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Abstract

In this paper, we consider performance evaluation of a Bysthich shared servers (or resources) amohgheteroge-
neous classes of workloads, where server allocation ardldeation for class is dictated by a class specific threshold-based
policy with hysteresis control. In particular, the servetivation time for class is non-instantaneousThere are many sys-
tems and applications where a multi-class threshold-bgeedeing system can be of great use. One important utility of
using threshold-based approaches is in situations wh@teapons may incur server usage costs. In these caseseaus
to consider not only the performance aspects but also thdtirgscost/performance ratio. The motivation for usingteyesis
control is to reduce the unnecessary cost of server setugr{ivation) and server removal (or deactivation) whendvere
are momentary fluctuations in workload. Moreover, serversuich systems and applications are often needed by multiple
classes of workloads, and hence, it is desirable to find gpptbaches to sharing server resources among the diffdesses
of workloads, preferably without statically partitionitige server pool among these classes. An important andg@lissining
characteristic of our work is that we consider the modelimgjanalysis of a multi-class system witbhn-instantaneouserver
activation, which is of use in studying many important apgiions. The main contributions of this work are (a) in depéig
an efficient approximation method for solving such moddi¥jr{ verifying the convergence of our iterative method, ér)d
in evaluating the resulting accuracy of the technique fongoting performance measures of interest, which can sulkesgly

be used in making system design choices.

. INTRODUCTION

In this paper, we consider performance evaluation of a raldss multi-server system, in whiadki
servers are shared amongheterogeneous classes of workloads &ng N. In this multi-class multi-
server system, servers (resources) are needed by mul@siges of workloads (applications) and we
also note that not all classes of requests are operatinglatdad at the same time. That is, when the
traffic loading of classis low, it is not desirable to operate unnecessarily manyessifor that class, due
to the incurred usage costs as well as due to the performanseguences of that class under-utilizing
the servers while other classes are (possibly) experigriigh traffic workloads. On the other hand,
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it is also not desirable for a system to exhibit very long gelavhich can result from lack of servers
under heavy loads. Therefore, it is an important issue fersgstem to figure out a good approach to
use few resources to serve those requests fronVatlasses and still attain a good cost/performance
ratio instead of statically partitioning the server poolang the classes. To deal with the above issue
and efficiently utilize system resources for such multssleulti-server system, we propose a threshold-
based approach to dynamically assign servers to servickferent class requests , i.e., how to allocate
or de-allocate servers to different classes is governeddey af thresholds. In this work we use “multi-
class multi-server threshold-based system” to refer tgpopposed threshold-based system which is able
to adaptively share the servers among different workloattsowt statically partitioning the server pool
among the classes.

The motivation for using a threshold-based approach in sy that applications may incur server
usage costs. Thus, one not only needs to consider the perficarbut also the cost/performance ratio.
One approach to improving the cost/performance ratio of &i+olass multi-server system is ttynam-
ically react to changes in workload through the usé¢hoésholds For instance, one can maintain the
expected response time of an application at an acceptafelegied at the same time, maintain an accept-
able cost for operating that system by dynamically addingeoroving servers depending on the traffic
loading. To possess the above property, one can use thédlddsased server allocation approach to
reduce the sensitivity of performance characteristics oliaas of customers to the workload of other
classes without having to statically partition resourcesveen the classes. Note that in many cases, a
“simple” threshold-based system may not suffice since itame to workload oscillations. One reason
for avoiding oscillations in the above mentioned systenhé there may be server setup and removal
costs. Such workload oscillations coupled with non-neglegserver setup and removal costs can result
in a poor cost/performance ratio of a system. Ideally, onetsveo add servers only when a system is
moving toward a heavily loaded operation region, and ongsv@rremove servers only when a system
is moving to-wards a lightly loaded operation region — it@ appropriate to alter the number of servers
during momentary and small changes in workload. Such asioli behavior can be avoided by adding
hysteresidbehavior. Hence the motivation of this work is looking fofi@ént analysis techniques of
threshold-based queueing systems with hysteresis control

There are many applications where threshold-based resousoagement policies can be employed,
and thus performance evaluation of such systems throudysimaf multi-classthreshold-based queue-
ing systems with hysteresis control can be of great use. ¥ample, the Novell file server maintains
a memory pool wherein a fraction of it is used for communmatbuffers and a fraction is used for
file buffers, where threshold-based policies are impleegtirt order to make decisions about when to

increase the number of network buffers and when to decréase ithreshold values are based on per-
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ceived packet losses due to increases in network traffigcigctSimilarly, OS design has been moving
toward maintaining a common buffer space pool that can bamtjcally managed between the various
I/O processes. Another example application is serveraafidin for different classes of Internet services
for an overlay network. As the number of requests for a paldrcclass of service increases, the number
of servers needed to maintain an acceptable level of guaflibervice guarantees also increases. The
use of a threshold-based approach can result in a costwetiedtcreation/deletion of servers based on
the changes in the workload for a particular class of requésis, the model presented in this paper and
its efficient solution will be beneficial for many systems agblications.

Now, we begin to give an overview of the multi-class multiva threshold-based system, which
has a total of’ servers. In particular, the number of servers employeddorising class customers,
i €{1,..., N}, is governed by &rward thresholdvector F'; = [F;(1), F;(2), ..., F;(K; — 1)] (where
Fi(1)<F;(2)<---<F;(K;—1)) and areverse thresholdectorR; = R;(1), R;(2), ..., R;(K;—1)] (where
R;(1)< R;(2)<---< R;(K; — 1)), whereK; is the maximum number of servers that can be allocated
to serve clasg customers (i.e., the system includes hysteresis contite service time of class
customers is represented by an exponential random vamathienean,; *. The server activation time
for classi is non-instantaneoysind it is represented by an exponential random variablenwéans; .
In generaly,; # p; andg; # 5; fori,j € {1,..., N}. Next, we explain how to allocate or de-allocate
servers to classes in the system as follows. Initially, edaks is allocated a minimum of one server.
When a class customer arrives to an empty system (i.e., when there aréheo cass customers), this
newly arrived clasg request is served by a single server. Arrival of a clasgstomer when there are
alreadyF;(j) classi customers in the system (withservers already allocated to serve clgsgauses
an attempt to allocate one additional server to clas¢ghere; = 1,..., K; — 1. Departure of a class
customer which leaves behirg}(j) class: customers (withj + 1 servers already allocated to this class
prior to this departure event), causes a de-allocation efgesfrom class, wherej = 1,..., K; —1.In
other words, this forces the return of a server, which waleeailocated to clasg back to the pool of
“free” servers which are available for allocation to allsdas of customers. Therefore, Allclasses of
applications share a common pooligfservers, withdynamicallocation of servers to classes governed
by a set of thresholds with hysteresis behavior. Note tha&nyh , K; < K, then the classes do not
“interfere” with each other since the total peak resourcea® is less than or equal to the total number
of resources in the system. Of course, a more interestinglaaltenging case is when | K; > K.
In other words, we want to investigate the performance ohedass of workload when the number
of common servers is less than the total peak resource deofaldclasses. By taking advantage of
the fact that not all classes are operating at high load asdhge time, one may use fewer resources

(than with static resource partitioning) to serve requésts all N classes and still achieve a good



cost/performance ratio.

Here arises another challenging problem, i.e., how to deter what are “good” values for these
forward and reverse threshold vectors, which are a funafamany factors, such as the server setup,
usage, and removal costs, characteristics of the arrivadgss and the service rates, as well as the
possible “interaction” between the different classes ofkaads. The goal of this work is to develop an
efficient method for solution of multi-class multi-serveréshold-based queueing system with hysteresis
behavior wherein the server activationrien-instantaneous The question of optimal values for the
threshold vectors is, in general, a difficult problem andussmle the scope of this paper. On the other
hand, we want to point out that efficient model solution teghas can be of great use in evaluating
various parameter settings (such as the threshold val&egh analytical models are especially useful
at design time, when the speed of evaluation is key. Thus,ekeve that our efficient solution method
facilitates accessible experimentations for investigathe “quality” of various threshold parameters.

Given the above motivation for the use of threshold-basetesys with hysteresis control, we present
an efficient technique for solving the corresponding amedytmodels and computing various perfor-
mance measures of interest, in the contextari-instantaneouserver activation. We begin with a very
brief survey of some of the existing literature on the topictwo-server system is considered in [14],
[15], [21]. An approximate solution for solving a degenertdrm of this problem (where all thresholds
are set to zero) is presented in [7], [9]; an approximatetgoidor a system that employs (non-zero)
thresholds is presented in [22] (but without hysteresis)8], the authors solve a multi-server threshold-
based queueing system with hysteresis, using the Gream$idn method [6], [10], [11]. In [17] we
give a solution of several forms of the single class, mudtiver threshold-based queueing system with
hysteresis using stochastic complementation [18]. Teples for computation of bounds for perfor-
mance measures of single class, multi-server threshadebgueueing systems with hysteresis and non-
instantaneous server activation are given in [3]. Lasllypfovides a solution technique for multi-class,
multi-server threshold-based system with hysteresisimstdntaneouserver activation. In this paper,
we extend and generalize that workton-instantaneouserver activation; the non-instantaneous server
activation can have a significant impact on the system padoce (as will be illustrated in Section
V) and hence is an important model characteristic to consi8pecifically, in this work we consider
and solve anulti-class multi-server threshold-based queueing system with hgsi® control andhon-
instantaneouserver activation.

The contributionsof this work are as follows. To the best of our knowledgeneof the works de-
scribed above give an efficient analytical solution techaifpr analyzing this model. Since in many
applications, different types of workloads compete for alpd resources where server activation time

is non-negligible (e.g., it takes a non-zero time to repécand activate a video server in an overlay
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network), we consider it an important and distinguishingrelsteristic of our work. In this paper, we
present an iterative solution technique which solves th#i+olass model by “breaking” it up intaVv
single class models, “coupled” through a set of model patarsgvhich capture the interaction between
classes. We also illustrate the accuracy of our approacichvdificiently computes performance mea-
sures of interest, through a set of numerical results. Eurtbre, we give an proof and discussion about
the convergence of our iterative method to solve the apprate model. This is important since we can
get further understanding of our analytic model such thatewdd construct more precise and efficient
analytic model for the multi-class multi-server system. &l believe that the efficiency and accuracy
of our iterative approach provides an important step in figdptimalthreshold values for a multi-class,
multi-server threshold based system with hysteresiswandinstantaneouserver activation. Finally, we
note that a variety of iterative approaches have been usednrerous approximation techniques (e.g.,
refer to [2]). For instance, an iterative technique for a esmat different control scheme for dynamic
resource sharing between multiple classes is employe®in[{A0].

The remainder of this paper is organized as follows. In $adii we give a detailed description of
our model. Section Il describes our iterative solutionraagh for this model. The convergence of the
iterative method to solve the approximate model is presant8ection IV. The quality of this approach,
i.e., its accuracy and utility in system design and evatdunais discussed in Section V through the use of

numerical results. Finally, our conclusions are given intida VI.

1. SYSTEM MODEL

The Markovian model for oumulti-class, multi-server threshold-basgqdeueing system withys-
teresiscontrol has an infinite state space which can be describeallaw$. There ard( servers in the
system withK > N whereN is the total number of classes of customers. The service dgindéfer-
ent classes can be different, and the service time requiresnoé a class customer are exponentially
distributed with parameter;. The customer arrival process is Poisson with rgtevhere with proba-
bility «; an arriving customer is of clagsand>"Y  «; = 1 and1 < i < N. Addition and removal
of servers for serving customers of clads governed by the forward and the reverse threshold vectors
F,=[F(1),F2),---,F(K; —1)]andR; = [R;(1), R;(2),-- -, R;(K; — 1)] whereF;(j) < Fi(j + 1)
forl1 <j<K,—2,R(j) <R(j+1)forl <j<K,—2andR;(j) < Fi(j)forl <j < K;—1.
Note that, unlike in [4], [5], the activation of a server fdass: is non-instantaneoughere the server
activation time is exponentially distributed with mean'. As mentioned in Section I, this is motivated
by the fact that in many applications addition of a new setakes a non-negligible amount of time.

Each of thesd servers is able to serve a customer of any class. Eachidtesss out with one server

and may attempt to obtain at mdst servers. These servers are allocated for service of ctastomers
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and returned to the pool of available servers based on thé@uai class customers currently in the
system (as stated more formally below). In genexgl,, K; may be greater than, equal to, or less than
K; although the more interesting and challenging case iseér, K; > K. We model this system as
a Markovian procesa, using two different variations. In the first variation, wenstrain the number
of classi customers when the number of servers allocated to ¢laskess thank; (we motivate this
variation below). The Markovian model for this variatiorréerred to as\1®. In the second variation,
we do not use such a constraint, and the Markovian model fentriation is referred to ag1®. We

now give a more detailed description of each of these models.

A. M® with constraint vectorn
The Markovian proces$1®, with a constraint vectat, has the following state spa¢e:
N
St = {(nlvslallv"'vnNaSNle) | n; 2 Ovlz S {175K’L}7ZZ'L S Kall Z SZ,E(ZZ) S Uz S FZ(Z’L) +aéiv
=1

sief{l,2,... K;},i=1,...,N}

wheren; is the number of class customers in the system, is the number of “busy” (or active)
servers currently serving classcustomers, and; is the number of servers allocated to classot
all of which may currently be available for service of clasgsistomers since servactivationprocess
is non-instantaneousUpon an arrival of a classcustomer, ifF;(j) < n; < Fy(j) + a} wherea! > 0
andj = [;, the system attempts to allocate an additional server feicgeof class customers, which
is possibleonly when the system has sufficient amount of resources, i.&8.Yif l; < K. Note that
in a system wher&Y | K; > K, it may not always be possible to allocate another serveesinis
possible that all servers may have already been allocated. In this case, ikim@rclass: customer
joins the queue of clagsequests as long d§(j) < n; < F;(j) + a! (wherea! > 0 andj = I;). When
n; = F;(j) + al, the arriving class customer is rejected by the system if there is no serveraiaifor

allocation to class (i.e., if . I, = K). Forcorrectnesswe assume the following constraint on @l
Fi(j)+al <Fi(j+1)+al™ori=1,2,...,Nandj = 1,2,..., K; — 1.

We also assume thaf** = oo; hence, we have no restrictions on queue length when thenmuaxi
number of servers that may be needed by cléss/e been allocated (i.e., whér= K;). The limitation
on queue length wheh < K; can be motivated by system design considerations. For dearthe
system reaches a point where its design dictates that arsmheer be allocated for classvorkload but
a server is not available, then one may assume that the systemporarily overloaded and rejection
of customers is a reasonable approach to dealing with aadonditions. Of course, a “real” system
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will also not have an infinite queue length, when the maximwmber of serversK;) for classi has

been allocated. In this case, we may either (1) use a finitegylemgth model (i.e4" is finite) and
study the system’s performance under a given queue siz&ation, or (2) allow an infinite queue length

(i.e., aX = o0) and use the model to study queue length requirements ofafiesponding system.
Our solution methodology (refer to Section Ill) allows father type of a model, but for simplicity of
exposition, in the remainder of the paper we will focus osgcdssion on the infinite queue version (i.e.,
whered! is finite, forj = 1,..., K; — 1, anda™ = ).

We now give a detailed description and formal structure ler transitions ofM“. The transitions
corresponding to an arrival of a classustomer fall into one of the following categories:
C1 : noneed to allocate another server to ciaghe conditions for this category could be (i) the number
of class: customers does not cross a corresponding forward thresh@idithere are already; servers
allocated to classor (iii) there are no available servers in the system duedource contention among
the different classes.
C5 : a need to allocate another server to clas§he condition for this category is that the number of
allocated server for clagdgs less thank; and there is an available server in the system and the number

of classi customers crosses a forward threshold.
The formal structure for these arrival transitions is akfes$.

Aoy )
(nl,sl,ll,...,ni,si,li,...,nN,sN,lN)%(nl,sl,ll,...,ni—i—Lsi,li,...,nN,sN,lN) If Cl (1)

Ao .
(7’L1,817ll,...,ni,SiJi,...,TLN,SN,ZN)% (nl,sl,...,ni+17si,li+1...,nN,sN7lN) if Cy (2)

where conditiong’; andC;, are

N
G = ((li < Ki)A(ni < E(li))) v <li = K) Vv <(zi < K)A Ol = K) A (Fi(ls) < ni < Fy(li) +agi)>

N
Cy = (li < Kz> A (le < K) A (E(lz) <n; < F(ly) _l’_aéi) '
J=1

The transitions corresponding to a departure of a élasstomer fall into one of the following categories:
C5 : no need to deactivate a server. The conditions for thigyoayeare either (i) only one server is
allocated to classor (ii) the number of classcustomers does not drop below a reverse threshold.

C), : aneed to deactivate a server. The condition for this cayggthat more than one server is allocated
to class and the number of clagscustomers drops below a corresponding reverse threshold.

The formal structure for these departure transition is Hevis.

Silbi
(nlvslallv"'7n’i78ivlia"'7nN75NalN)



(n1, 81,00, 0,mi — 1,84, L ...,y SN, ) if C3 3

Silbi
(nlvslallv"'7n’i75ivlia"'7nN75NalN)

(nl,sl,ll,...,ni—1,min(si,li—1),li—1,...,nN,sN,lN) |f 04 (4)

where conditions fo€’s andC, are

C; = ((ni >0)A (L= 1)) Y ((ni >0) A (ni—1>R;(li—1))A (ll->1))
Cy = ((ni >0)A(n;—1=Ri(l; —1)) A (l; > 1)) .

Lastly, there are transitions corresponding to classver activations. The condition for these transitions

is that the number of active servers is less than the numhksloafated servers. The formal structure for
these activation transitions is as follows.

(l; — 8:)0;

(nl,sl,ll,...,ni,si,li,...,nN,sN,lN)% (7’L1781,l17...,ni78i+1,li7...,nN,SN7lN) If C5 (5)
where conditiorCs = (I; > s;).

B. M?® without constraint

The second model variation 1%, which represents a Markovian process without constraintshe

number of class customers. It has the following state spasg,

Sb = {(nl,sl,ll,...,nN,sN,lN)|ni >0,liE{l,...,Ki},liZSi,SiE {1,...,K¢},ZS¢SK,Z':L...,N}

wheren; is the number of classcustomers in the system, is the number of “busy” (or active) servers
currently servicing classcustomers, ang is the number of servers “expected” to be allocated/a&®/at
for classi use — more specifically, according to the threshold vectpsgrvershould ban use by class
1 customers but may not be, because (i) multiple classes tbrmigss are competing for these servers
and (ii) in our model server activationmon-instantaneoudence, a major difference betweén® and
M? is that we use a constraint vecioto limit the queue length whelh < K; in M while we do not
limit the queue length inV\1®. We give a comparison study between these two models ind®eti

We now give a detailed description and formal structure fier transitions ofAM°. The transitions
corresponding to arrivals of classustomers fall into one of the following categories:
C1 : no need to increase the number of expected servers (angdalihe forward threshold vector) for
classi. The conditions for this category could be (i) the numberlags: customers does not cross a
corresponding forward threshold or (ii) the number of expeservers is equal t&;.
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C, : aneed toincrease the number of expected servers foricldke condition for this category is that
the number of expected servers for classless thank; and the number of clagscustomers crosses a

forward threshold.
The formal structure for these arrival transitions is akfes$.

Aoy )
(nlashlla'"7ni18i7li7"'anNaSN7lN)%(nl7slall7"'7ni+17Siali7---7nNaSN7lN) If Cl (6)

/\Oéi .
(nl,Sl,ll,...,ni,Si,li,...,TLN,SN,ZN)%’(TM,SM...,Tli+1,Si,li+1...,nN,SN,lN) |f CQ (7)

where conditiong’; andC;, are

and

The transitions corresponding departures of clagstomers fall into one of the following categories:
C5 : no need to deactivate a server. The condition for this cayeig that either (i) the system has only
one server for classor (ii) the number of classcustomers does not drop below a reverse threshold.
C, : aneed to deactivate a server. The condition for this cayegdhat there is more than one server
for classi and the number of clagscustomers drops below a corresponding reverse threshold.

The formal structure for these departure transitions i9bas.

Si s
(n17slall7"'ani7siali7"'7nN78N7lN)
(nlvslallv"'ani_138’ivli7"'anNaSNalN) if 03 (8)
Si i
(nlvslallv"'anivsial’iv"'vanstlN)
(nl,sl,ll,...,ni—1,min(si,li—1),li—1,...,nN,sN,lN) |f 04 (9)

where condition€’; andC, are

Oy = ((ni >0)A (I = 1)) v ((ni >0)A (i — 1> Ri(l; — 1)) A (I; > 1))

Cy

((ni > 0) A (ni —1= Rz(ll — 1)) AN (lz > 1)) .

Lastly, there are the transitions corresponding to classver activation. The condition for these transi-
tions is that (i) the number of active servers is less thamtimber of “expected” servers and (ii) there
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is an available server in the system. The formal structurdlfese server activation transitions is as
follows.

Bi

(nlashlla'"7nia8i7li7"'anNaSN7lN)% (n1751all7"'7ni75i+1ali7---anNaSN7lN) If CV5 (10)
where the conditio; = ((zi >s)A SN 1 < K)).

[1l. 1 TERATIVE METHOD

In this section we describe aterative approach to solving the models presented in Section Il. As
described in Section I, the corresponding Markov protess, is infinite in multiple dimensions. One
can choose to solve this model by (a) simulating the MarkopiecessM, or (b) looking for special
structure, or (c) looking for efficient approximation tedues. Becaus@1 appears to lack sufficient
structure for an efficient exact solution technique (e.gchsas the matrix-geometric technique), we
describe an approximate iterative solution techniquedtuiisg this model. The use of an approximation
is motivated by the desire to construct an efficient soluipproach (and simulation can be significantly
slower than analytical solutions) as well as an accurate(ame iterative techniques can often produce
fairly accurate results).

A. Basic Approach

Let us first describe the basic approach to solving the abefreaeti Markovian model. We first break
up the original modeM into IV single class Markovian sub-models, namely,, M, ..., My (see
Section IlI-B for a more detailed description of thid,’s). TheseN Markovian models are “coupled”
via a set of blocking probabilities. Specifically, the iraetion between classes occurs when class
requires allocation of another server (due to the crossfrg forward threshold), and no servers are
available in the system (i.e., all’ servers have already been allocated) due to the workloathef o
classes. Therefore, in general, there is a non-zero prdigdbat classi, which has already (a) allocated
s; servers in the case d#1® or (b) expected to be allocated/activatedervers in the case d¥1®, is not
able to add a server upon the forward threshold crossingud. egfer to this as a “blocking” probability
Pi.s;» Which approximatelycaptures this interaction between classes. Note that [ (number of
allocated servers for clagsin M while s; = [ (number of expected to be allocated/activated servers
for classi) in M®.

We now formally describe our iterative approach. maé’” be the Markovian process correspond-
ing to the individual class model at iteratiom with a corresponding steady state probability vector

7. The parameters of eacht!” are computed as a function of blocking probabilitidd” =

(2

In the remainder of the paper, we us¢ to represent eithet1® or M?, for simplicity of exposition.
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{Pi(ﬁl), PZ-(Z), . 7731-(,%}' which are in turn computed as a function of the steady staibgbility vec-

tor, ﬁ-l(-”_l), obtained during the previous iteration. (We give the detafithe construction QMZ(-") and

the computation oﬁ-f-”) below?.) Then, a high level description of our iterative approachs follows (a

more detailed and formal description is given in SectiorQ)i
1. Construct/\/lgo), /\/lgo), . ,/\/l§\0,); setn = 0 (this is iterationD);

2. SoIveMﬁ"),Mgn), .. ,/\/l(”), i.e., compute the corresponding steady state probalkilitt obtain

ﬁ'%"), ﬁ'é"), Cen 7’%53); setn =n + 1;

3. Use these steady state probabilities to compite, P{”, ..., P{;
4. Use these blocking probabilities to update the individless models, i.e., construge™, MY,

..., M where for eacti = 1,. .., N, parameters oM™ are computed as functions & (but not

P§”) wherej # i);
5. Continue the iterative process (i.e., go back to 8)amtil the values of allP;’s converge.

B. Individual Class Model

Since our iterative approach involves solution of indiatlalass modelsX1;s) we now briefly de-
scribe the class model, which can be defined as follows. We hadvgservers each with an exponen-
tial service rateu;. Customer arrivals are governed by a Poisson process wigh\fa= o;\. Ad-
dition and removal of servers is governed by the forward dedreverse threshold vectors, namely
F, =[F1),F(2),...,F(K;—1)]andR; = [R;(1), R;(2), ..., R;(K; —1)]. whereR;(j) < F;(j) and
1 < j < K; — 1. And, server activation time is exponentially distributeith rate ;.

Individual Class Model for M*
Given aK;-serversingleclass threshold-based queueing system with hysteresisotand constraint

vectora;, we model it as a Markov procegg; with the following state spacs;:

wherek is the number of customers in the clasgueueing systeny;, is the number of busy (active)
servers, and is the number of allocated, not all of which may currently lsévated due to th@on-
instantaneousature of server activation in our model. Figure 1 illustsathe state transition diagram
for such a system whei€; = 2. Formally, the transition structure @f(; can be specified as in Tabf |
where all transitions are from state, j, /), with the state description given above:

ZNote that there are multiple approaches to construcﬂmﬁ)’s, i.e., multiple ways to start the iteration; we give distaif one such

approach below.
3Note that, the transition rates described here are a funofithe blocking probabilities?; ;, which change from iteration to iteration, as

outlined above; however, for simplicity of notation, we du indicate the iteration step number in the descriptiomefttansition structure

of a classi model.
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Fig. 1. State transition diagram @f{* for a class system withK; = 2.

‘ Next State ‘ Rate ‘ Condition for transition ‘
(k+1,45,1) Ai (1<1<K)A(k<Fi(l))
(k+1,7,0) Ai l=K;

(k+1,4,0) AiPiy (1<1< K)A (Fi(l) <k < F(1) +db)
(k+1,7,1+1) Xi(1="Pi1) (1<j<K)AN(F()<k<F(l)+ad)
(k—1,4,1) T E>DANA<I<K)AN (k—=1> Ri(I-1))
(k—1,min(j,1 —1),l—1) i k>2DANA<I<K)ANk-1=R;(I1-1))
(k—1,510) i ((=j=1)nr(k=1)
(k,j+1,1) (1—7)Bi (1> )
TABLE |

DESCRIPTION OF STATE TRANSITION FORM®

Individual Class Model for M?
Given aK;-serversingleclass threshold-based queueing system with hysteresisotome model it as
a Markov procesg\; with the following state spacs;:

Si={(k,j,)) | k> 05,0 €{1,2,... . Ki}, 1 = j}

wherek is the number of customers in the clasgueueing system; is the number of busy (active)
servers, and is the number of servers “expected” to be allocated andatetiv Figure 2 illustrates the
state transition diagram for such a system whi§re= 2. Formally, the transition structure g¥1; can
be specified as in Table I, where all transitions are frontesta j, /), with the state description given
above:

Let us now proceed to a more detailed description of thetiteraolution technique for theulti-class
system. We do this under the assumption that, gifgrwe know how to construct; (using Table | or
Table Il above) and compute;, the steady state probability vector correspondingtp The procedure
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Fig. 2. State transition diagram @f(® for a class system withi; = 2.

‘ Next State ‘ Rate Condition
(k+1,41) i (I<i<K)N (k< F; (1)
(k+1,510) Ai (I = K;)
(k+1,5,14+1) i (1<j<K)Nk=F{()
(k—1,41) i k>2DAA<I<K)AN(k—1>R;(1-1))
(k—1,min(j,l —1),1—1) J i k>DANA<I<K)ANk—-1=R;(I-1))
(k—1,4,1) i (l=j=1)Ak>1)
(k,j+1,1) (1—"Pi;)Bi )
TABLE Il

DESCRIPTION OF STATE TRANSITION FORM"

for computingr;, is given in Section IlI-E.

C. lterative Computation

In this subsection, we describe the framework for the iteggdbrocedure. This iterative procedure
is similar to our work in [4] but we extend it to handle the caggerein the server activation event is

non-instantaneous. First, note that in general, therenareases to consider here:
case 1: 3V | K; < K; thatis, we have a “trivial” case, where the classes do rnetfiere with each

other, and we can solve each individual class model oncerfpeneed for iteration) using the procedure
given in Section llI-E withP; 5, = 0, Vi, s;.

case 2:> Y | K; > K, where itis possible that an attempt at server allocatiooléssi may fail because
all K servers in the system are currently allocated. As descabete, in this case a form of blocking
occurs and we solve the model using the iterative approattimed in Section IlI-A whose details are
now presented below.
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Note also that the main difficulty in the iterative techniquelined in Section IlI-A is in determining
an appropriate procedure for computing the blocking proitials which capture the class interaction,
i.e., the probabilities that, upon a forward threshold siug, it is not possible to allocate another server

to classi. Recall that, during the!” iteration @ > 0), 732-(7’;2 is the blocking probability of class
(1 <i < N)towhichs; servers already have been (a) allocated in the caddbr (b) expected to be

allocated/activated in the case. bt’. Before we proceed, let us state the following definitions.
Definition 1: Let X and)’ be two non-negative random variables having valudsja, ...} and letr »

andmy, be their respective probability mass functions. Bebe another non-negative random variable
whereZ = X + Y, thenwz = w1y ® wy where® is the convolution operator.

Definition 2: Let X be a non-negative random variable having valuedir2, . .., } and letrr y be its
probability mass function. Let

P X L1 <X< Ly
B 0 otherwise.

Then the probability mass function &f, denoted byr v/, is equal tag(7x, L1, L2) where functiory is

defined such that:

2y, mm] (11)

0 otherwise

_ mx[k] if Lw <k< Ly
g(mx, L1, La)[k] = mar[k] =

Let 7 7r [k; J, 1] be the steady state probability of claskavingk customersX > 0) in the system
with j activated servers andarget server allocations (with< j < [ < K;), computed during the”
iteration. Let7r ) denote the steady state probability vector of the numbeeiess allocated to class
i, Wherew [ [] denotes the steady state probability servers having been target allocated to claas

computed during the!” iteration. Thus, we have:

K;

=3 7 k4,1 (12)

j=1 k

Finally, let QZ(-") be the transition rate matrix corresponding to the ciasmdelj\/lg"), during then!”
iteration, which is computed using the transition strLetmlerf-") givenin (a) Table | in the case di1“

or (b) Table Il in the case af1?, andPi(Zi_l), wherel < s; < K; — 1. Then, the iterative procedure is
as follow:

1. Initialization step:setn = 0 and seﬂDZ-(g)i = 0for1 < s; < K;. Given these initial values of blocking
probabilities, for each clagswe can construc@f-o) using the transition structure given in (a) Table I in

the case of\® or (b) Table Il in the case aM?, and then computégo) using the procedure given in
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Section IlI-E. Once we compute the steady state probabiétyorﬁ-go) for each clasg, we can then

compute their respective server allocation probabilittytues,wgo)s, using Equation (12). Tm§°>s are

in turn needed in the computation of the blocking probaib'di,ﬂ?i(;)is (step2 below).

2. Updating of blocking probabilities stepi = n + 1, and

. N
0 if K> Zj:l K;
n 0 if K —s; >
P = . (13)
Zj:l,j;&i Kj

I'(i,s;,n) otherwise

The first condition in Equation (13) indicates that the systeas a sufficient number of servers for all
classes (we include this for completeness). The secondtommihdicates that the system has sufficient
resources to allocate at least one more server to chlagthout affecting the maximum possible server
allocation of other classes. In the last condition, Ehieinction is used to compute the blocking proba-
bility, at iterationn, for classi which hass; servers already (a) allocated to it in the case\of or (b)
expected to be allocated/activated in the casetéf

I'(i, s;,n) can be computed as follows. Ldt, (i, s;, n) be the random variable, at iterationdenot-
ing server allocation of class, when class has been (a) allocated servers in the case d#1* or (b)
expected to be allocated/activatedservers in the case d¢1°. Let Y,,(i, s;,n) be the probability mass

function of 4,,(i, s;,n). Then we have:
Ton(iysin) = g(@®=Y 1,L,,) (14)

form={1,2,...,1—1,i+1,..., N} where functiory is defined through Equation (11) afg, is as
follows:

if K—s;—(N—2)>K,

K,
K—s;—(N—-2) otherwise

and7 (=Y in Equation (14) is computed using Equation (12). The noizatibn in Equation (14) is
used to account for the fact that if we know that the systemaaly (a) allocated; servers to class

in the case of\“ or (b) expected to be allocated/activatedervers to classin the case ofM?, then
the system only hagk — s;) servers remaining. Out of the§& — s;) remaining servers, the system
needs to allocateV — 2) to customers that are neither in clas®r in classn (i.e., the system allocates
at least one server to each class). Therefore, if the systéemially has at leask’,, available servers,
thenA,,(i, s;,n) can have values ifil, . . ., K, }; otherwise, the random variahl&,, (i, s;, n) can only
take on values iq1,2,..., K —s; — (N — 2)}. LetB(i, s;,n) be a non-negative random variable, at



16

iterationn, denoting the server allocation of all classgseptclassi, where class already has; servers
(a) allocated to it in the case 0¥1* or (b) expected to be allocated/activated in the casa4f Let
(i, s;,n) be the probability mass function &4, s;, n). Then we have:

\I/(Zv Siy TL) =g ((Tl(lv Sivn) @ ® Ti+1(i7 Siy TL) e ® TN(Za Sivn))a N_la K_Si) (16)
The normalization in Equation (16) is used to account forfdw that if the system has already (a)

allocateds; servers to classin the case oiM?, or (b) expected to be allocated/activatgdervers to

classi in the case of\” , then the number of servers that have been allocated to dtsses can only
range in{N — 1, N,..., K — s;}.

Lastly,I'(i, s;, n), the function used to compute blocking probabilities, @tdtionn, corresponding
to class: with (a) s; allocated servers in the case M® or (b) s; expected to be allocated/activated

servers in the case ¥’ is:

T(i,s5,n) = U(i,s;,n K —s;) (17)
whereV (i, s;, n; K — s;) = ProB(i, s;,n) = K — s;] andW¥(z, s;, n) is computed using Equation (16).
3. Updating of individual class models stegiven the blocking probabilitie@i(ﬁz of classi in Equation
(13), we can compute the new rate mat@;%") (based on the transition structure given in (a) Table |
in the case of\® or (b) Table Il in the case aM?’) and then compute the corresponding steady state
probabilitiesﬁ-,(-”) (using the procedure given in Section IlI-E) as Wellfég), the probability vector of
server allocation of class(using Equation (12)). (Thef—")’s will in turn be needed in the updating of
the blocking probabilitiesP"""’s (step2 above).)

4. Test of convergence stetﬁ:\PfﬁZf - Pi(,zi_l)\ < eforeachclasg, 1 <i < N,andeach;, 1 <s; <

K; — 1, then stop. Otherwise, go to ste@nd continue iterating.

D. Computation of Performance Measures

In this section we briefly discuss computation of perforneanmeasures. Due to lack of space, we
only present the derivation for modal® and we could use the same approach for the derivation for
modelM?®. Given the steady state probabilitigs i = 1, ..., N, computed using the iterative approach
described above, we can compute various performance nesasiinterest. More specifically, for each
classi we can compute performance measures which can be exprestedform of a Markov reward
function,R;, where

k3,0

and R;(k, j,1) is the reward for staték, j,[) of classi. Some useful performance measures include:
(a) expected number of customers of clasfh) expected response time for customers of clags)
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probability of dropping a customer of clasapon its arrival, (d) throughput of clasgustomers, and so
on.

For instance, leE'[V;| and E[T;] denote the expected number of customers and the expecpethses
time, respectively, of the clagsmodel, corresponding to the Markov process;. Then E[;] can
be expressed as, ;, k7;[k, j,1]. (A more detailed expression fd@i[/V;] is given in equation (33) in
Appendix A.) Of course, using Little’s result [16], we ha¥8T;] = %E[Ni], where\! is the class
throughput. To computg; we need to account for the customers that are dropped frosyttem (see
Section Il). Henced! = \i(1 — X% YLy P&l F () + al, 4, ).

We believe that the more interesting performance measueethase computed on a per class basis,
since a useful part of studying performance of multi-cldseghold-based systems is to discover the
effect that the various classes have on one another. Therefe have concentrated on per class perfor-
mance measures here. However, we can also use these to eaverall system performance measures,
for instance, as a weighted average of the individual claspnance measures. For example, we can

compute the expected system response tifjé], as follows:

¥ A5
E[T] = )\—iE[Tl] + )\—zE[Tﬂ +--+

AN
A*

E[TN]
where)\* = SN A%,

E. Analysis of the Individual Class Model

In this section we briefly summarize the solution techniqurettie individual class model which was
defined in Section IlI-B. Specifically, we use the single slaslution technique we derived in [17] with
some modifications needed to account for the structure ohtlig-class model. Since these modification
are mostly straightforward, we only summarize the solutémmnique in this section, and give the details
in Appendix A for completeness.

The general approach is as follows. As already stated, weehtbd class queueing system as a
Markov processM;, where: (1) the main goal is to compute the steady state piiities of the Markov
process and use these to compute various performance snetricterest and (2) the main difficulty
is that the Markov process is infinite (see Section 111-B) &mds “difficult” to solve using a “direct”
approach.

As is often done in these cases, we need to look for speciaitate that might exist in the Markov
process; specifically, we take advantage of the stochastiplementation technique [18]. The basic
approach to computing the steady state probabilities oMagkov process and the corresponding per-
formance measures is as follows. First, we construct anrugpend model MY, for the original Markov

“We could consider finite versions of the model or truncatibthe infinite version [12]; however, in either case the Markwocess

would still be very large and the computational complexity édirect” solution for a reasonable size system still high
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processM;, while trying to satisfy the criteria that the new model will) provide (hopefully a tight)
upper bound on the desired performance measures and (2) implér'model to solve. Therefore,
the upper bound model transitions that replace the origiaalsition can be specified as follows: In
Tables | and Il we replacg — 1, min(j,l — 1), — 1) with (k — 1,1,1 — 1), where the transition rate
is ju;. Next, we partition the state space of the original MarkaxcessM;® into disjoint sets. Using
the concept of stochastic complementation, for each setowgpute the conditional steady state proba-
bility vector, given that the original Markov procegd; is in that set. (A relatively simple construction
of the stochastic complement is possible due to the speciaitsre that exists in the individual class
models; specifically we exploit the “single entry” struawas in [3].) By applying the state aggregation
technique [1], we aggregate each set into a single statehamdcbmpute the steady state probabilities
for the aggregated process, i.e., the probabilities of yistem being in any given set. Lastly, we apply
the disaggregation technique [1] to compute the indiviquatonditional) steady state probabilities of
the original Markov procesa/;. These can in turn be used to compute various performanceuresa
of interest. (Refer to Appendix for a detailed derivatioritod solution ofM;.)

IV. CONVERGENCE OF THEITERATIVE METHOD

As described in Section Ill, we break up the original modélinto N single class Markovian sub-
models, i.e.M1, Ms, ..., My. We use a set of blocking probabilities to describe the auon among
theseN Markovian sub-models. In particular, the blocking prolitibs P; for classi are functions of
all steady state probabilities except the steady stateapility of classi, i.e., ;. Therefore, we could
useN groups of simultaneous equations to represent thddarkovian sub-models since the blocking
probabilities could be represented by the function of theisady state probabilities. Note that for each
classi the number of unknown variables|i;| and there ar& Y |7;| variables for the whole system.

Let A; be the transition rate matrix for the classxcept all the entries in the first column are equal to
1. In addition,b; is a row vector, in which all the elements dréut the first element i$, and its size is
the same agr;|. Thus, we can use the following non-homogeneous systenoati{near) equations to
represent the clagdMarkovian sub-modeM;:

To use the iterative method to soldegroups of simultaneous equations, we split the madsixnto two
sub-matrices4,; ,, and A, ,, whereA, ,, is the initial nonsingular, non-blocking matrix (with alldzking
probabilities are equal t©) and A, , = A; — A, ,,. Given a splitting with nonsingulad, ,,, we have
i (Ain +Aip) = b,
7 = bA, — T AAL (18)

SFor simplicity, we useM; instead ofM¥ in the rest of this paper.
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which leads to our iterative procedure.
7E = bAT - wE AR AL (19)

We note thatAﬁb is updated based on the steady state probabiﬁtj?éé, wherel < j < N andj # 1,
in the previous: — 1 round. From the above discussion, one can compute the erctonof class, e.g.,

ek after thekth round, we have:

= w = w= b~ (A TAGALY) = —TAGA, (20)
e = T — W= ~21Azl,b-'4z’,n A bAm’ (21)
G oo R = WAL A AT 22)
e = dh = w AR AT - A AL (23)

If our iterative method is able to converge, the sufficiemditon is thate, becomes very close t©
after finitek iterations. Since bOtIﬁ'f andsr; are stationary probability vectors, we can see thaﬂja)s

approaches to the actudl ;, e¥ will approach0. To illustrate the above argument, we give the proof of
a 2-class system and show the convergence of the proposatil/gemethod.

Example: Consider &-class,3-server threshold-based system as follos:= 3, K; = K, = 2,
I, Ry, F3, a and R,. We assume that there exits a stationary distribution fisraysstem.
Let 7, ; be the steady state probability for classvith j servers and thewr; = (7, 1,712), and
7ty = (791, 22). According to our method to compute the blocking probabsitwe haveP, ; = 755
andP,; = ;2. Therefore, the goal is to solve two groups of non-homoges&d linear equations,
i.e.,m. A = by andwa Ay = by, whereP, | = a0 andPy; = 7y 5.
- Step 0:we setP}, = 0 andPy, = 0.

P =0<Py — 7], > 10 =Poandal, < @y

P =0< Py — Ty > Top =Py andal, < o
. Step 1:we setP], = @), andP}, = 7} ,.

Piy > Pry— @y < T1o =Py andsmy, > @y,

Py > Pay — Ty < Top = Pry andsy, > 1.
. Step 2:we setP}, = 7;, andP;, = 71 ,.

P12,1 < P171 — 7}%’2 > 77&'172 = P2,1 and'ﬂ'l’l < 7}171

~ 92 ~ ~ 92 ~
,P2271 < 73271 — Moo > T2 = 73171 andﬂ'z’l < T 1.
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. Step 3:we setP}, = &3, andP; | = 71 ,.
P> Pig— iy < Tig=Pogands]; > 71,

P§,1 > 73271 — 77?;72 < 77&'272 = 73171 and’ﬂ';l > 77&'271.

. Step 2k: we setP# = 735" andPyk = w1 !
77 < P11 —>71'12 > 9= Paa andﬂ'11 < T
P3h < Pyy— 7?2,2 > Ty9 = Pia andﬁ—21 < Tag.

. Step 2k+1:we setPPi™ = 3% and Pyt = &tk

7)12]3+1>,P11—>7712 <7r12—7321and7r11 >71'11

P2k+1>7321—>7722 <7722—7311and7721 >71'21.

Next, we would like to prove the following inequality:
P < PAT? < Py < P < PHT!, wherei= 1or 2 and k> 0. (24)

One can use the mathematical induction to prove the abogeaii¢y.

1. Whenk = 0, it is trivial to verify the inequality is correct for cladsor class2.

2. Assumek = m, the inequality holds for classand clas.

3. Ask = m + 1, for classl, we havePy 7" > PPt — Pin = w35 < w3t = PYPT; that

2m—1

is, we use the higher blocking probability for classve get lower state probability;’s ™, which is the

blocking probability of class for the next round.
Similarly, we can prove another side of the inequality fassll: P57 < P37+ — Prit? < Prptl.
Of course, the same approach can be used to prove the ingdaatlass2.

Once we show that Equation (24) holds, it is not difficult towhhatAiﬁb approachesl; , ask increases,

i.e.,ef is close taD.

In the following, we give a proof of the convergence of thedtee method for &-class multi-server
system.
Lemma 1. Consider &-class,K-server threshold-based system as follows: K, Kj, Fi, Ry, F5,
a and R,. Assume that there exits a stationary state distributioriife system, the proposed iterative
method for solving this system will converge to the steadyestlistribution.
Proof: Let 7, ; be the steady state probability for classvith allocated; servers, we haver; =

(11, 12, Tk, ), @NA Ty = (Tr91, o0, -+, Tak,). According to our method to compute the

blocking probabilities, for class we haveP; ; = --- = Py g_k,—1 = 0 andP, , = 27237’; where
m=1 2,m

K—-K, <z < K-2. Similarly, forclaswe getP, ; = --- =P, x_k,—1 = 0andP,, = %
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whereK — K; <y < K — 2. Therefore, Our goal is to solve two groups of non-homogaa®b linear
equations, i.eqr1 A, = b, andwa Ay = by, whereP, , andP,, are defined above.
One can use the mathematical induction to prove the follgwiequalities for both classes:

7312];, < 73127]?2 < Piz < 73127]?3 < 73123;,“, where K — Ky <x <K -2 and k > 0, (25)
Pyl < P2 < Poy < PV < PIEHL where K — Ki <y < K —2 and k> 0. (26)

When the inequalities of Eq.(25)-(26) hold, it is straigintfard to show thaﬂﬁb will approach taA; ,

ask increases, i.e¢! is close ta. |
For the generaN-classK -server system, we note that the following inequality $idlds for any block-
ing probabilityP; ;, i.e., P < P+ < P, ; < P < PAF1 where k > 0. In other words, the
above equation still holds under the operation of the cartiat operatorz and the functiory defined

in Section Ill. Due to the lack of space, we do not give the itkrlasteps of the proof here. We note that
the convergence ratef our iterative method is still an open question, which reetdther study and is
beyond the scope of this work.

V. NUMERICAL EXAMPLES AND VALIDATION OF APPROXIMATION

In this section, we present numerical results to illustajehe accuracy of our iterative methodology
as compared with simulation, (b) the effect of server atiwarate on performance measures, (c) the
benefits of resource sharing among heterogeneous worklaadges, and (d) the effects of threshold
values on performance measures. Since the accuracy otaatie methods is done through comparing
with simulations, all simulation results are given withea&$t95% + 5% confidence. In all experiments
presented here, our iterative approach uses0.0000001 (refer to Section Il for details). Moreover,
the computation time of our iterative methods is more tham dwders of magnitude faster than that of
simulations. This empirical evidence indicates our itgeatethod is fast and fairly accurate.
Experiment A: Accuracy of the iterative method.

To compare the accuracy of our iterative method in compuyigr@prmance measures of the Markovian
systemM, we also simulate\, i.e., for the purpose of validating the proposed solutemhhique. We
use mean response time for clas$ < i < N, as our main performance metric of interest. Parameter
settings for all test cases in Experiment A are listed in daibl

For each test case under Experiment A, we assume all claasestlie same service rate= 1.
Server activation rate is the same for all classes, and we thés activation rate. In particular, we
defineR = 3/ (where we drop the class notation for simplicity of expasi)i Figure 3 illustrates
the mean response time under test case Rfer 1 and10.0. It is easy to observe that the difference
between the two results is small (e.g., in the case of Figutlee3dargest difference is 7%). Since such
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Case 1 K =10, K1=K=K3=4, o1 : a2 : a3=1: 3 : 6,

(for M™) Fy =[4,8,12)R,=[2,6,10],F> = [8,12,16]R>=[5,9,13] Fs = [6,10,14],R3 = [3,7,11],

Exp. A pw1=p2=u3=1.0,

Case 2 K =12, K1=Ko=K3=3, K4=b5; o1 ta2 :a3:4=1:1:1:2,

(for M™) Fy =[6,10],R1=[4,7],F> = [4,8],R2=[2,4], F5 = [8,12],R3= [6,9],Fx = [5,9,13,17]R4 = [3,6,9,12]
Exp. A p1=p2=p3=pa=1.0,

Case 3 K =12, K1=K2=K3=3, K4=5; a1 : a2 : a3 : aa=1:2:3 : 4,

(for M™) Fy =[6,10],R:= [4,7],F> = [4,8],R2=[2,4], F5 = [8,12],R3=[6,9],F4x = [5,9,13,17]R4 = [3,6,9,12]
Exp. A pi1=pa=pu3=us=1.0,

Case 4 K =12, K1=K2=K3=3, K4=5; a1 : o :a3:as4=1:1:1:2,

(for M?) Fy =[6,10],R:= [4,7],F> = [4,8],R2=[2,4], F5 = [8,12],R3=[6,9],F4x = [5,9,13,17]R4 = [3,6,9,12]
Exp. A a1 =[3,3], a2=[3,3], as = [3,3], a4 = [3,3,3,3] p1=p2=p3=p4=1.0,

Case 5 K =12, K1=Ko=K3=3, K4=b5; o1 : a2 i3 : u=1:2:3 : 4,

(fOI’ Ma) Fy = [6,10]R1= [4,7],F2 = [4,8],R2: [2,4], F3 = [8,12],R3: [6,9],F4 = [5,9,13,17]R4 = [3,6,9,12]
Exp. A&C | a1 =[3,3], a== [3,3], as = [3,3], a1 = [3,3,3,3] 11 =2 =15=114=1.0,

Case 6 K =8, Ki1=K>=3,K3=4,a1 :as:az=1:1:1,
(for M¢) F, =[6,10),R:= [4,7],F> = [6,10],R2= [4,7], F3 = [6,10,14],R3 = [4,7,10],
Exp. B a1 =[3,3], a2=[3,3], as = [3,3,3], u1=p2=u3=1.0,
Case 7 K=4,Ki1=K2=3,a1 : a2 =2 : 3; a1 =[3,3], a2=[3,3]; p1=p2=1.0; R = 1;
(for M*) Configuration A: F; =[4,8],R:=[2,6],F> = [10,20],R2=[5,10];
Exp. D Configuration B: F1 =[4,8],R1=[2,6],F> =[20,40],R2=[15,35];
Configuration C: F; =[4,8],R:=[2,6],F> = [40,80],R2=[30,70];
Case 8 K =4, K1=K>=3,a1 : a2 =2 : 3; a1 =[3,3], a2=[3,3]; p1=p2=1.0; R = 1;
(for M) Configuration A: F; =[4,8],R1=[2,6],F: = [6,9],R2=[4,7];
Exp. D Configuration B: F; =[20,40],R1=[15,35],F% = [30,45],R>=[25,40];
Configuration C: F; =[40,80],R,=[30,70],F> = [60,90],R2=[50,80];
Case 9 K =8, K1=K>=3,K3=4,a1 : as : ag=2: 3 : 4,
(for M?) F, =[6,10),R:= [4,7],F> = [6,10],R2= [4,7], F3 = [6,10,14],R3 = [4,7,10],
Exp. E a1 =[3,3], a2=[3,3], as = [3,3,3], u1=p2=u3=1.0,
TABLE IlI

PARAMETER SETTINGS FOREXPERIMENTS

small differences are difficult to visualize using graphs,present the remainder of the accuracy related
experiments using tables.

Tables IV to VI to illustrate several other experiments afigtating the accuracy of our technique.
Due to the large size of the tables we only give the iteratgeilt and the percentage error. In all cases,
the percentage error (%E) is defined as:

simulation result — iterative resuilt
%E = | s - 1Jx 100% 27)
simulation result

As can be observed, in these experiments we track the peafmenmetrics closely for all classes and
the maximum error is around 10%.
As is probably expected, in our experiments, the highereases corresponded to fairly high con-
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Fig. 3. Exp. A— Accuracy Testing (Case 1): Average respoinse of three classes under different server activationsati

R.

A E[Ti] E[T] E[T3] E[T4] % error | %error | %error | % error

(iterative) (iterative) (iterative) (iterative) (class 1) | (class 2) | (class 3) | (class 4)
1.000 | 1.249403209| 1.240894331| 1.249966817| 1.596548157| 0.188442| 0.102801| 0.091916| 1.082684
2.00 1.632332041| 1.530185205| 1.659140114| 2.346862510| 0.589992| 1.655815| 0.628414| 6.931096
3.000 | 2.137886898| 1.800536338| 2.327797341| 2.877125939| 2.607489| 4.531356| 1.872697| 8.398753
4.000 | 2.655828539| 2.024466859| 3.203617359| 3.258738327| 5.961660| 7.101779| 4.766918| 4.467737
5.000 | 3.086978739| 2.210009611| 4.010064726| 3.549132931| 7.808542| 8.701947| 6.984125| 0.872970
6.000 | 3.414312029| 2.371654188| 4.556764880| 3.748743137| 7.871845| 8.730359| 6.793586| 5.205084
7.000 | 3.666371001| 2.520343773| 4.875718116| 3.873368054| 6.090529| 8.135594 | 5.009943| 7.823094
8.000 | 3.876706835| 2.667619678| 5.069148468| 3.957965747| 3.398553| 6.806763| 2.094356 | 8.864857
9.000 | 4.076410481| 2.833209795| 5.216584527| 4.054224035| 0.768549| 5.588292| 0.612172| 8.653662
10.000 | 4.294252513| 3.044849701| 5.367470840| 4.258024598| 0.163318| 6.478889| 0.981928| 6.684466

TABLE IV

EXxpP. A — ACCURACY TESTING (CASE 2): AVERAGE RESPONSE TIME FOR SERVER ACTIVATION RATIR = 1.

tention cases. These are also the cases that likely comésgdo “poor” designs where a reduction in
contention for resources between classes is needed intordétain a system with good performance
characteristics. In most of our experiments (some of whrehpaesented below), the performance im-
provements that could be obtained, for instance, througtebthreshold settings, were significantly
higher (percentage-wise) than the loss in accuracy due t@pproximation. Hence, this is a good
indication that our iterative technique is a useful toolfst and fairly accurate assessment of threshold-
based designs that can be used, for instance, for searariggdd threshold settings.

Note that, we have performed extensive experiments ane tlessilts are similar to the ones included
here. In general, the percentage error in most testing egaswithin 10% but around 14% in few
cases. Next, we illustrate some of the performance trasleoifi designs that can be studied using our
technique.



E[T]
(iterative)

E[T3]
(iterative)

E[T3]
(iterative)

E[T4)
(iterative)

% error
(class 1)

% error
(class 2)

% error
(class 3)

% error
(class 4)

1.000
2.000
3.000
4.000
5.000
6.000
7.000
8.000
9.000

1.111101334
1.249403209
1.422120871
1.632332041
1.875214383
2.137893813
2.403485514
2.657202108
2.889913738

1.240894331
1.530185205
1.800536338
2.024466858
2.210009348
2.371635231
2.519945274
2.664366352
2.822985811

1.427769462
2.327797341
3.633427552
4556723717
4.979858567
5.191372533
5.373455187
5.735811514
7.140900686

1.596548157
2.346862510
2.877125937
3.258737881
3.549114921
3.748505544
3.871855859
3.952018413
4.037086312

0.107716
0.139604
0.155003
0.753543
1.383353
3.590440
5.422789
7.275292

8.396802

0.098113
1.440456
4.476466
6.891397
8.523428
8.978094
7.976693
6.907009

5.234919

0.223379
1.633202
6.016418
6.901301
3.532388
0.609548
3.374543
4.165632

3.636787

1.196270
6.963889
8.367091
4.475396
0.853224
5.259355
7.634374
8.751759

8.237973

EXP. A — ACCURACY TESTING (CASE 3): AVERAGE RESPONSE TIME FOR SERVER ACTIVATION RATI&R = 1.0.

TABLE V

A E|T1] E|T3] E|T3] E[Ty] % error | %error | %error | % error
(iterative) (iterative) (iterative) (iterative) (class 1) | (class 2) | (class 3) | (class 4)
1.000 | 1.249403209| 1.240894331| 1.249966817| 1.596548157| 0.188442| 0.102801| 0.091916| 1.082684
2.000 | 1.632332041| 1.530185205| 1.659140114| 2.346862510| 0.589992| 1.655815| 0.628414| 6.931096
3.000 | 2.137886898| 1.800536338| 2.327797341| 2.877125937| 2.607489| 4.531356| 1.872697 | 8.398753
4.000 | 2.655828538| 2.024466858| 3.203617358| 3.258737880| 5.961660| 7.101779| 4.766918| 4.467751
5.000 | 3.086978271| 2.210009329| 4.010064114| 3.549114866| 7.807762| 8.699709| 6.980227 | 0.879640
6.000 | 3.414279404| 2.371633439| 4.556723717| 3.748504405| 7.872210| 8.735477| 6.847014| 5.201449
7.000 | 3.665701028| 2.519889412| 4.874913397| 3.871844972| 6.090198| 8.137421| 4.974583| 7.772737
8.000 | 3.871141342| 2.663543765| 5.062810736| 3.951957924| 3.526046| 7.062987 | 2.360242| 8.736353
9.000 | 4.053114585| 2.814672095| 5.191371673| 4.036856602| 1.660845| 6.500396| 0.292736| 8.240439
10.000 | 4.235582423| 2.994503482| 5.306591592| 4.216504326| 1.340852| 7.132456| 0.282897| 6.970984
11.000 | 4.459602796| 3.243621554| 5.457264738| 4.763969135| 2.877606| 8.946037 | 1.377628| 5.284929
12.000 | 4.815342733| 3.651148297| 5.735634028| 7.980613244| 5.087811| 9.514688| 4.097968| 3.596882

TABLE VI
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EXP. A— ACCURACY TESTING(CASE 4): AVERAGE RESPONSE TIME FOR SERVER ACTIVATION RATIQR = 1.0.

Experiment B: Effect of Service Activation Rate on System Pdormance.

In this experiment, we consider how the server activatioe naay affect the average response time of
different classes of customers. Let us consider test cas@&dbie Ill. We vary the server activation ratio
‘R from 0.1 to 100. In other words, server activation rate cateheimes slower than the average service
rate or up to 100 times faster than the average service ratde VIll illustrates the average response
time for all classes of customers under different trafficdiogs. As we can observe, it is important to
consider server activation issues in the performance aisaty dynamic resource management systems
using threshold-based techniques. In particular, whesyktem is operating at a low server activation
ratio (i.e., wherR is small), the average response time for all classes is hiphe in situation where



E[T1]
(iterative)

E[T3]
(iterative)

E[T3]
(iterative)

E[T4]
(iterative)

% error
(class 1)

% error
(class 2)

% error
(class 3)

% error
(class 4)

1.000
2.000
3.000
4.000
5.000
6.000
7.000
8.000
9.000
9.500

1.111101334
1.249403209
1.422120871
1.632332041
1.875214307
2.137886898
2.403313249
2.655828538
2.885087046
2.989496161

1.240894331
1.530185205
1.800536338
2.024466858
2.210009329
2.371633439
2.519889412
2.663543765
2.814672095
2.899102696

1.427769462
2.327797341
3.633427552
4.556723717
4.979858554
5.191371673
5.373437048
5.735634028
7.139840165
10.324209470

1.596548157
2.346862510
2.877125937
3.258737880
3.549114866
3.748504405
3.871844972
3.951957924
4.036856602
4.105645593

0.174672
0.190320
0.017206
0.582615
1.270779
3.064727
4.904982
6.529355
8.310797
9.692825

0.138768
1.628630
4.421477
7.084183
8.620992
8.844618
8.076828
6.896232
5.611460
5.219340

0.014092
1.589170
6.187979
6.795926
3.584426
0.579377
3.464238
3.719736
1.103102
2.013128

1.301958
6.970281
4.456612
0.910167
5.289322
7.780205
8.703671
8.307669
7.699883
7.569769
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TABLE VII

ExP. A— ACCURACY TESTING (CASE 5): AVERAGE RESPONSE TIME FOR SERVER ACTIVATION RATIR = 1.0.

the system is operating at high server activation ratio®e gérformance difference is more prominent
when we have moderate to high traffic loadings.

Experiment C: Benefits of Resource Sharing.

In this experiment, we illustrate the benefits of resourcaisly. In particular, we consider the case
wherein the number of common resourcés, is less than the peak resource demand, K;. The
reasons for using fewer resources are to reduce the ovegstdis operational cost and to take advantage
of the fact that the probability of all classes being at tihegh workload demands simultaneously might
be quite low. Of course, one needs to quantify the above aagas, especially when hysteresis control
is used in threshold-based system. We consider test casél&bla Ill. In this test case, the total
peak resource demand}$ K; = 14. We consider two cases, where we set the values ,athe total
amount of system resources, to be 11 and 14, respectivelg tNat whenk = 14, we will not have
resource contention among classes. For this experimenasa@ne a homogeneous server activation
ratio R = 3/u = 1.0. Figure 4 illustrates the average response time of thressetaof workload,
under both cases. As we can observe diffierencein the average response timenist significant, i.e.,
the maximum percentage error between cdses 11 and K = 14 is 6%. This implies that, in this
experiment, one can use fewer resources, with resourcegsaf/around 21%, while at the same time
providingcomparableperformance (i.e., comparable to the case where the ambtegaurces is equal
to the peak workload demands of all classes).

Experiment D: Effects of Threshold Settings.

As stated in Section |, we believe that our solution techaifqu this multi-class, multi-server threshold-
based queueing system with hysteresis behavior can be ssedeficient tool for searching for good
threshold values. In this experiment, we illustrate thetighan important issue by showing that different



A R E[T] E[T2) E[T3)
activation ratio (iterative) (iterative) (iterative)
0.900 0.100 1.425080947 | 1.425080947 | 1.425071989
0.900 1.000 1.422120871 | 1.422120871 | 1.422119765
0.900 10.00 1.421043244 | 1.421043244 | 1.421042825
0.900 100.0 1.420915968 | 1.420915968 | 1.420915582
3.600 0.100 5.379141763 | 5.379141763| 5.393195375
3.600 1.000 3.414267196 | 3.414267196 | 3.387999226
3.600 10.00 3.145905856 | 3.145905856 | 3.128791883
3.600 100.0 3.118374248 | 3.118374248 | 3.101954561
5.400 0.100 7.299335678 | 7.299335678 | 7.223295397
5.400 1.000 4.050733764 | 4.050733764 | 3.927137459
5.400 10.00 3.587663185 | 3.587663185| 3.465490149
5.400 100.0 3.539729932 | 3.539729932 | 3.418567750
8.100 0.100 10.616787909| 10.616787909| 7.852223350
8.100 1.000 6.283156018 | 6.283156018 | 4.297965780
8.100 10.00 5.764497387 | 5.764497387 | 3.741218408
8.100 100.0 5.709881527 | 5.709881527 | 3.682093400
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TABLE VIII
EXP. B — SERVICE ACTIVATION RATE EXPERIMENT (CASE 6): AVERAGE RESPONSE TIME FOR ALL CLASSES UNDER

DIFFERENT SERVER ACTIVATION RATIOS AND TRAFFIC LOADINGS

10.00— p 51258 1 with K=11 |
class 1 with K=14 4

class 2 with K=11 /

-
6.00 |—__Class 3 with K=14 4 —

class 4 with K=11

avg. response time
N

|
2.00 4.00 6.00 8.00 arrival rate

Fig. 4. Exp. C — Resource Sharing Experiment (Case 5): Aeeragponse time for four classes of workload with= 11
and14.

threshold values can result in vastly different perforngameasures. Since our solution can quickly gen-
erate corresponding performance results, it should be d wabfor exploring proper threshold settings.
In particular, we consider a four servers systems with tvagse#s whose parameter settings are listed in
Table Ill. Note that, in each test case we have three confignsaA, B, and C where in each configura-
tion has different threshold settings. Figure 5 depictscthreesponding expected response time results,
which illustrate that changes in threshold values resusigmificant changes in the expected response
time of the different classes. Therefore, one can use theogea solution technique to search for the
proper threshold values such that the expected responseofithe different workloads is satisfactory,
within certain levels of system loadings.
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(a) Case 7: mean resp. time vs. diff; andR;
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arrival rate

(b) Case 8: mean resp. time vs. diff; andR;

Fig. 5. Exp. D — Threshold Setting Experiment (Case 7 & Casé8grage response time for two workload classes under
different threshold#'; andR;.

Experiment E: Instantaneous Model vs. Non-Instantaneous Mdel.

The motivation for this experiment is to study the differeraetween the instantaneous model and the

non-instantaneous model and when is important to take tiversactivation ratio into consideration for

design an efficient multi-class multi-server system.
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Fig. 6. Exp. E — Instantaneous Model vs. Non-InstantaneocoddVi(Case 9).

In Figure 6(a), the results show that as the activation iatgmaller than the service rate, the system

performance is mostly dominated by the server activatioetiThis is why the curve of the instantaneous

model deviates from the simulation curve a lot (e.g., fosslathe largest difference is 100%) while

the curve of the non-instantaneous model is close to thelation curve. That is, it is important to

consider the server activation ratio in order to construcpeecisely analytic model for the system.

On the other hand, as illustrated in Figure 6(b), when theiserrate is much faster than the server

activation rate, both the results of instantaneous andimstantaneous models are similar with that of

the simulation. In other words, the instantaneous modelge@d approximation one as the server

activation ratio is large.
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VI. CONCLUSIONS

In this paper we considered efficient and accurate computati performance metrics for a system
which sharedy servers (or resources) amofngheterogeneous classes of workloads, where server allo-
cation and de-allocation is dictated by a class specifistiolel-based policy with hysteresis control. An
important and distinguishing characteristic of our workcampared to previous efforts, is that we con-
sider the modeling and analysis of a multi-class system mothrinstantaneouserver activation, which
is of use in studying performance characteristics of marpoirtant applications. We presented an effi-
cient iterative approximation technique for solving suabdels and illustrated through numerical results
that this technique is reasonably accurate (in the predexigeriments the deviation from the exact so-
lution is within~ 10%) and fast (with more than two orders of magnitude improverirecomputation
time compared to simulations). Moreover, our numericalltssalso illustrated that (a) server activa-
tion characteristics have a significant effect on the systperformance, (b) dynamic resource sharing,
through the use of threshold-based techniques, can rasignificant cost savings (i.e., through sharing
of a pool of resources among heterogeneous workload c)asghsut detrimental effects on the class’
performance, and (c) proper threshold settings can havgnifisant effect on the class’ performance
characteristics. Consequently, all these results inglitat efficient solution techniques for models of
such dynamic resource management systems are criticatdpepdesign and performance studies of
these systems. And, we believe that the technique presantbis paper is one such approach which
will lead to better system designs.
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APPENDIX A: ANALYSIS OF A SINGLE CLASS MODEL

In this appendix, we address the analysis of a single claseinDue to lack of space, we only present
the derivation for modeM¢. The derivation for modeM?® is similar to the derivation for thiast level,
K; of model M.

The goal here is to compute the steady state probabilitigs 7, (] for all (k,j,1) € S;, whereS; is
the state space of the Markov procest (see Section IlI-B). Note that, since this computation must
be performed in each iteration of the procedure given ini&edtl, for clarity of presentation in this
appendix, we will omit from the notation indication of theration step number. As stated in Section
llI-E, the first step is to partition the state space. Spedificgiven the original Markov process(;, let

us partition the state spacinto K; disjoint setsS!, where:
St = {(k,5,0) | (k,4,0) €S; andj < l}forl=1,2,...,K;.

We can view partitionS! as representing all states corresponding to exadtyget allocated servers.

Let us consider the analysis 8f where2 < | < K; — 1. We first define another Markov process!
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with a corresponding steady state probability veetgifor € {2,..., K; — 1}, such that the state space
of M. corresponds to the states. For ease of notation, we will usg(k, j, ) to refer to the steady
state probability of staték, j,1) € S! (since all states i! have the samé the target allocated servers

to classi). The transition structure of1! is similar to the transition structure g#1; for the states ir5!,
except for the following modifications:

step 1:atransition from R;(I—1)+1,j,{)to (R;({—1),j,l—1)or (R;(I—1),j—1,l—1) in the original
processM; is replaced by transitions froR;(I — 1) + 1, j, ) to the state$F;(I — 1) + 1 +m, j,1) in

M., whered < m < ™!, each at the rate of ~' (m)i; where

Y F( - 1) +m, 5,1 —1)
-1
Siiom N(E(l—-1)+24,1-1)

Tifl(m =

and7/ ' (F;(1 — 1) + m, j,1 — 1) is the conditional steady state probability correspondinthe state
with F;(I — 1) + m customers; busy servers ant— 1 target allocated servers, conditioned on being
in S!71. Note that this conditional steady state probability isaited by solving the Markovian model
M~ (see Theorem 1 below and Section A for details).

step 2:a transition from(F;({)+m, j, 1) to (F;(l)+m+1, j,I+1) in the original procesa;, is replaced

by a transition from(F;(1) + m, j, 1) to (R;(1), 1,1) in M., 0 < m < al, each at the rate of,(1 — P;,).

Similarly, for the first level = 1, we can order the statesdii as follows:
{(07 13 1)7 SRR (Rl(l)v 13 1)7 SO (E(l)v 1, 1)5 s (E(l) + a%7 15 1)}

and then define the Markov process; such that the state space.bf; corresponds to the statesS.
The transition structure of1} is similar to that ofM; for the states iS5}, except that a transition from
(Fy(1) + m,1,1) to (F;(1) + 1 +m, 1,2) in M, is replaced by a transition fro¥;(1) + m, 1,1) to
(R;(1),1,1) in M}, whered < m < a, each at the rate of;(1 — P, ).

Finally, for the last level = K;, define the Markov proces$t’* such that the state space.bt’
corresponds to the states$fi. The transition structure o1 is similar to that ofM; for the states in
S, except that a transition frofR; (K; — 1) + 1, j, K;) to (R;(K; — 1), j, K; — 1) or (R;(K; —1),j —

1, K; — 1) in M, is replaced by transitions frofR?;(K; — 1) + 1, 5, K;) to the state$F;(K; — 1) + 1+

m, j, K;) in M1%, where0 < m < a;*""', each at the rate of*i ' (m)lu;, where

TN E (K — 1) +m, j, K — 1)

3

K;—1
Sy A TN E(K — 1) + 2,4, K — 1)

2

ri i (m) =

and7 ! (Fy(K; — 1) + m, j, K; — 1) is the conditional steady state probability correspondinthe
state withF;(K; — 1) + m customers;j busy servers anfl; — 1 target allocated servers, conditioned on
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being inS/*~*. Note that this conditional steady state probability isaietd by solving the Markovian
model M~ (see Theorem 1 below and Section A for details).

Lastly, we state the following theorem which is analogouth®one given in [17] for a single class
model. It is needed to show the relationship between thetisalof M! and M;. (Note that in this
appendix we use the same notation, namelywhen referring to the steady state probability vector of
M-! and when referring to the conditional steady state proltgbitctor of M;, conditioned on being in

the setS!.) The proof of this theorem is also analogous to the one givgh7] and so we do not repeat
the details here.
Theorem 1:The steady state probabilities solution of the Markov pss¢et! is the conditional steady

state probabilities solution for the statesdhof the original Markov process$1;, given that the system

is in partitionS!.

A. Analysis of\M!

Let us now describe the computational procedure for obtgitine steady state probability vector for
each Markov processt!, | = 1,2,..., K;. Let Q! and~! be the transition rate matrix and the steady
state probability vector aM!, respectively. Since the state space\df, | = 1,2,..., K; — 1, is finite
and (given a well designed system) small, we can obtain gelgtstate probability vector by solving

the following system of linear equations [24]

Q=0 ; =le=1

2

wheree is a column vector of’s. To improve the complexity of computing!, l = 1,2, ..., K; — 1, we
can use well-known numerical methods [24], which for insggrcan take advantage of the (potential)
sparsity ofQ".

What remains is the computation of*'. Note that the state space & is infinite; therefore, we
cannot use, for instance, a direct method [24] for solving $lystem of linear equations. Instead, we

can computer* by using Matrix-analytic methods[23]. Let us define a boupd#®tS; (which is the
boundary portion under the matrix-analytic notation) vatate space

{(Rl(Kl - 1) + 1a.j7 Kl)a sy (E(KZ - 1)a.j7 Kl)a ceey (E(KZ - 1) + az’Ki_l + 1a.j7 KZ)}

such that transitions between these states are identittalse between the corresponding statesffy'.
Similarly, we define another s&; (which is the repetitive portion under the matrix-analytwtation)
with an infinite state space

{(E(KZ - 1) + aiKi_l + 2a.j7 Kz)v (FZ(KZ - 1) + aiKi_l + 3a.j7 Kl)a .. }
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and transitions between states identical to those betweerdrresponding states it. It is not

difficult to observe that the transition structureSn is repetitive Therefore, given these two sets of

states S andS;, one has an efficient algorithm [23] for computing the stestdye probability vector
K;

B. Analysis of the Aggregated Process for Class

Once we have obtained an expression for the steady statalplibpvector of eachM!, which is also
the conditional steady state probability vector/eff;, given that the system is ii!, the only remaining
step (as outlined in Section IlI-E) is to find the aggregasesprobability of the system being &j.

Therefore, for each 1 < | < K; let us aggregate all the statesShinto a single state. The transition
state diagram of the resulting aggregated process isrdlgst in Figure 7. The transition rates of the

NODONE@ S NG N@ MK N(EiD)
ojojojo=a710
<~
Hl(2) Ut(3) “1(4) “1(5) UL(KL'I) “l(Kl)

Fig. 7. State transition diagram for aggregated processléssi.

aggregated process can be computed as follows:

1 F(l)+a

Xl = NA=P)Y ] Y kgl I=12,.. K —1 (28)
=1 k=F;(l)

wi(l) = MZZW Ri(l—1)+1,51) 1=23,... K, (29)

wherer!(k,j,1),k = Fi(l),..., F;(l) + a}, and={(R;(I — 1) + 1,,1) are the conditional steady state
probabilities obtained in Section A.1. The steady statégbdity vector,r;, of this aggregated process
is computed as follows [13]:

— - -1

ST (N0
" . 30
‘) _H;H (W_H))_ -
m(m) = _1+iﬁ < Ai(4) >_ o { () } s . o1
i =2 j=1 /Lz(j—f—l) ot + N PN 4 9]

C. Performance Measures for Class

At this point we have all the necessary information to corafihe steady probabilities fo¥1,. That is,

once we determine, for ea¢h (1) the conditional state probabilities of all statesSin given that the



33

system is inS! and (2) the steady state probability of being in statéthe aggregated process, then the

steady state probability of each individual stétej, [) in M; can be expressed as:
filk,j,l) = (k,j,)mi(l) where (k,j,0) € S}. (32)

Then (as outlined in Section IlI-E) we can compute variousgumance measures; more specifically,
we can compute many performance measures which can be sag@resthe form of a Markov reward
function, R;, whereR; = >, ;, [k, j, l]Ri(k, j,1) and R;(k, j,1) is the reward for statgk, j, 1) of
classi. Two useful performance measures for our system are the®gerumber of customers and the
expected response time for class = 1,2,..., N. Below, we illustrate how easy it is to obtain such
performance measures, once we have the steady state pitcsgtbor instance, the expected number of
customers can be expressed as a Markov reward functionse Whe, j, /) = k.

Let NV; andT; denote the expected number of customers and the expecpehsestime, respectively,

of classi model, corresponding to the Markov procest. ThenlV; can be expressed as:

) Fy(1)+al Ki—1 1 Fi(j)+a] K )
Noo= S kR L+ YN Y ke A0+Y. Y kmlkg K (33)
k=1 =2 j=1 k=R;(j—1)+1 J=1k=R;(K;—1)+1

Using Little’s result [16], we have:

-1
K; 1
T, = |:/\i (1—Zzpi,jﬁi[Fi(j)—i—ag,j,l])] * N;. (34)



