold vectors, which are a functionof many factors, such as the server setup,

usage, and removal costs, characteristics of the arrival process and the service rates, as well as the

possible “interaction” between the different classes of workloads. The goal of this work is to develop an

efficient method for solution of multi-class multi-server threshold-based queueing system with hysteresis

behavior wherein the server activation isnon-instantaneous. The question of optimal values for the

threshold vectors is, in general, a difficult problem and is outside the scope of this paper. On the other

hand, we want to point out that efficient model solution techniques can be of great use in evaluating

various parameter settings (such as the threshold values).Such analytical models are especially useful

at design time, when the speed of evaluation is key. Thus, we believe that our efficient solution method

facilitates accessible experimentations for investigating the “quality” of various threshold parameters.

Given the above motivation for the use of threshold-based systems with hysteresis control, we present

an efficient technique for solving the corresponding analytical models and computing various perfor-

mance measures of interest, in the context ofnon-instantaneousserver activation. We begin with a very

brief survey of some of the existing literature on the topic.A two-server system is considered in [14],

[15], [21]. An approximate solution for solving a degenerate form of this problem (where all thresholds

are set to zero) is presented in [7], [9]; an approximate solution for a system that employs (non-zero)

thresholds is presented in [22] (but without hysteresis). In [8], the authors solve a multi-server threshold-

based queueing system with hysteresis, using the Green’s function method [6], [10], [11]. In [17] we

give a solution of several forms of the single class, multi-server threshold-based queueing system with

hysteresis using stochastic complementation [18]. Techniques for computation of bounds for perfor-

mance measures of single class, multi-server threshold-based queueing systems with hysteresis and non-

instantaneous server activation are given in [3]. Lastly, [4] provides a solution technique for multi-class,

multi-server threshold-based system with hysteresis andinstantaneousserver activation. In this paper,

we extend and generalize that work tonon-instantaneousserver activation; the non-instantaneous server

activation can have a significant impact on the system performance (as will be illustrated in Section

V) and hence is an important model characteristic to consider. Specifically, in this work we consider

and solve amulti-class, multi-server threshold-based queueing system with hysteresis control andnon-

instantaneousserver activation.

Thecontributionsof this work are as follows. To the best of our knowledge,noneof the works de-

scribed above give an efficient analytical solution technique for analyzing this model. Since in many

applications, different types of workloads compete for a pool of resources where server activation time

is non-negligible (e.g., it takes a non-zero time to replicate and activate a video server in an overlay

5

network), we consider it an important and distinguishing characteristic of our work. In this paper, we

present an iterative solution technique which solves the multi-class model by “breaking” it up intoN

single class models, “coupled” through a set of model parameters which capture the interaction between

classes. We also illustrate the accuracy of our approach, which efficiently computes performance mea-

sures of interest, through a set of numerical results. Furthermore, we give an proof and discussion about

the convergence of our iterative method to solve the approximate model. This is important since we can

get further understanding of our analytic model such that wecould construct more precise and efficient

analytic model for the multi-class multi-server system. Wealso believe that the efficiency and accuracy

of our iterative approach provides an important step in findingoptimalthreshold values for a multi-class,

multi-server threshold based system with hysteresis andnon-instantaneousserver activation. Finally, we

note that a variety of iterative approaches have been used innumerous approximation techniques (e.g.,

refer to [2]). For instance, an iterative technique for a somewhat different control scheme for dynamic

resource sharing between multiple classes is employed in [19], [20].

The remainder of this paper is organized as follows. In Section II we give a detailed description of

our model. Section III describes our iterative solution approach for this model. The convergence of the

iterative method to solve the approximate model is presented in Section IV. The quality of this approach,

i.e., its accuracy and utility in system design and evaluation is discussed in Section V through the use of

numerical results. Finally, our conclusions are given in Section VI.

II. SYSTEM MODEL

The Markovian model for ourmulti-class, multi-server threshold-basedqueueing system withhys-

teresiscontrol has an infinite state space which can be described as follows. There areK servers in the

system withK ≥ N whereN is the total number of classes of customers. The service timeof differ-

ent classes can be different, and the service time requirements of a classi customer are exponentially

distributed with parameterµi. The customer arrival process is Poisson with rateλ, where with proba-

bility αi an arriving customer is of classi and
∑N

i=1 αi = 1 and1 ≤ i ≤ N . Addition and removal

of servers for serving customers of classi is governed by the forward and the reverse threshold vectors

F i = [Fi(1), Fi(2), · · · , Fi(Ki − 1)] andRi = [Ri(1), Ri(2), · · · , Ri(Ki − 1)] whereFi(j) < Fi(j + 1)

for 1 ≤ j ≤ Ki − 2, Ri(j) < Ri(j + 1) for 1 ≤ j ≤ Ki − 2, andRi(j) < Fi(j) for 1 ≤ j ≤ Ki − 1.

Note that, unlike in [4], [5], the activation of a server for classi is non-instantaneouswhere the server

activation time is exponentially distributed with meanβ−1
i . As mentioned in Section I, this is motivated

by the fact that in many applications addition of a new servertakes a non-negligible amount of time.

Each of theseK servers is able to serve a customer of any class. Each classi starts out with one server

and may attempt to obtain at mostKi servers. These servers are allocated for service of classi customers

6

and returned to the pool of available servers based on the number of classi customers currently in the

system (as stated more formally below). In general,
∑N

i=1 Ki may be greater than, equal to, or less than

K; although the more interesting and challenging case is where
∑N

i=1 Ki > K. We model this system as

a Markovian processM, using two different variations. In the first variation, we constrain the number

of classi customers when the number of servers allocated to classi is less thanKi (we motivate this

variation below). The Markovian model for this variation isreferred to asMa. In the second variation,

we do not use such a constraint, and the Markovian model for this variation is referred to asMb. We

now give a more detailed description of each of these models.

A. Ma with constraint vectora

The Markovian processMa, with a constraint vectora, has the following state spaceSa:

Sa = {(n1, s1, l1, . . . , nN , sN , lN) | ni ≥ 0, li ∈ {1, . . . , Ki},

N
∑

i=1

li ≤ K, li ≥ si, Fi(li) ≤ ni ≤ Fi(li) + ali
i ,

si ∈ {1, 2, . . . , Ki}, i = 1, . . . , N}

whereni is the number of classi customers in the system,si is the number of “busy” (or active)

servers currently serving classi customers, andli is the number of servers allocated to classi, not

all of which may currently be available for service of classi customers since serveractivationprocess

is non-instantaneous. Upon an arrival of a classi customer, ifFi(j) ≤ ni ≤ Fi(j) + aj
i whereaj

i ≥ 0

andj = li, the system attempts to allocate an additional server for service of classi customers, which

is possibleonly when the system has sufficient amount of resources, i.e., if
∑N

i=1 li < K. Note that

in a system where
∑N

i=1 Ki > K, it may not always be possible to allocate another server since it is

possible that allK servers may have already been allocated. In this case, the arriving classi customer

joins the queue of classi requests as long asFi(j) ≤ ni < Fi(j) + aj
i (whereaj

i ≥ 0 andj = li). When

ni = Fi(j) + aj
i , the arriving classi customer is rejected by the system if there is no server available for

allocation to classi (i.e., if
∑

li = K). Forcorrectness, we assume the following constraint on allaj
i :

Fi(j) + a
j
i < Fi(j + 1) + a

j+1
i for i = 1, 2, . . . , N andj = 1, 2, . . . , Ki − 1.

We also assume thataKi

i = ∞; hence, we have no restrictions on queue length when the maximum

number of servers that may be needed by classi have been allocated (i.e., whenli = Ki). The limitation

on queue length whenli < Ki can be motivated by system design considerations. For example, if the

system reaches a point where its design dictates that another server be allocated for classi workload but

a server is not available, then one may assume that the systemis temporarily overloaded and rejection

of customers is a reasonable approach to dealing with overload conditions. Of course, a “real” system

7

will also not have an infinite queue length, when the maximum number of servers (Ki) for classi has

been allocated. In this case, we may either (1) use a finite queue length model (i.e.,aKi

i is finite) and

study the system’s performance under a given queue size limitation, or (2) allow an infinite queue length

(i.e., aKi

i = ∞) and use the model to study queue length requirements of the corresponding system.

Our solution methodology (refer to Section III) allows for either type of a model, but for simplicity of

exposition, in the remainder of the paper we will focus our discussion on the infinite queue version (i.e.,

whereaj
i is finite, forj = 1, . . . , Ki − 1, andaKi

i = ∞).

We now give a detailed description and formal structure for the transitions ofMa. The transitions

corresponding to an arrival of a classi customer fall into one of the following categories:

C1 : no need to allocate another server to classi. The conditions for this category could be (i) the number

of classi customers does not cross a corresponding forward thresholdor (ii) there are alreadyKi servers

allocated to classi or (iii) there are no available servers in the system due to resource contention among

the different classes.

C2 : a need to allocate another server to classi. The condition for this category is that the number of

allocated server for classi is less thanKi and there is an available server in the system and the number

of classi customers crosses a forward threshold.

The formal structure for these arrival transitions is as follows.

(n1, s1, l1, . . . , ni, si, li, . . . , nN , sN , lN)
λαi

> (n1, s1, l1, . . . , ni + 1, si, li, . . . , nN , sN , lN) if C1 (1)

(n1, s1, l1, . . . , ni, si, li, . . . , nN , sN , lN)
λαi

> (n1, s1, . . . , ni + 1, si, li + 1 . . . , nN , sN , lN) if C2 (2)

where conditionsC1 andC2 are

C1 =

(

(li < Ki) ∧ (ni < Fi(li))

)

∨

(

li = Ki

)

∨

(

(li < Ki)∧ (
N

∑

j=1

lj = K) ∧ (Fi(li) ≤ ni < Fi(li) + ali
i)





C2 =

(

li < Ki

)

∧





N
∑

j=1

li < K



 ∧

(

Fi(li) ≤ ni ≤ Fi(li) + ali
i

)

.

The transitions corresponding to a departure of a classi customer fall into one of the following categories:

C3 : no need to deactivate a server. The conditions for this category are either (i) only one server is

allocated to classi or (ii) the number of classi customers does not drop below a reverse threshold.

C4 : a need to deactivate a server. The condition for this category is that more than one server is allocated

to classi and the number of classi customers drops below a corresponding reverse threshold.

The formal structure for these departure transition is as follows.

(n1, s1, l1, . . . , ni, si, li, . . . , nN , sN , lN)
siµi

>

8

(n1, s1, l1, . . . , ni − 1, si, li, . . . , nN , sN , lN) if C3 (3)

(n1, s1, l1, . . . , ni, si, li, . . . , nN , sN , lN)
siµi

>

(n1, s1, l1, . . . , ni − 1, min(si, li − 1), li − 1, . . . , nN , sN , lN) if C4 (4)

where conditions forC3 andC4 are

C3 =

(

(ni > 0) ∧ (li = 1)

)

∨

(

(ni > 0) ∧ (ni−1>Ri(li−1))∧ (li >1)

)

C4 =

(

(ni > 0) ∧ (ni − 1 = Ri(li − 1)) ∧ (li > 1)

)

.

Lastly, there are transitions corresponding to classi server activations. The condition for these transitions

is that the number of active servers is less than the number ofallocated servers. The formal structure for

these activation transitions is as follows.

(n1, s1, l1, . . . , ni, si, li, . . . , nN , sN , lN)
(li − si)βi

> (n1, s1, l1, . . . , ni, si + 1, li, . . . , nN , sN , lN) if C5 (5)

where conditionC5 = (li > si).

B. Mb without constrainta

The second model variation isMb, which represents a Markovian process without constraintson the

number of classi customers. It has the following state space,Sb:

Sb = {(n1, s1, l1, . . . , nN , sN , lN) |ni ≥ 0, li ∈ {1, . . . , Ki}, li ≥ si, si ∈ {1, . . . , Ki},
∑

si ≤ K, i = 1, . . . , N}

whereni is the number of classi customers in the system,si is the number of “busy” (or active) servers

currently servicing classi customers, andli is the number of servers “expected” to be allocated/activated

for classi use — more specifically, according to the threshold vectors,li serversshould bein use by class

i customers but may not be, because (i) multiple classes of customers are competing for these servers

and (ii) in our model server activation isnon-instantaneous. Hence, a major difference betweenMa and

Mb is that we use a constraint vectora to limit the queue length whenli < Ki in Ma while we do not

limit the queue length inMb. We give a comparison study between these two models in Section V.

We now give a detailed description and formal structure for the transitions ofMb. The transitions

corresponding to arrivals of classi customers fall into one of the following categories:

C1 : no need to increase the number of expected servers (according to the forward threshold vector) for

classi. The conditions for this category could be (i) the number of classi customers does not cross a

corresponding forward threshold or (ii) the number of expected servers is equal toKi.

9

C2 : a need to increase the number of expected servers for classi. The condition for this category is that

the number of expected servers for classi is less thanKi and the number of classi customers crosses a

forward threshold.

The formal structure for these arrival transitions is as follows.

(n1, s1, l1, . . . , ni, si, li, . . . , nN , sN , lN)
λαi

>(n1, s1, l1, . . . , ni + 1, si, li, . . . , nN , sN , lN) if C1 (6)

(n1, s1, l1, . . . , ni, si, li, . . . , nN , sN , lN)
λαi

>(n1, s1, . . . , ni + 1, si, li + 1 . . . , nN , sN , lN) if C2 (7)

where conditionsC1 andC2 are

C1 =



(li < Ki) ∧ (ni < Fi(li))



 ∨



li = Ki





and

C2 =



li < Ki



 ∧



Fi(li) = ni



 .

The transitions corresponding departures of classi customers fall into one of the following categories:

C3 : no need to deactivate a server. The condition for this category is that either (i) the system has only

one server for classi or (ii) the number of classi customers does not drop below a reverse threshold.

C4 : a need to deactivate a server. The condition for this category is that there is more than one server

for classi and the number of classi customers drops below a corresponding reverse threshold.

The formal structure for these departure transitions is as follows.

(n1, s1, l1, . . . , ni, si, li, . . . , nN , sN , lN)
siµi

>

(n1, s1, l1, . . . , ni − 1, si, li, . . . , nN , sN , lN) if C3 (8)

(n1, s1, l1, . . . , ni, si, li, . . . , nN , sN , lN)
siµi

>

(n1, s1, l1, . . . , ni − 1, min(si, li − 1), li − 1, . . . , nN , sN , lN) if C4 (9)

where conditionsC3 andC4 are

C3 =

(

(ni > 0) ∧ (li = 1)

)

∨

(

(ni > 0) ∧ (ni − 1 > Ri(li − 1)) ∧ (li > 1)

)

C4 =

(

(ni > 0) ∧ (ni − 1 = Ri(li − 1)) ∧ (li > 1)

)

.

Lastly, there are the transitions corresponding to classi server activation. The condition for these transi-

tions is that (i) the number of active servers is less than thenumber of “expected” servers and (ii) there

10

is an available server in the system. The formal structure for these server activation transitions is as

follows.

(n1, s1, l1, . . . , ni, si, li, . . . , nN , sN , lN)
βi

> (n1, s1, l1, . . . , ni, si + 1, li, . . . , nN , sN , lN) if C5 (10)

where the conditionC5 =
(

(li > si) ∧ (
∑N

j=1
lj < K)

)

.

III. I TERATIVE METHOD

In this section we describe aniterative approach to solving the models presented in Section II. As

described in Section II, the corresponding Markov process1, M, is infinite in multiple dimensions. One

can choose to solve this model by (a) simulating the Markovian processM, or (b) looking for special

structure, or (c) looking for efficient approximation techniques. BecauseM appears to lack sufficient

structure for an efficient exact solution technique (e.g., such as the matrix-geometric technique), we

describe an approximate iterative solution technique for solving this model. The use of an approximation

is motivated by the desire to construct an efficient solutionapproach (and simulation can be significantly

slower than analytical solutions) as well as an accurate one(and iterative techniques can often produce

fairly accurate results).

A. Basic Approach

Let us first describe the basic approach to solving the above defined Markovian model. We first break

up the original modelM into N single class Markovian sub-models, namely,M1,M2, . . . ,MN (see

Section III-B for a more detailed description of theMi’s). TheseN Markovian models are “coupled”

via a set of blocking probabilities. Specifically, the interaction between classes occurs when classi

requires allocation of another server (due to the crossing of a forward threshold), and no servers are

available in the system (i.e., allK servers have already been allocated) due to the workload of other

classes. Therefore, in general, there is a non-zero probability that classi, which has already (a) allocated

si servers in the case ofMa or (b) expected to be allocated/activatedsi servers in the case ofMb, is not

able to add a server upon the forward threshold crossing. Letus refer to this as a “blocking” probability

Pi,si
, which approximatelycaptures this interaction between classes. Note that,si = l (number of

allocated servers for classi) in Ma while si = l (number of expected to be allocated/activated servers

for classi) in Mb.

We now formally describe our iterative approach. LetM
(n)
i be the Markovian process correspond-

ing to the individual classi model at iterationn with a corresponding steady state probability vector

π̃
(n)
i . The parameters of eachM(n)

i are computed as a function of blocking probabilities,P
(n)
i =

1In the remainder of the paper, we useM to represent eitherMa or Mb, for simplicity of exposition.

11

{P
(n)
i,1 ,P

(n)
i,2 , . . . ,P

(n)
i,Ki

}, which are in turn computed as a function of the steady state probability vec-

tor, π̃(n−1)
i , obtained during the previous iteration. (We give the details of the construction ofM(n)

i and

the computation of̃π(n)
i below2.) Then, a high level description of our iterative approach is as follows (a

more detailed and formal description is given in Section III-C):
1. ConstructM(0)

1 ,M
(0)
2 , . . . ,M

(0)
N ; setn = 0 (this is iteration0);

2. SolveM(n)
1 ,M

(n)
2 , . . . ,M

(n)
N , i.e., compute the corresponding steady state probabilities to obtain

π̃
(n)
1 , π̃

(n)
2 , . . ., π̃

(n)
N ; setn = n + 1;

3. Use these steady state probabilities to computeP
(n)
1 , P

(n)
2 , . . ., P

(n)
N ;

4. Use these blocking probabilities to update the individual class models, i.e., constructM(n)
1 , M(n)

2 ,

. . ., M(n)
N , where for eachi = 1, . . . , N , parameters ofM(n)

i are computed as functions ofP
(n)
i (but not

P
(n)
j wherej 6= i);

5. Continue the iterative process (i.e., go back to step2) until the values of allP i’s converge.

B. Individual Class Model

Since our iterative approach involves solution of individual class models (Mis) we now briefly de-

scribe the classi model, which can be defined as follows. We haveKi servers each with an exponen-

tial service rateµi. Customer arrivals are governed by a Poisson process with rate λi = αiλ. Ad-

dition and removal of servers is governed by the forward and the reverse threshold vectors, namely

F i = [Fi(1), Fi(2), . . . , Fi(Ki−1)] andRi = [Ri(1), Ri(2), . . . , Ri(Ki −1)]. whereRi(j) < Fi(j) and

1 ≤ j ≤ Ki − 1. And, server activation time is exponentially distributedwith rateβi.

Individual Class Model for Ma

Given aKi-serversingleclass threshold-based queueing system with hysteresis control and constraint

vectorai, we model it as a Markov processMi with the following state spaceSi:

Si = {(k, j, l) | k ≥ 0; j, l ∈ {1, 2, . . . , Ki}, l ≥ j, Fi(l) ≤ k < Fi(l) + al
i}

wherek is the number of customers in the classi queueing system,j is the number of busy (active)

servers, andl is the number of allocated, not all of which may currently be activated due to thenon-

instantaneousnature of server activation in our model. Figure 1 illustrates the state transition diagram

for such a system whereKi = 2. Formally, the transition structure ofMi can be specified as in Table I3,

where all transitions are from state(k, j, l), with the state description given above:

2Note that there are multiple approaches to constructingM
(0)
i ’s, i.e., multiple ways to start the iteration; we give details of one such

approach below.
3Note that, the transition rates described here are a function of the blocking probabilities,Pi,l, which change from iteration to iteration, as

outlined above; however, for simplicity of notation, we do not indicate the iteration step number in the description of the transition structure

of a classi model.

12

.............

.........

.....

.....

.........

0,1,1 1,1,1
Fi(1),1

,1

Fi(1)+a
1
i

1,1

λi

µi

λi Pi,1λi

µi
µi

λi Pi,1

µi

Ri(1)+1,1

,2

µi

λi

µi

Ri(1)+2,1

,2

Fi(1)+1

,1,1

λi (1-Pi,1)

Fi(1)+1

,1,2

Fi(1)+2

,1,2

Fi(1)+a
1
i

+1,1,2
Fi(1)+a

1
i

+2,1,2

Ri(1)+1,2

,2

Ri(1)+2,2

,2

Fi(1)+1

,2,2

Fi(1)+2

,2,2

Fi(1)+a
1
i

+1,2,2

Fi(1)+a
1
i

+1,2,2

λi (1-Pi,1) λi (1-Pi,1)

λi

µi

λi

µi

λi

µi

λi

µi

λi

µi

λi

µi

λi

2µi

λi

2µi

λi

2µi

λi

2µi

λi

2µi

λi

2µi

λi

2µi

βi βi βi βi βi βi

2µi

Fig. 1. State transition diagram ofMa for a classi system withKi = 2.

Next State Rate Condition for transition

(k + 1, j, l) λi (1 ≤ l < Ki) ∧ (k < Fi(l))

(k + 1, j, l) λi l = Ki

(k + 1, j, l) λiPi,l (1 ≤ l < Ki)∧ (Fi(l) ≤ k < Fi(l) + al
i)

(k + 1, j, l + 1) λi(1 − Pi,l) (1 ≤ j < Ki)∧ (Fi(l) ≤ k < Fi(l) + al
i)

(k − 1, j, l) jµi (k ≥ 1)∧ (1 < l ≤ Ki)∧ (k − 1 > Ri(l − 1))

(k − 1, min(j, l − 1), l − 1) jµi (k ≥ 1) ∧ (1 < l ≤ Ki) ∧(k − 1 = Ri(l − 1))

(k − 1, j, l) µi (l = j = 1) ∧ (k ≥ 1)

(k, j + 1, l) (l − j)βi (l > j)

TABLE I

DESCRIPTION OF STATE TRANSITION FORMa

Individual Class Model for Mb

Given aKi-serversingleclass threshold-based queueing system with hysteresis control, we model it as

a Markov processMi with the following state spaceSi:

Si = {(k, j, l) | k ≥ 0; j, l ∈ {1, 2, . . . , Ki}, l ≥ j}

wherek is the number of customers in the classi queueing system,j is the number of busy (active)

servers, andl is the number of servers “expected” to be allocated and activated. Figure 2 illustrates the

state transition diagram for such a system whereKi = 2. Formally, the transition structure ofMi can

be specified as in Table II, where all transitions are from state (k, j, l), with the state description given

above:

Let us now proceed to a more detailed description of the iterative solution technique for themulti-class

system. We do this under the assumption that, givenP i, we know how to constructMi (using Table I or

Table II above) and computẽπi, the steady state probability vector corresponding toMi. The procedure

13

.............

.........

.........

0,1,1 1,1,1
Fi(1),1

,1

λi

µi

λi

µi

Ri(1)+1,1

,2

µi

λi

µi

Ri(1)+2,1

,2

λi

Fi(1)+1

,1,2

Fi(1)+2

,1,2

Fi(1)+a
1
i

+1,1,2
Fi(1)+a

1
i

+2,1,2

Ri(1)+1,2

,2

Ri(1)+2,2

,2

Fi(1)+1

,2,2

Fi(1)+2

,2,2

Fi(1)+a
1
i

+1,2,2

Fi(1)+a
1
i

+1,2,2

λi

µi

λi

µi

λi

µi

λi

µi

λi

µi

λi

µi

λi

2µi

λi

2µi

λi

2µi

λi

2µi

λi

2µi

λi

2µi

λi

2µi

2µi

(1− Pi,1)βi (1− Pi,1)βi (1− Pi,1)βi (1− Pi,1)βi (1− Pi,1)βi (1− Pi,1)βi

Fig. 2. State transition diagram ofMb for a classi system withKi = 2.

Next State Rate Condition

(k + 1, j, l) λi (1≤ l<Ki)∧(k<Fi(l))

(k + 1, j, l) λi (l = Ki)

(k + 1, j, l + 1) λi (1 ≤ j < Ki)∧ k = Fi(l)

(k − 1, j, l) jµi (k ≥ 1)∧ (1 < l ≤ Ki)∧ (k − 1 > Ri(l − 1))

(k − 1, min(j, l − 1), l − 1) jµi (k ≥ 1) ∧ (1 < l ≤ Ki) ∧(k − 1 = Ri(l − 1))

(k − 1, j, l) µi (l = j = 1) ∧ (k ≥ 1)

(k, j + 1, l) (1 − Pi,j)βi (l > j)

TABLE II

DESCRIPTION OF STATE TRANSITION FORMb

for computingπ̃i, is given in Section III-E.

C. Iterative Computation

In this subsection, we describe the framework for the iterative procedure. This iterative procedure

is similar to our work in [4] but we extend it to handle the casewherein the server activation event is

non-instantaneous. First, note that in general, there are two cases to consider here:

case 1:
∑N

i=1 Ki ≤ K; that is, we have a “trivial” case, where the classes do not interfere with each

other, and we can solve each individual class model once (i.e., no need for iteration) using the procedure

given in Section III-E withPi,si
= 0, ∀i, si.

case 2:
∑N

i=1 Ki > K, where it is possible that an attempt at server allocation for classi may fail because

all K servers in the system are currently allocated. As describedabove, in this case a form of blocking

occurs and we solve the model using the iterative approach outlined in Section III-A whose details are

now presented below.

14

Note also that the main difficulty in the iterative techniqueoutlined in Section III-A is in determining

an appropriate procedure for computing the blocking probabilities which capture the class interaction,

i.e., the probabilities that, upon a forward threshold crossing, it is not possible to allocate another server

to classi. Recall that, during thenth iteration (n ≥ 0), P(n)
i,si

is the blocking probability of classi

(1 ≤ i ≤ N) to whichsi servers already have been (a) allocated in the case ofMa or (b) expected to be

allocated/activated in the case ofMb. Before we proceed, let us state the following definitions.
Definition 1: LetX andY be two non-negative random variables having values in{1, 2, ...} and letπX

andπY be their respective probability mass functions. LetZ be another non-negative random variable

whereZ = X + Y ; thenπZ = πX ⊗ πY where⊗ is the convolution operator.

Definition 2: LetX be a non-negative random variable having values in{1, 2, . . . , } and letπX be its

probability mass function. Let

X ′ =

{

X if L1 ≤ X ≤ L2

0 otherwise.

Then the probability mass function ofX ′, denoted byπX ′ , is equal tog(πX , L1, L2) where functiong is

defined such that:

g(πX , L1, L2)[k] = πX ′ [k] =







πX [k]
∑

L2

m=L1

πX [m]
if L1 ≤ k ≤ L2

0 otherwise
(11)

Let π̃
(n)
i [k, j, l] be the steady state probability of classi havingk customers (k ≥ 0) in the system

with j activated servers andl target server allocations (with1 ≤ j ≤ l ≤ Ki), computed during thenth

iteration. Letπ(n)
i denote the steady state probability vector of the number of servers allocated to class

i, whereπ
(n)
i [l] denotes the steady state probability ofl servers having been target allocated to classi, as

computed during thenth iteration. Thus, we have:

π
(n)
i [l] =

Ki
∑

j=1

∑

k

π̃
(n)
i [k, j, l] (12)

Finally, let Q(n)
i be the transition rate matrix corresponding to the classi modelM(n)

i , during thenth

iteration, which is computed using the transition structure ofM(n)
i given in (a) Table I in the case ofMa

or (b) Table II in the case ofMb, andP(n−1)
i,si

, where1 ≤ si ≤ Ki − 1. Then, the iterative procedure is

as follow:

1. Initialization step:setn = 0 and setP(0)
i,si

= 0 for 1 ≤ si < Ki. Given these initial values of blocking

probabilities, for each classi, we can constructQ(0)
i using the transition structure given in (a) Table I in

the case ofMa or (b) Table II in the case ofMb, and then computẽπ(0)
i using the procedure given in

15

Section III-E. Once we compute the steady state probabilityvectorπ̃(0)
i for each classi, we can then

compute their respective server allocation probability vectors,π(0)
i s, using Equation (12). Theπ(0)

i s are

in turn needed in the computation of the blocking probabilities,P(1)
i,si

s (step2 below).

2. Updating of blocking probabilities step:n = n + 1, and

P
(n)
i,si

=























0 if K ≥
∑N

j=1 Kj

0 if K − si >
∑N

j=1,j 6=i Kj

Γ(i, si, n) otherwise

(13)

The first condition in Equation (13) indicates that the system has a sufficient number of servers for all

classes (we include this for completeness). The second condition indicates that the system has sufficient

resources to allocate at least one more server to classi without affecting the maximum possible server

allocation of other classes. In the last condition, theΓ function is used to compute the blocking proba-

bility, at iterationn, for classi which hassi servers already (a) allocated to it in the case ofMa or (b)

expected to be allocated/activated in the cased ofMb.

Γ(i, si, n) can be computed as follows. LetAm(i, si, n) be the random variable, at iterationn, denot-

ing server allocation of classm, when classi has been (a) allocatedsi servers in the case ofMa or (b)

expected to be allocated/activatedsi servers in the case ofMb. Let Υm(i, si, n) be the probability mass

function ofAm(i, si, n). Then we have:

Υm(i, si, n) = g(π(n−1)
m , 1, Lm) (14)

for m = {1, 2, . . . , i − 1, i + 1, . . . , N} where functiong is defined through Equation (11) andLm is as

follows:

Lm =

{

Km if K−si−(N−2)≥Km

K−si−(N−2) otherwise
(15)

andπ(n−1)
m in Equation (14) is computed using Equation (12). The normalization in Equation (14) is

used to account for the fact that if we know that the system already (a) allocatedsi servers to classi

in the case ofMa or (b) expected to be allocated/activatedsi servers to classi in the case ofMb, then

the system only has(K − si) servers remaining. Out of these(K − si) remaining servers, the system

needs to allocate(N − 2) to customers that are neither in classi nor in classm (i.e., the system allocates

at least one server to each class). Therefore, if the system potentially has at leastKm available servers,

thenAm(i, si, n) can have values in{1, . . . , Km}; otherwise, the random variableAm(i, si, n) can only

take on values in{1, 2, . . . , K − si − (N − 2)}. Let B(i, si, n) be a non-negative random variable, at

16

iterationn, denoting the server allocation of all classesexceptclassi, where classi already hassi servers

(a) allocated to it in the case ofMa or (b) expected to be allocated/activated in the case ofMb. Let

Ψ(i, si, n) be the probability mass function ofB(i, si, n). Then we have:

Ψ(i, si, n) = g ((Υ1(i, si, n) ⊗ · · · ⊗ Υi+1(i, si, n) · · · ⊗ ΥN (i, si, n)), N−1, K−si) (16)

The normalization in Equation (16) is used to account for thefact that if the system has already (a)

allocatedsi servers to classi in the case ofMa, or (b) expected to be allocated/activatedsi servers to

classi in the case ofMb , then the number of servers that have been allocated to otherclasses can only

range in{N − 1, N, . . . , K − si}.

Lastly,Γ(i, si, n), the function used to compute blocking probabilities, at iterationn, corresponding

to classi with (a) si allocated servers in the case ofMa or (b) si expected to be allocated/activated

servers in the case ofMb is:

Γ(i, si, n) = Ψ(i, si, n; K − si) (17)

whereΨ(i, si, n; K − si) = Prob[B(i, si, n) = K − si] andΨ(i, si, n) is computed using Equation (16).

3. Updating of individual class models step:given the blocking probabilitiesP(n)
i,si

of classi in Equation

(13), we can compute the new rate matrixQ
(n)
i (based on the transition structure given in (a) Table I

in the case ofMa or (b) Table II in the case ofMb) and then compute the corresponding steady state

probabilitiesπ̃(n)
i (using the procedure given in Section III-E) as well asπ

(n)
i , the probability vector of

server allocation of classi (using Equation (12)). (Theπ(n)
i ’s will in turn be needed in the updating of

the blocking probabilities,P(n+1)
i,si

’s (step2 above).)

4. Test of convergence step:if |P(n)
i,si

− P
(n−1)
i,si

| ≤ ε for each classi, 1 ≤ i ≤ N , and eachsi, 1 ≤ si ≤

Ki − 1, then stop. Otherwise, go to step2 and continue iterating.

D. Computation of Performance Measures

In this section we briefly discuss computation of performance measures. Due to lack of space, we

only present the derivation for modelMa and we could use the same approach for the derivation for

modelMb. Given the steady state probabilitiesπ̃i, i = 1, . . . , N , computed using the iterative approach

described above, we can compute various performance measures of interest. More specifically, for each

classi we can compute performance measures which can be expressed in the form of a Markov reward

function,Ri, where

Ri =
∑

k,j,l

π̃i[k, j, l]Ri(k, j, l)

andRi(k, j, l) is the reward for state(k, j, l) of classi. Some useful performance measures include:

(a) expected number of customers of classi, (b) expected response time for customers of classi, (c)

17

probability of dropping a customer of classi upon its arrival, (d) throughput of classi customers, and so

on.

For instance, letE[Ni] andE[Ti] denote the expected number of customers and the expected response

time, respectively, of the classi model, corresponding to the Markov processMi. ThenE[Ni] can

be expressed as
∑

k,j,l kπ̃i[k, j, l]. (A more detailed expression forE[Ni] is given in equation (33) in

Appendix A.) Of course, using Little’s result [16], we haveE[Ti] = 1
λ∗

i

E[Ni], whereλ∗
i is the classi

throughput. To computeλ∗
i we need to account for the customers that are dropped from thesystem (see

Section II). Hence,λ∗
i = λi(1 −

∑Ki

l=1

∑l
j=1 Pi,jπ̃i[Fi(j) + aj

i , j, l]).

We believe that the more interesting performance measures are those computed on a per class basis,

since a useful part of studying performance of multi-class threshold-based systems is to discover the

effect that the various classes have on one another. Therefore, we have concentrated on per class perfor-

mance measures here. However, we can also use these to compute overall system performance measures,

for instance, as a weighted average of the individual class performance measures. For example, we can

compute the expected system response time,E[T], as follows:

E[T] =
λ∗

1

λ∗
E[T1] +

λ∗
2

λ∗
E[T2] + · · · +

λ∗
N

λ∗
E[TN]

whereλ∗ =
∑N

i=1 λ∗
i .

E. Analysis of the Individual Class Model

In this section we briefly summarize the solution technique for the individual class model which was

defined in Section III-B. Specifically, we use the single class solution technique we derived in [17] with

some modifications needed to account for the structure of themulti-class model. Since these modification

are mostly straightforward, we only summarize the solutiontechnique in this section, and give the details

in Appendix A for completeness.

The general approach is as follows. As already stated, we model the classi queueing system as a

Markov process,Mi, where: (1) the main goal is to compute the steady state probabilities of the Markov

process and use these to compute various performance metrics of interest and (2) the main difficulty

is that the Markov process is infinite (see Section III-B) andthus “difficult” to solve using a “direct”

approach4.

As is often done in these cases, we need to look for special structure that might exist in the Markov

process; specifically, we take advantage of the stochastic complementation technique [18]. The basic

approach to computing the steady state probabilities of theMarkov process and the corresponding per-

formance measures is as follows. First, we construct an upper bound model,Mu
i , for the original Markov

4We could consider finite versions of the model or truncation of the infinite version [12]; however, in either case the Markov process

would still be very large and the computational complexity of a “direct” solution for a reasonable size system still high.

18

processMi, while trying to satisfy the criteria that the new model will: (1) provide (hopefully a tight)

upper bound on the desired performance measures and (2) be a “simpler”model to solve. Therefore,

the upper bound model transitions that replace the originaltransition can be specified as follows: In

Tables I and II we replace(k − 1, min(j, l − 1), l − 1) with (k − 1, 1, l − 1), where the transition rate

is jµi. Next, we partition the state space of the original Markov processMi
5 into disjoint sets. Using

the concept of stochastic complementation, for each set, wecompute the conditional steady state proba-

bility vector, given that the original Markov processMi is in that set. (A relatively simple construction

of the stochastic complement is possible due to the special structure that exists in the individual class

models; specifically we exploit the “single entry” structure as in [3].) By applying the state aggregation

technique [1], we aggregate each set into a single state and then compute the steady state probabilities

for the aggregated process, i.e., the probabilities of the system being in any given set. Lastly, we apply

the disaggregation technique [1] to compute the individual(unconditional) steady state probabilities of

the original Markov processMi. These can in turn be used to compute various performance measures

of interest. (Refer to Appendix for a detailed derivation ofthe solution ofMi.)

IV. CONVERGENCE OF THEITERATIVE METHOD

As described in Section III, we break up the original modelM into N single class Markovian sub-

models, i.e.,M1,M2, . . . ,MN . We use a set of blocking probabilities to describe the interaction among

theseN Markovian sub-models. In particular, the blocking probabilities P i for classi are functions of

all steady state probabilities except the steady state probability of classi, i.e., π̃i. Therefore, we could

useN groups of simultaneous equations to represent thoseN Markovian sub-models since the blocking

probabilities could be represented by the function of thosesteady state probabilities. Note that for each

classi the number of unknown variables is|π̃i| and there are
∑N

i=0 |π̃i| variables for the whole system.

LetAi be the transition rate matrix for the classi except all the entries in the first column are equal to

1. In addition,bi is a row vector, in which all the elements are0 but the first element is1, and its size is

the same as|π̃i|. Thus, we can use the following non-homogeneous system of (non-linear) equations to

represent the classi Markovian sub-modelMi:

π̃iAi = bi.

To use the iterative method to solveN groups of simultaneous equations, we split the matrixAi into two

sub-matricesAi,n andAi,b, whereAi,n is the initial nonsingular, non-blocking matrix (with all blocking

probabilities are equal to0) andAi,b = Ai −Ai,n. Given a splitting with nonsingularAi,n, we have

π̃i(Ai,n + Ai,b) = bi,

π̃i = biA
−1
i,n − π̃iAi,bA

−1
i,n (18)

5For simplicity, we useMi instead ofMu
i in the rest of this paper.

19

which leads to our iterative procedure.

π̃k
i = biA

−1
i,n − π̃k

i A
k
i,bA

−1
i,n. (19)

We note thatAk
i,b is updated based on the steady state probabilitiesπ̃k−1

j , where1 ≤ j ≤ N andj 6= i,

in the previousk−1 round. From the above discussion, one can compute the error vector of classi, e.g.,

ek
i after thekth round, we have:

e0
i = π̃0

i − π̃i = biA
−1
i,n − (biA

−1
i,n − π̃iAi,bA

−1
i,n) = −π̃Ai,bA

−1
i,n, (20)

e1
i = π̃1

i − π̃i = π̃1
iA

1
i,bA

−1
i,n − π̃iAi,bA

−1
i,n, (21)

e2
i = π̃2

i − π̃i = π̃2
iA

2
i,bA

−1
i,n − π̃iAi,bA

−1
i,n (22)

...

ek
i = π̃k

i − π̃i = π̃k
i A

k
i,bA

−1
i,n − π̃iAi,bA

−1
i,n. (23)

If our iterative method is able to converge, the sufficient condition is thatek becomes very close to0

after finitek iterations. Since both̃πk
i andπ̃i are stationary probability vectors, we can see that asAk

i,b

approaches to the actualAi,b, ek
i will approach0. To illustrate the above argument, we give the proof of

a 2-class system and show the convergence of the proposed iterative method.

Example: Consider a2-class,3-server threshold-based system as follows:K = 3, K1 = K2 = 2,

F1, R1, F2, a andR2. We assume that there exits a stationary distribution for this system.

Let π̃i,j be the steady state probability for classi with j servers and theñπ1 = (π̃1,1, π̃1,2), and

π̃2 = (π̃2,1, π̃2,2). According to our method to compute the blocking probabilities, we haveP1,1 = π̃2,2

andP2,1 = π̃1,2. Therefore, the goal is to solve two groups of non-homogeneous of linear equations,

i.e., π̃1A1 = b1 andπ̃2A2 = b2, whereP1,1 = π̃2,2 andP2,1 = π̃1,2.

• Step 0: we setP0
1,1 = 0 andP0

2,1 = 0.

P0
1,1 = 0 < P1,1 → π̃0

1,2 > π̃1,2 = P2,1 andπ̃0
1,1 < π̃1,1

P0
2,1 = 0 < P2,1 → π̃0

2,2 > π̃2,2 = P1,1 andπ̃0
2,1 < π̃2,1

• Step 1: we setP1
1,1 = π̃0

2,2 andP1
2,1 = π̃0

1,2.

P1
1,1 > P1,1 → π̃1

1,2 < π̃1,2 = P2,1 andπ̃1
1,1 > π̃1,1

P1
2,1 > P2,1 → π̃1

2,2 < π̃2,2 = P1,1 andπ̃1
2,1 > π̃2,1.

• Step 2: we setP2
1,1 = π̃1

2,2 andP2
2,1 = π̃1

1,2.

P2
1,1 < P1,1 → π̃2

1,2 > π̃1,2 = P2,1 andπ̃2
1,1 < π̃1,1

P2
2,1 < P2,1 → π̃2

2,2 > π̃2,2 = P1,1 andπ̃2
2,1 < π̃2,1.

20

• Step 3: we setP3
1,1 = π̃2

2,2 andP3
2,1 = π̃2

1,2.

P3
1,1 > P1,1 → π̃3

1,2 < π̃1,2 = P2,1 andπ̃3
1,1 > π̃1,1

P3
2,1 > P2,1 → π̃3

2,2 < π̃2,2 = P1,1 andπ̃3
2,1 > π̃2,1.

...

• Step 2k: we setP2k
1,1 = π̃2k−1

2,2 andP2k
2,1 = π̃2k−1

1,2 .

P2k
1,1 < P1,1 → π̃2k

1,2 > π̃1,2 = P2,1 andπ̃2k
1,1 < π̃1,1

P2k
2,1 < P2,1 → π̃2k

2,2 > π̃2,2 = P1,1 andπ̃2k
2,1 < π̃2,1.

• Step 2k+1:we setP2k+1
1,1 = π̃2k

2,2 andP2k+1
2,1 = π̃2k

1,2.

P2k+1
1,1 > P1,1 → π̃2k+1

1,2 < π̃1,2 = P2,1 andπ̃2k+1
1,1 > π̃1,1

P2k+1
2,1 > P2,1 → π̃2k+1

2,2 < π̃2,2 = P1,1 andπ̃2k+1
2,1 > π̃2,1.

Next, we would like to prove the following inequality:

P2k
i,1 < P2k+2

i,1 < Pi,1 < P2k+3
i,1 < P2k+1

i,1 , wherei = 1 or 2 and k ≥ 0. (24)

One can use the mathematical induction to prove the above inequality.

1. Whenk = 0, it is trivial to verify the inequality is correct for class1 or class2.

2. Assumek = m, the inequality holds for class1 and class2.

3. As k = m + 1, for class1, we haveP2m−1
2,1 > P2m+1

2,1 → P2m
1,1 = π̃2m−1

2,2 < π̃2m+1
2,2 = P2m+2

1,1 ; that

is, we use the higher blocking probability for class2, we get lower state probabilitỹπ2m−1
2,2 , which is the

blocking probability of class1 for the next round.

Similarly, we can prove another side of the inequality for class1: P2m
2,1 < P2m+2

2,1 → P2m+3
1,1 < P2m+1

1,1 .

Of course, the same approach can be used to prove the inequality for class2.

Once we show that Equation (24) holds, it is not difficult to show thatAk
i,b approachesAi,b ask increases,

i.e.,ek
i is close to0.

In the following, we give a proof of the convergence of the iterative method for a2-class multi-server

system.

Lemma 1: Consider a2-class,K-server threshold-based system as follows:K, K1, K2, F1, R1, F2,

a andR2. Assume that there exits a stationary state distribution for the system, the proposed iterative

method for solving this system will converge to the steady state distribution.

Proof: Let π̃i,j be the steady state probability for classi with allocatedj servers, we havẽπ1 =

(π̃1,1, π̃1,2, · · · , π̃1,K1), and π̃2 = (π̃2,1, π̃2,2, · · · , π̃2,K2). According to our method to compute the

blocking probabilities, for class1 we haveP1,1 = · · · = P1,K−K2−1 = 0 andP1,x =
π̃2,K−x

∑K−x

m=1
π̃2,m

, where

K−K2 ≤ x ≤ K−2. Similarly, for class2 we getP2,1 = · · · = P2,K−K1−1 = 0 andP2,y =
π̃1,K−y

∑K−y

m=1
π̃1,m

,

21

whereK −K1 ≤ y ≤ K − 2. Therefore, Our goal is to solve two groups of non-homogeneous of linear

equations, i.e.,̃π1A1 = b1 andπ̃2A2 = b2, whereP1,x andP2,y are defined above.

One can use the mathematical induction to prove the following inequalities for both classes:

P2k
1,x < P2k+2

1,x < P1,x < P2k+3
1,x < P2k+1

1,x , where K − K2 ≤ x ≤ K − 2 and k ≥ 0, (25)

P2k
2,y < P2k+2

2,y < P2,y < P2k+3
2,y < P2k+1

2,y , where K − K1 ≤ y ≤ K − 2 and k ≥ 0. (26)

When the inequalities of Eq.(25)-(26) hold, it is straightforward to show thatAk
i,b will approach toAi,b

ask increases, i.e.,ek
i is close to0.

For the generalN-classK-server system, we note that the following inequality stillholds for any block-

ing probabilityPi,j , i.e.,P2k
i,j < P2k+2

i,j < Pi,j < P2k+3
i,j < P2k+1

i,j , where k ≥ 0. In other words, the

above equation still holds under the operation of the convolution operator⊗ and the functiong defined

in Section III. Due to the lack of space, we do not give the detailed steps of the proof here. We note that

theconvergence rateof our iterative method is still an open question, which needs further study and is

beyond the scope of this work.

V. NUMERICAL EXAMPLES AND VALIDATION OF APPROXIMATION

In this section, we present numerical results to illustrate(a) the accuracy of our iterative methodology

as compared with simulation, (b) the effect of server activation rate on performance measures, (c) the

benefits of resource sharing among heterogeneous workload classes, and (d) the effects of threshold

values on performance measures. Since the accuracy of our iterative methods is done through comparing

with simulations, all simulation results are given with at least95% ± 5% confidence. In all experiments

presented here, our iterative approach usesε = 0.0000001 (refer to Section III for details). Moreover,

the computation time of our iterative methods is more than two orders of magnitude faster than that of

simulations. This empirical evidence indicates our iterative method is fast and fairly accurate.

Experiment A: Accuracy of the iterative method.

To compare the accuracy of our iterative method in computingperformance measures of the Markovian

systemM, we also simulateM, i.e., for the purpose of validating the proposed solution technique. We

use mean response time for classi, 1 ≤ i ≤ N , as our main performance metric of interest. Parameter

settings for all test cases in Experiment A are listed in Table III.

For each test case under Experiment A, we assume all classes have the same service rateµ = 1.

Server activation rate is the same for all classes, and we vary this activation rate. In particular, we

defineR = β/µ (where we drop the class notation for simplicity of exposition). Figure 3 illustrates

the mean response time under test case 1 forR = 1 and10.0. It is easy to observe that the difference

between the two results is small (e.g., in the case of Figure 3, the largest difference is≈ 7%). Since such

22

Case 1 K = 10, K1=K2=K3=4, α1 : α2 : α3= 1 : 3 : 6,

(for Mn) F1 = [4,8,12],R1= [2,6,10],F2 = [8,12,16],R2=[5,9,13]F3 = [6,10,14],R3 = [3,7,11],

Exp. A µ1=µ2=µ3=1.0,

Case 2 K = 12, K1=K2=K3=3, K4=5; α1 : α2 : α3 : α4= 1 : 1 : 1 : 2,

(for Mn) F1 = [6,10],R1= [4,7],F2 = [4,8],R2= [2,4], F3 = [8,12],R3= [6,9],F4 = [5,9,13,17]R4 = [3,6,9,12]

Exp. A µ1=µ2=µ3=µ4=1.0,

Case 3 K = 12, K1=K2=K3=3, K4=5; α1 : α2 : α3 : α4= 1 : 2 : 3 : 4,

(for Mn) F1 = [6,10],R1= [4,7],F2 = [4,8],R2= [2,4], F3 = [8,12],R3= [6,9],F4 = [5,9,13,17]R4 = [3,6,9,12]

Exp. A µ1=µ2=µ3=µ4=1.0,

Case 4 K = 12, K1=K2=K3=3, K4=5; α1 : α2 : α3 : α4= 1 : 1 : 1 : 2,

(for Ma) F1 = [6,10],R1= [4,7],F2 = [4,8],R2= [2,4], F3 = [8,12],R3= [6,9],F4 = [5,9,13,17]R4 = [3,6,9,12]

Exp. A a1 = [3,3], a2= [3,3], a3 = [3,3], a4 = [3,3,3,3]µ1=µ2=µ3=µ4=1.0,

Case 5 K = 12, K1=K2=K3=3, K4=5; α1 : α2 : α3 : α4= 1 : 2 : 3 : 4,

(for Ma) F1 = [6,10],R1= [4,7],F2 = [4,8],R2= [2,4], F3 = [8,12],R3= [6,9],F4 = [5,9,13,17]R4 = [3,6,9,12]

Exp. A & C a1 = [3,3], a2= [3,3], a3 = [3,3], a4 = [3,3,3,3]µ1=µ2=µ3=µ4=1.0,

Case 6 K = 8, K1=K2=3, K3=4, α1 : α2 : α3= 1 : 1 : 1,

(for Ma) F1 = [6,10],R1= [4,7],F2 = [6,10],R2= [4,7], F3 = [6,10,14],R3 = [4,7,10],

Exp. B a1 = [3,3], a2= [3,3], a3 = [3,3,3],µ1=µ2=µ3=1.0,

Case 7 K = 4, K1=K2=3, α1 : α2 = 2 : 3; a1 = [3,3], a2= [3,3]; µ1=µ2=1.0;R = 1;

(for Ma) Configuration A: F1 =[4,8],R1=[2,6],F2 = [10,20],R2=[5,10];

Exp. D Configuration B: F1 =[4,8],R1=[2,6],F2 = [20,40],R2=[15,35];

Configuration C: F1 =[4,8],R1=[2,6],F2 = [40,80],R2=[30,70];

Case 8 K = 4, K1=K2=3, α1 : α2 = 2 : 3; a1 = [3,3], a2= [3,3]; µ1=µ2=1.0;R = 1;

(for Ma) Configuration A: F1 =[4,8],R1=[2,6],F2 = [6,9],R2=[4,7];

Exp. D Configuration B: F1 =[20,40],R1=[15,35],F2 = [30,45],R2=[25,40];

Configuration C: F1 =[40,80],R1=[30,70],F2 = [60,90],R2=[50,80];

Case 9 K = 8, K1=K2=3, K3=4, α1 : α2 : α3= 2 : 3 : 4,

(for Ma) F1 = [6,10],R1= [4,7],F2 = [6,10],R2= [4,7], F3 = [6,10,14],R3 = [4,7,10],

Exp. E a1 = [3,3], a2= [3,3], a3 = [3,3,3],µ1=µ2=µ3=1.0,

TABLE III

PARAMETER SETTINGS FOREXPERIMENTS

small differences are difficult to visualize using graphs, we present the remainder of the accuracy related

experiments using tables.

Tables IV to VII to illustrate several other experiments of validating the accuracy of our technique.

Due to the large size of the tables we only give the iterative result and the percentage error. In all cases,

the percentage error (%E) is defined as:

%E =
|simulation result – iterative result|

simulation result
x 100% (27)

As can be observed, in these experiments we track the performance metrics closely for all classes and

the maximum error is around 10%.

As is probably expected, in our experiments, the higher error cases corresponded to fairly high con-

23

av
g.

 r
es

po
ns

e
tim

e

arrival rate

class 1 (simulation)

class 1 (iteration)

class 2 (simulation)

class 2 (iteration)

class 3 (simulation)

class 3 (iteration)

1.00 2.00 3.00 4.00 5.00 6.00

1.00

2.00

3.00

4.00

5.00

av
g.

 r
es

po
ns

e
tim

e

arrival rate

class 1 (simulation)

class 1 (iteration)

class 2 (simulation)

class 2 (iteration)

class 3 (simulation)

class 3 (iteration)

1.00 2.00 3.00 4.00 5.00 6.00

1.00

2.00

3.00

4.00

5.00

(a) Server activation ratioR = 1.0 (b) Server activation ratioR = 10.0

Fig. 3. Exp. A — Accuracy Testing (Case 1): Average response time of three classes under different server activation ratios,

R.

λ E[T1] E[T2] E[T3] E[T4] % error % error % error % error

(iterative) (iterative) (iterative) (iterative) (class 1) (class 2) (class 3) (class 4)

1.000 1.249403209 1.240894331 1.249966817 1.596548157 0.188442 0.102801 0.091916 1.082684

2.00 1.632332041 1.530185205 1.659140114 2.346862510 0.589992 1.655815 0.628414 6.931096

3.000 2.137886898 1.800536338 2.327797341 2.877125939 2.607489 4.531356 1.872697 8.398753

4.000 2.655828539 2.024466859 3.203617359 3.258738327 5.961660 7.101779 4.766918 4.467737

5.000 3.086978739 2.210009611 4.010064726 3.549132931 7.808542 8.701947 6.984125 0.872970

6.000 3.414312029 2.371654188 4.556764880 3.748743137 7.871845 8.730359 6.793586 5.205084

7.000 3.666371001 2.520343773 4.875718116 3.873368054 6.090529 8.135594 5.009943 7.823094

8.000 3.876706835 2.667619678 5.069148468 3.957965747 3.398553 6.806763 2.094356 8.864857

9.000 4.076410481 2.833209795 5.216584527 4.054224035 0.768549 5.588292 0.612172 8.653662

10.000 4.294252513 3.044849701 5.367470840 4.258024598 0.163318 6.478889 0.981928 6.684466

TABLE IV

EXP. A — ACCURACY TESTING (CASE 2): AVERAGE RESPONSE TIME FOR SERVER ACTIVATION RATIOR = 1.

tention cases. These are also the cases that likely corresponded to “poor” designs where a reduction in

contention for resources between classes is needed in orderto obtain a system with good performance

characteristics. In most of our experiments (some of which are presented below), the performance im-

provements that could be obtained, for instance, through better threshold settings, were significantly

higher (percentage-wise) than the loss in accuracy due to our approximation. Hence, this is a good

indication that our iterative technique is a useful tool forfast and fairly accurate assessment of threshold-

based designs that can be used, for instance, for searching for good threshold settings.

Note that, we have performed extensive experiments and those results are similar to the ones included

here. In general, the percentage error in most testing caseswas within 10% but around 14% in few

cases. Next, we illustrate some of the performance tradeoffs and designs that can be studied using our

technique.

24

λ E[T1] E[T2] E[T3] E[T4] % error % error % error % error

(iterative) (iterative) (iterative) (iterative) (class 1) (class 2) (class 3) (class 4)

1.000 1.111101334 1.240894331 1.427769462 1.596548157 0.107716 0.098113 0.223379 1.196270

2.000 1.249403209 1.530185205 2.327797341 2.346862510 0.139604 1.440456 1.633202 6.963889

3.000 1.422120871 1.800536338 3.633427552 2.877125937 0.155003 4.476466 6.016418 8.367091

4.000 1.632332041 2.024466858 4.556723717 3.258737881 0.753543 6.891397 6.901301 4.475396

5.000 1.875214383 2.210009348 4.979858567 3.549114921 1.383353 8.523428 3.532388 0.853224

6.000 2.137893813 2.371635231 5.191372533 3.748505544 3.590440 8.978094 0.609548 5.259355

7.000 2.403485514 2.519945274 5.373455187 3.871855859 5.422789 7.976693 3.374543 7.634374

8.000 2.657202108 2.664366352 5.735811514 3.952018413 7.275292 6.907009 4.165632 8.751759

9.000 2.889913738 2.822985811 7.140900686 4.037086312 8.396802 5.234919 3.636787 8.237973

TABLE V

EXP. A — ACCURACY TESTING (CASE 3): AVERAGE RESPONSE TIME FOR SERVER ACTIVATION RATIOR = 1.0.

λ E[T1] E[T2] E[T3] E[T4] % error % error % error % error

(iterative) (iterative) (iterative) (iterative) (class 1) (class 2) (class 3) (class 4)

1.000 1.249403209 1.240894331 1.249966817 1.596548157 0.188442 0.102801 0.091916 1.082684

2.000 1.632332041 1.530185205 1.659140114 2.346862510 0.589992 1.655815 0.628414 6.931096

3.000 2.137886898 1.800536338 2.327797341 2.877125937 2.607489 4.531356 1.872697 8.398753

4.000 2.655828538 2.024466858 3.203617358 3.258737880 5.961660 7.101779 4.766918 4.467751

5.000 3.086978271 2.210009329 4.010064114 3.549114866 7.807762 8.699709 6.980227 0.879640

6.000 3.414279404 2.371633439 4.556723717 3.748504405 7.872210 8.735477 6.847014 5.201449

7.000 3.665701028 2.519889412 4.874913397 3.871844972 6.090198 8.137421 4.974583 7.772737

8.000 3.871141342 2.663543765 5.062810736 3.951957924 3.526046 7.062987 2.360242 8.736353

9.000 4.053114585 2.814672095 5.191371673 4.036856602 1.660845 6.500396 0.292736 8.240439

10.000 4.235582423 2.994503482 5.306591592 4.216504326 1.340852 7.132456 0.282897 6.970984

11.000 4.459602796 3.243621554 5.457264738 4.763969135 2.877606 8.946037 1.377628 5.284929

12.000 4.815342733 3.651148297 5.735634028 7.980613244 5.087811 9.514688 4.097968 3.596882

TABLE VI

EXP. A — ACCURACY TESTING(CASE 4): AVERAGE RESPONSE TIME FOR SERVER ACTIVATION RATIOR = 1.0.

Experiment B: Effect of Service Activation Rate on System Performance.

In this experiment, we consider how the server activation rate may affect the average response time of

different classes of customers. Let us consider test case 6 in Table III. We vary the server activation ratio

R from 0.1 to 100. In other words, server activation rate can beten times slower than the average service

rate or up to 100 times faster than the average service rate. Table VIII illustrates the average response

time for all classes of customers under different traffic loadings. As we can observe, it is important to

consider server activation issues in the performance analysis of dynamic resource management systems

using threshold-based techniques. In particular, when thesystem is operating at a low server activation

ratio (i.e., whenR is small), the average response time for all classes is higher than in situation where

25

λ E[T1] E[T2] E[T3] E[T4] % error % error % error % error

(iterative) (iterative) (iterative) (iterative) (class 1) (class 2) (class 3) (class 4)

1.000 1.111101334 1.240894331 1.427769462 1.596548157 0.174672 0.138768 0.014092 1.301958

2.000 1.249403209 1.530185205 2.327797341 2.346862510 0.190320 1.628630 1.589170 6.970281

3.000 1.422120871 1.800536338 3.633427552 2.877125937 0.017206 4.421477 6.187979 4.456612

4.000 1.632332041 2.024466858 4.556723717 3.258737880 0.582615 7.084183 6.795926 0.910167

5.000 1.875214307 2.210009329 4.979858554 3.549114866 1.270779 8.620992 3.584426 5.289322

6.000 2.137886898 2.371633439 5.191371673 3.748504405 3.064727 8.844618 0.579377 7.780205

7.000 2.403313249 2.519889412 5.373437048 3.871844972 4.904982 8.076828 3.464238 8.703671

8.000 2.655828538 2.663543765 5.735634028 3.951957924 6.529355 6.896232 3.719736 8.307669

9.000 2.885087046 2.814672095 7.139840165 4.036856602 8.310797 5.611460 1.103102 7.699883

9.500 2.989496161 2.899102696 10.324209470 4.105645593 9.692825 5.219340 2.013128 7.569769

TABLE VII

EXP. A — ACCURACY TESTING (CASE 5): AVERAGE RESPONSE TIME FOR SERVER ACTIVATION RATIOR = 1.0.

the system is operating at high server activation ratios. The performance difference is more prominent

when we have moderate to high traffic loadings.

Experiment C: Benefits of Resource Sharing.

In this experiment, we illustrate the benefits of resource sharing. In particular, we consider the case

wherein the number of common resources,K, is less than the peak resource demand
∑N

i=1 Ki. The

reasons for using fewer resources are to reduce the overall system operational cost and to take advantage

of the fact that the probability of all classes being at theirhigh workload demands simultaneously might

be quite low. Of course, one needs to quantify the above advantages, especially when hysteresis control

is used in threshold-based system. We consider test case 5 inTable III. In this test case, the total

peak resource demand is
∑

Ki = 14. We consider two cases, where we set the values ofK, the total

amount of system resources, to be 11 and 14, respectively. Note that whenK = 14, we will not have

resource contention among classes. For this experiment, weassume a homogeneous server activation

ratio R = β/µ = 1.0. Figure 4 illustrates the average response time of three classes of workload,

under both cases. As we can observe, thedifferencein the average response time isnot significant, i.e.,

the maximum percentage error between casesK = 11 andK = 14 is 6%. This implies that, in this

experiment, one can use fewer resources, with resource saving of around 21%, while at the same time

providingcomparableperformance (i.e., comparable to the case where the amount of resources is equal

to the peak workload demands of all classes).

Experiment D: Effects of Threshold Settings.

As stated in Section I, we believe that our solution technique for this multi-class, multi-server threshold-

based queueing system with hysteresis behavior can be used as an efficient tool for searching for good

threshold values. In this experiment, we illustrate that this is an important issue by showing that different

26

λ R E[T1] E[T2] E[T3]

activation ratio (iterative) (iterative) (iterative)

0.900 0.100 1.425080947 1.425080947 1.425071989

0.900 1.000 1.422120871 1.422120871 1.422119765

0.900 10.00 1.421043244 1.421043244 1.421042825

0.900 100.0 1.420915968 1.420915968 1.420915582

3.600 0.100 5.379141763 5.379141763 5.393195375

3.600 1.000 3.414267196 3.414267196 3.387999226

3.600 10.00 3.145905856 3.145905856 3.128791883

3.600 100.0 3.118374248 3.118374248 3.101954561

5.400 0.100 7.299335678 7.299335678 7.223295397

5.400 1.000 4.050733764 4.050733764 3.927137459

5.400 10.00 3.587663185 3.587663185 3.465490149

5.400 100.0 3.539729932 3.539729932 3.418567750

8.100 0.100 10.616787909 10.616787909 7.852223350

8.100 1.000 6.283156018 6.283156018 4.297965780

8.100 10.00 5.764497387 5.764497387 3.741218408

8.100 100.0 5.709881527 5.709881527 3.682093400

TABLE VIII

EXP. B — SERVICE ACTIVATION RATE EXPERIMENT (CASE 6): AVERAGE RESPONSE TIME FOR ALL CLASSES UNDER

DIFFERENT SERVER ACTIVATION RATIOS AND TRAFFIC LOADINGS.

class 1 with K=11

class 1 with K=14

class 2 with K=11

class 2 with K=14

class 3 with K=11

class 3 with K=14

class 4 with K=11

class 4 with K=14

av
g.

 r
es

po
ns

e
tim

e

10.00

8.00

6.00

4.00

2.00

2.00 4.00 6.00 8.00 arrival rate

Fig. 4. Exp. C — Resource Sharing Experiment (Case 5): Average response time for four classes of workload withK = 11

and14.

threshold values can result in vastly different performance measures. Since our solution can quickly gen-

erate corresponding performance results, it should be a good tool for exploring proper threshold settings.

In particular, we consider a four servers systems with two classes whose parameter settings are listed in

Table III. Note that, in each test case we have three configurations A, B, and C where in each configura-

tion has different threshold settings. Figure 5 depicts thecorresponding expected response time results,

which illustrate that changes in threshold values result insignificant changes in the expected response

time of the different classes. Therefore, one can use the proposed solution technique to search for the

proper threshold values such that the expected response time of the different workloads is satisfactory,

within certain levels of system loadings.

27

av
g.

 r
es

po
ns

e
tim

e

30.00

20.00

10.00

0.00

1.00 2.00 3.00 4.00
arrival rate

class 1 at config A

class 2 at config A

class 1 at config B

class 2 at config B

class 1 at config C

class 2 at config C av
g.

 r
es

po
ns

e
tim

e

30.00

20.00

10.00

0.00

1.00 2.00 3.00 4.00
arrival rate

class 1 at config A

class 2 at config A

class 1 at config B

class 2 at config B

class 1 at config C

class 2 at config C

40.00

(a) Case 7: mean resp. time vs. diff.F i andRi (b) Case 8: mean resp. time vs. diff.F i andRi

Fig. 5. Exp. D — Threshold Setting Experiment (Case 7 & Case 8): Average response time for two workload classes under

different thresholdsF i andRi.

Experiment E: Instantaneous Model vs. Non-Instantaneous Model.

The motivation for this experiment is to study the difference between the instantaneous model and the

non-instantaneous model and when is important to take the server activation ratio into consideration for

design an efficient multi-class multi-server system.

(a) R = 0.1

class 1 (sim)

class 1 (ins)

class 1 (non)

class 2 (sim)

class 2 (ins)

class 2 (non)

class 3 (sim)

class 3 (ins)

class 3 (non)

avg. response tim
e (sec)

arrival rate

2.00

4.00

6.00

8.00

10.00

2.00 4.00 6.00 8.00

class 1 (sim)

class 1 (ins)

class 1 (non)

class 2 (sim)

class 2 (ins)

class 2 (non)

class 3 (sim)

class 3 (ins)

class 3 (non)

2.00

3.00

4.00

5.00

6.00

2.00 4.00 6.00 8.00

avg. response tim
e (sec)

arrival rate

(b) R = 100

Fig. 6. Exp. E — Instantaneous Model vs. Non-Instantaneous Model (Case 9).

In Figure 6(a), the results show that as the activation ratiois smaller than the service rate, the system

performance is mostly dominated by the server activation time. This is why the curve of the instantaneous

model deviates from the simulation curve a lot (e.g., for class1 the largest difference is≈ 100%) while

the curve of the non-instantaneous model is close to the simulation curve. That is, it is important to

consider the server activation ratio in order to construct an precisely analytic model for the system.

On the other hand, as illustrated in Figure 6(b), when the service rate is much faster than the server

activation rate, both the results of instantaneous and non-instantaneous models are similar with that of

the simulation. In other words, the instantaneous model is agood approximation one as the server

activation ratio is large.

28

VI. CONCLUSIONS

In this paper we considered efficient and accurate computation of performance metrics for a system

which sharesK servers (or resources) amongN heterogeneous classes of workloads, where server allo-

cation and de-allocation is dictated by a class specific threshold-based policy with hysteresis control. An

important and distinguishing characteristic of our work, as compared to previous efforts, is that we con-

sider the modeling and analysis of a multi-class system withnon-instantaneousserver activation, which

is of use in studying performance characteristics of many important applications. We presented an effi-

cient iterative approximation technique for solving such models and illustrated through numerical results

that this technique is reasonably accurate (in the presented experiments the deviation from the exact so-

lution is within≈ 10%) and fast (with more than two orders of magnitude improvement in computation

time compared to simulations). Moreover, our numerical results also illustrated that (a) server activa-

tion characteristics have a significant effect on the system’s performance, (b) dynamic resource sharing,

through the use of threshold-based techniques, can result in significant cost savings (i.e., through sharing

of a pool of resources among heterogeneous workload classes) without detrimental effects on the class’

performance, and (c) proper threshold settings can have a significant effect on the class’ performance

characteristics. Consequently, all these results indicate that efficient solution techniques for models of

such dynamic resource management systems are critical for proper design and performance studies of

these systems. And, we believe that the technique presentedin this paper is one such approach which

will lead to better system designs.

REFERENCES

[1] P. J. Courtois.Decomposability : queueing and computer system applications. ACM monograph series, Academic Press, New York,

1977.

[2] E. de Souza e Silva, S. S. Lavenberg, and R. R. Muntz. A perspective on iterative methods for the approximate analysis of closed

queueing networks. In G. Iazeola, P. J. Courtois, and A. Hordijk, editors,Mathematical Computer Performance and Reliability, pages

225–244. North Holland, 1984.

[3] L. Golubchik and J. C.S. Lui. Bounding of performance measures for a threshold-based queueing syst em with hysteresis. In

Proceedings of 1997 ACM SIGMETRICS Conf., Seattle, WA, June 1997.

[4] L. Golubchik and J. C.S. Lui. A fast and accurate iterative solution of a multi-class threshold-based queueing system with hysteresis.

In sigmetrics2000, pages 196–206, CA, USA, June 2000.

[5] Leana Golubchik and John C.S. Lui. Bounding of performance measures for threshold-based queuing systems: Theory and application

to dynamic resource management in video-on-demand servers. IEEE Transactions on Computers, 51(4):353–372, 2002.

[6] S.C. Graves and J. Keilson. The compensation method applied to a one-product production/inventory problem.Journal of Math.

Operational Research, 6:246–262, 1981.

[7] O.C. Ibe. An approximate analysis of a multi-server queueing system with a fixed order of access. Technical Report RC9346, IBM

Research, 1982.

[8] O.C. Ibe and J. Keilson. Multi-server threshold queues with hysteresis.Performance Evaluation, 21:185–212, 1995.

[9] O.C. Ibe and K. Maruyama. An approximation method for a class of queueing systems.Performance Evaluation, 5:15–27, 1985.

29

[10] J. Keilson.Green’s Function Methods in Probability Theory. Charles Griffin, London, 1965.

[11] J. Keilson.Markov Chain Models: Rarity and Exponentiality. Springer, New York, 1979.

[12] F. P. Kelly. Reversibility and Stochastic Networks. John Wiley and Sons, 1979.

[13] L. Kleinrock. Queueing Systems, Volume I. Wiley-Interscience, 1975.

[14] R.L. Larsen and A.K. Agrawala. Control of a heterogeneous two-server exponential queueing system.IEEE Trans. on Software

Engineering, 9:552–526, 1983.

[15] W. Lin and P.R. Kumar. Optimal control of a queueing system with two heterogeneous servers.IEEE Trans. on Automatic Control,

29:696–703, 1984.

[16] J. D. C. Little. A proof of the queueing formulaL = λW . Operations Research, 9:383–387, May 1961.

[17] John C.S. Lui and Leana Golubchik. Stochastic complement analysis of multi-server threshold queues with hysteresis. Performance

Evaluation, 35(1-2):19–48, March 1999.

[18] C.D. Meyer. Stochastic complementation, uncoupling markov chains and the theory of nearly reducible systems.SIAM Review,

31(2):240–272, 1989.

[19] D. Mitra and I. Ziedins. Virtual partitioning by dynamic priorities: Fair and efficient resource-sharing by several services. In

B. Plattner, editor,International Zurich Seminar on Digital Communications, Lecture Notes in Computer Science, Broadband Com-

munications, pages 173–185. Springer, 1996.

[20] D. Mitra and I. Ziedins. Hierarchical virtual partitioning: Algorithms for virtual private networking. InIEEE GLOBECOM, pages

1784–1791, 1997.

[21] J.A. Morrison. Two-server queue with one server idle below a threshold.Queueing Systems, 7:325–336, 1990.

[22] R. Nelson and D. Towsley. Approximating the mean time insystem in a multiple-server queue that uses threshold scheduling.

Operations Research, 35:419–427, 1987.

[23] M. F. Neuts.Matrix-geometric Solutions in Stochastic Models – an Algorithmic Approach. John Hopkins University Press, Baltimore,

MD, 1960.

[24] William J. Stewart.Introduction to Numerical Solution of Markov Chains. Princeton University Press, 1994.

APPENDIX A: A NALYSIS OF A SINGLE CLASS MODEL

In this appendix, we address the analysis of a single class model. Due to lack of space, we only present

the derivation for modelMa. The derivation for modelMb is similar to the derivation for thelast level,

Ki of modelMa.

The goal here is to compute the steady state probabilitiesπ̃i[k, j, l] for all (k, j, l) ∈ Si, whereSi is

the state space of the Markov processMi (see Section III-B). Note that, since this computation must

be performed in each iteration of the procedure given in Section III, for clarity of presentation in this

appendix, we will omit from the notation indication of the iteration step number. As stated in Section

III-E, the first step is to partition the state space. Specifically, given the original Markov processMi, let

us partition the state spaceSi into Ki disjoint setsS l
i , where:

Sl
i = {(k, j, l) | (k, j, l) ∈ Si andj ≤ l}for l = 1, 2, . . . , Ki.

We can view partitionS l
i as representing all states corresponding to exactlyl target allocated servers.

Let us consider the analysis ofS l
i where2 ≤ l ≤ Ki − 1. We first define another Markov processMl

i

30

with a corresponding steady state probability vectorπl
i, for l ∈ {2, . . . , Ki−1}, such that the state space

of Ml
i corresponds to the states inS l

i . For ease of notation, we will useπl
i(k, j, l) to refer to the steady

state probability of state(k, j, l) ∈ S l
i (since all states inS l

i have the samel, the target allocated servers

to classi). The transition structure ofMl
i is similar to the transition structure ofMi for the states inS l

i ,

except for the following modifications:

step 1:a transition from(Ri(l−1)+1, j, l) to (Ri(l−1), j, l−1) or (Ri(l−1), j−1, l−1) in the original

processMi is replaced by transitions from(Ri(l − 1) + 1, j, l) to the states(Fi(l − 1) + 1 + m, j, l) in

Ml
i, where0 ≤ m ≤ al−1

i , each at the rate ofrl−1
i (m)lµi where

rl−1
i (m) =

πl−1
i (Fi(l − 1) + m, j, l − 1)

∑a
l−1

i

z=0 πl−1
i (Fi(l − 1) + z, j, l − 1)

andπl−1
i (Fi(l − 1) + m, j, l − 1) is the conditional steady state probability correspondingto the state

with Fi(l − 1) + m customers,j busy servers andl − 1 target allocated servers, conditioned on being

in S l−1
i . Note that this conditional steady state probability is obtained by solving the Markovian model

Ml−1
i (see Theorem 1 below and Section A for details).

step 2:a transition from(Fi(l)+m, j, l) to (Fi(l)+m+1, j, l+1) in the original processMi, is replaced

by a transition from(Fi(l) + m, j, l) to (Ri(l), 1, l) in Ml
i, 0 ≤ m ≤ al

i, each at the rate ofλi(1 −Pi,l).

Similarly, for the first levell = 1, we can order the states inS1
i as follows:

{(0, 1, 1), . . . , (Ri(1), 1, 1), . . . , (Fi(1), 1, 1), . . . (Fi(1) + a1
i , 1, 1)}

and then define the Markov processM1
i such that the state space ofM1

i corresponds to the states inS1
i .

The transition structure ofM1
i is similar to that ofMi for the states inS1

i , except that a transition from

(Fi(1) + m, 1, 1) to (Fi(1) + 1 + m, 1, 2) in Mi is replaced by a transition from(Fi(1) + m, 1, 1) to

(Ri(1), 1, 1) in M1
i , where0 ≤ m ≤ a1

i , each at the rate ofλi(1 −Pi,1).

Finally, for the last levell = Ki, define the Markov processMKi

i such that the state space ofMKi

i

corresponds to the states inSKi

i . The transition structure ofMKi

i is similar to that ofMi for the states in

SKi

i , except that a transition from(Ri(Ki − 1) + 1, j, Ki) to (Ri(Ki − 1), j, Ki − 1) or (Ri(Ki − 1), j −

1, Ki − 1) in Mi is replaced by transitions from(Ri(Ki − 1) + 1, j, Ki) to the states(Fi(Ki − 1) + 1 +

m, j, Ki) in MKi

i , where0 ≤ m ≤ aKi−1
i , each at the rate ofrKi−1

i (m)lµi, where

rKi−1
i (m) =

πKi−1
i (Fi(Ki − 1) + m, j, Ki − 1)

∑a
Ki−1

i

z=0 πKi−1
i (Fi(Ki − 1) + z, j, Ki − 1)

andπKi−1
i (Fi(Ki − 1) + m, j, Ki − 1) is the conditional steady state probability correspondingto the

state withFi(Ki − 1) + m customers,j busy servers andKi − 1 target allocated servers, conditioned on

31

being inSKi−1
i . Note that this conditional steady state probability is obtained by solving the Markovian

modelMKi−1
i (see Theorem 1 below and Section A for details).

Lastly, we state the following theorem which is analogous tothe one given in [17] for a single class

model. It is needed to show the relationship between the solution of Ml
i andMi. (Note that in this

appendix we use the same notation, namelyπl
i, when referring to the steady state probability vector of

Ml
i and when referring to the conditional steady state probability vector ofMi, conditioned on being in

the setS l
i .) The proof of this theorem is also analogous to the one givenin [17] and so we do not repeat

the details here.

Theorem 1:The steady state probabilities solution of the Markov processMl
i is the conditional steady

state probabilities solution for the states inS l
i of the original Markov processMi, given that the system

is in partitionS l
i .

A. Analysis ofMl
i

Let us now describe the computational procedure for obtaining the steady state probability vector for

each Markov processMl
i, l = 1, 2, . . . , Ki. Let Ql

i andπl
i be the transition rate matrix and the steady

state probability vector ofMl
i, respectively. Since the state space ofMl

i, l = 1, 2, . . . , Ki − 1, is finite

and (given a well designed system) small, we can obtain the steady state probability vector by solving

the following system of linear equations [24]

πl
iQ

l
i = 0 ; πl

ie = 1

wheree is a column vector of1’s. To improve the complexity of computingπl
i, l = 1, 2, ..., Ki − 1, we

can use well-known numerical methods [24], which for instance, can take advantage of the (potential)

sparsity ofQl
i.

What remains is the computation ofπKi

i . Note that the state space ofMKi

i is infinite; therefore, we

cannot use, for instance, a direct method [24] for solving this system of linear equations. Instead, we

can computeπKi

i by using Matrix-analytic methods[23]. Let us define a boundary setSB (which is the

boundary portion under the matrix-analytic notation) withstate space

{(Ri(Ki − 1) + 1, j, Ki), . . . , (Fi(Ki − 1), j, Ki), . . . , (Fi(Ki − 1) + aKi−1
i + 1, j, Ki)}

such that transitions between these states are identical tothose between the corresponding states inMKi

i .

Similarly, we define another setSI (which is the repetitive portion under the matrix-analyticnotation)

with an infinite state space

{(Fi(Ki − 1) + aKi−1
i + 2, j, Ki), (Fi(Ki − 1) + aKi−1

i + 3, j, Ki), . . .}

32

and transitions between states identical to those between the corresponding states inMKi

i . It is not

difficult to observe that the transition structure inSI is repetitive. Therefore, given these two sets of

states,SB andSI , one has an efficient algorithm [23] for computing the steadystate probability vector

π
Ki

i .

B. Analysis of the Aggregated Process for Classi

Once we have obtained an expression for the steady state probability vector of eachMl
i, which is also

the conditional steady state probability vector ofMi, given that the system is inS l
i , the only remaining

step (as outlined in Section III-E) is to find the aggregate state probability of the system being inS l
i .

Therefore, for eachl, 1 ≤ l ≤ Ki let us aggregate all the states inS l
i into a single state. The transition

state diagram of the resulting aggregated process is illustrated in Figure 7. The transition rates of the

(Ki-1)

1 2 3 4 Ki-1 Ki
...............

λ
i
(1) λ

i
(2) λ

i
(3) λ

i
(Ki-1)

µ
i
(2) µ

i
(3) µ

i
(4) µ

i
(Ki)

λ
i
(Ki-2)

µ
i

λ
i
(4)

(5)µ
i

Fig. 7. State transition diagram for aggregated process forclassi.

aggregated process can be computed as follows:

λi(l) = λi(1 − Pi,l)
l

∑

j=1

Fi(l)+al
i

∑

k=Fi(l)

πl
i(k, j, l) l = 1, 2, . . . , Ki − 1 (28)

µi(l) = jµi

∑

j=1

lπl
i(Ri(l − 1) + 1, j, l) l = 2, 3, . . . , Ki (29)

whereπl
i(k, j, l), k = Fi(l), . . . , Fi(l) + al

i, andπi
l(Ri(l − 1) + 1, j, l) are the conditional steady state

probabilities obtained in Section A.1. The steady state probability vector,π∗
i , of this aggregated process

is computed as follows [13]:

π∗
i (1) =



1 +

Ki
∑

l=2

l−1
∏

j=1

(

λi(j)

µi(j + 1)

)





−1

(30)

π∗
i (m) =



1 +

Ki
∑

l=2

l−1
∏

j=1

(

λi(j)

µi(j + 1)

)





−1
m−1
∏

j=1

[

λi(j)

µi(j + 1)

]

m = 2, 3, . . . , Ki (31)

C. Performance Measures for Classi

At this point we have all the necessary information to compute the steady probabilities forMi. That is,

once we determine, for eachl: (1) the conditional state probabilities of all states inS l
i , given that the

33

system is inS l
i and (2) the steady state probability of being in statel of the aggregated process, then the

steady state probability of each individual state(k, j, l) in Mi can be expressed as:

π̃i[k, j, l] = π
j
i (k, j, l)π∗

i (l) where (k, j, l) ∈ Sl
i . (32)

Then (as outlined in Section III-E) we can compute various performance measures; more specifically,

we can compute many performance measures which can be expressed in the form of a Markov reward

function, Ri, whereRi =
∑

k,j,l π̃i[k, j, l]Ri(k, j, l) and Ri(k, j, l) is the reward for state(k, j, l) of

classi. Two useful performance measures for our system are the expected number of customers and the

expected response time for classi, i = 1, 2, . . . , N . Below, we illustrate how easy it is to obtain such

performance measures, once we have the steady state probabilities; for instance, the expected number of

customers can be expressed as a Markov reward functions, whereRi(k, j, l) = k.

Let N̄i andT̄i denote the expected number of customers and the expected response time, respectively,

of classi model, corresponding to the Markov processMi. ThenN̄i can be expressed as:

N̄i =

Fi(1)+a1

i
∑

k=1

kπ̃i[k, 1, 1] +

Ki−1
∑

l=2

l
∑

j=1

Fi(j)+a
j

i
∑

k=Ri(j−1)+1

kπ̃i[k, j, l] +

Ki
∑

j=1

∞
∑

k=Ri(Ki−1)+1

kπ̃i[k, j, Ki]. (33)

Using Little’s result [16], we have:

T̄i =



λi



1 −

Ki
∑

l=1

l
∑

j=1

Pi,j π̃i[Fi(j) + a
j
i , j, l]









−1

∗ N̄i. (34)

