Adaptive Flow Aggregation - A New Solution for
Robust Flow Monitoring under Security Attacks

Yan Hu D. M. Chiu John C.S. Lui
Dept. of Information Engineering Dept. of Information Engineering Dept. of CSE
Chinese University of Hong Kong Chinese University of Hong Kong Chinese University of Hong Kong
Email: yhud@ie.cuhk.edu.hk Email: dmchiu@ie.cuhk.edu.hk Email: cslui@cse.cuhk.edu.hk

Abstract—Flow-level traffic measurement is required for a protocol, source and destination port, type of service and input
wide range of applications including accounting, network plan- interface. Routers running NetFlow maintain a “flow cache”
ning and security management. A key design challenge is how i, aap active flows passing through it. When a packet arrives

full | with traffi h h h . . .
E?ngﬁgg,u eyxgsftl t\;\gtndc\;%t'hc (s)lr”g%s'ut) %tf iﬁealﬁ(s)f/vt rf]orﬁﬁgg r‘fs at the router, the router determines if this packet belongs to

standard solution is to do sampling (look at one out of every an active flow in the cache. If yes, relevant fields (number of
n packets). This is implemented in Cisco’s Netflow, a popular packets, number of bytes, timestamp of last packet, etc) of this

platform. Setting the sampling rate according to the normal flow are updated. If not, the router inserts a new flow record
traffic, however, cannot avoid overrunning available memory for into the flow cache

flow records during abnormal situations, such as when there Th ¢ il t inat fl in it he if f
is a DoS attack or other security breaches. Currently available € router will ferminate a rlow In Its cache Ir any one o

countermeasures have their own problems: (1) reject new flows these criteria are met: 1) the interpacket time within the flow
when the cache is full - some legitimate new flows will not be exceeds thénactive timer(15 sec is the default); 2) this flow
counted; (2) export not-terminated flows to make room for new record was created longer than thetive timer(30 min is the
ones - this will exhaust the export bandwidth; (3) adapt the default); 3) observation of TCP flags (FIN or RST); 4) the

sampling rate to traffic rate - this will reduce the overall accuracy . . .
of accounting, including legitimate flows. flow cache is full. For those terminated flows, their records

In this paper, we propose a new counter-measure to deal with Will be exported using UDP to collectors (i.e., computing
abnormal traffic conditions - adaptive flow aggregation. Often the machines which have private processors and memory) for
reason for abnormal traffic conditions is due to security attacks. future analysis.

Fortunately, such attacks usually have some common pattems. —\ynen g packet arrives at the router, NetFlow needs to look
For example, packets of DoS attacks have the same destination ’

IP address, while traffic for worm spreading has the same source up the flow cache for an ?X'Stmg flow, update that entry or
IP address. Our flow monitoring algorithm identifies these traffic Create a new entry. For high speed interfaces, the processor
clusters in real-time and aggregates these large amount of short and the memory holding the flow cache can not keep up with
flows into a few flows. Compared to currently available solutions, the packet rate, so Cisco introduced sampled NetFlow [2].
our solution not only alleviates the problem in memory and There are several types of sampling methods, deterministic

export bandwidth, but also guarantees the accuracy of legitimate ling invol d lecti f ket f th
flows. In addition, it could provide network operators some useful Sampling Involves random selection of one packet ifrom the

information on potential security problems. first N packets, and selection of evely*" packet thereafter.
_ Random sampling selects packet randomly with a fixed sam-
I. Introduction pling probability.

Traffic measurement and monitoring are crucial to operatinglt is important to note that the sampling rate of Cisco Net-
IP networks, because network administrators need to hav&law is usually semanuallyby network operators according
good understanding of how their networks are used. Especiatlythenormal traffic volumen their network. When there is an
flow-level measurement is widely used for a wide range ahomaly in the network, such as DoS attacks, worm spread,
applications. One example is network planning, the ISP neeatygressive port scans and flash crowds, which generates a large
to know how the traffic load is distributed in its networknumber of small flows, the surge in the number of small flows
It relies on measuring the amount of traffic among pairs afay overwhelm the router memory and the export bandwidth
customers. Flow based traffic analysis can also be used torthe collector.
accounting purposes, when clients are billed based on theiCurrent countermeasures to the above problem include: 1)
traffic volume. Other applications include security or deniaReject new flows when the cache is full. In this case, legitimate
of-service (DoS) analysis. It is also possible to see whaew flows will not be accounted for and the operator will
applications are using the network by looking at traffic flowkse the information; 2) When the cache is full, export the
based on their port numbers. flow records more aggressively for those non-terminated flows

NetFlow [1], first implemented in Cisco routers, is theso as to make room for new ones. The implication of this
most widely used flow measurement solution today. Flovestion is that the export bandwidth demand will be very high
are defined by seven keys: source and destination IP addressl may run into trouble at the collector or the way to the

collector; 3) Authors in [3] proposed a method of adapting thaf individual flows is a traffic cluster. Their idea of finding
sampling rate to traffic. They divide the NetFlow operation intthe most conspicuous clusters of underlying traffic is similar
measurement bins. They do not terminate flow records durit@yours. The difference is that their objective is to present a
the bin, but terminate all active flow records at the end of tlgood traffic report to the network manager, and their system
bin. They use a maximum sampling rate at the beginning o&n be considered as adst-processirigsystem instead of a
each bin, which is determined by the router's CPU capabilitseal-time one.
During the measurement bin, they dynamically decrease thdn [7], authors present a system that computes multiple
sampling rate until it is low enough for the flow records to fisummaries of IP traffic in real time. They refer to sources or
into memory. This algorithm guarantees a stable flow cacHestinations that send or receive many packets, bytes or flows
and export bandwidth even under severe DoS attacks. Bast “packet hogs”, “byte hogs” or “flow hogs”. This system
under DoS attacks the sampling rate will decrease to a vgmoduces these hog reports keyed by source IP, destination IP,
low level, which results in poor overall accuracy in per flovgource port and protocol, and destination port and protocol.
counting including legitimate flows. These summaries provide information of some kind of cluster
Our solution is to implemenadaptive flow aggregation in real time, but their 12 hog reports are also predefined
when the router is running low on memory resource. Note thelusters. Another important element which is different from
attacks usually have some common patterns: DoS attacks oftem solution is that their system only provides the summary
have the same destination IP address, while worm spreauf®rmation, and it does not keep any original flow information
have the same source IP address. If we dynamically aggregateCisco NetFlow does.
the numerous number of such small flows into a few flows, In [8], authors focus on network congestion caused by ag-
then we can alleviate the problem of memory shortage undgegate. They state that in both flash crowds and DoS attacks,
attacks. Compared to other countermeasures, our method tha@scongestion is not due to a single flow, nor to a general
several advantages: increase in traffic, but due to a subset of the traffic which
« We do not need to decrease the sampling rate drasticdiéy called as an aggregate. Their approach involves both a
under attacks, neither would we reject new legitimat@cal mechanism for detecting and controlling an aggregate
flows because the cache is full. So we guarantee tBka single router, and a cooperative pushback mechanism in
accuracy of legitimate flows. which a router can ask adjacent routers to control an aggregate
« Without aggressively exporting the records of nonalong its upstream path. The definition of an aggregate and the
terminated flows so as to make room for new ones, v@gtection of aggregate in this paper is similar to ours.
would not overwhelm the collector. In [9], authors present algorithms that automatically identify
« Using the information from flow aggregation, we canarge flows. In [10], authors use adaptive sampling to guarantee
provide network administrators some useful informatiofhat the variance introduced by the variability of packet sizes
to detect DoS attacks and worm spreads. does not exceed a pre-defined limit. In [11], authors develop
The rest of the paper is organized as follows. We descriggtimators for flow length distributions.
related work in Section Il. In Section Ill, we describe our Il. Propose Solution
solutions and we provide some analysis in Section V. ExpeA—

imental evaluation based on the proposed method is presentedDeflnlng clusters

in Section V. Conclusion is given in Section VI. Our mechanism intends to protect NetFlow from running
out of memory and high rate exporting due to rapid increases
Il. Related work in traffic from one or more traffic aggregates which we called

One of NetFlow's problems is the amount of data gerclusters The first issue we have to address is how many
erated can be so large that it may overwhelm the collectdistinct fields are used in constructing traffic clusters? We
or its network connection. Cisco’s solution to this problerahoose five fields typically used to define a flow: source IP
is to implement router-based flow aggregation [4]. Differeraddress, destination IP address, protocol, source port, and
aggregation schemes summarize NetFlow data on the roudestination port. For simplicity, we regard these five fields as
before the data is exported to the collector, resulting in lowésur keys, srclP, dstIP, srcPort (and protocol), dstPort (and
bandwidth requirement. The IETF (Internet Engineering Tagkotocol). Individual flows are defined by unique values for
Force) working group IPFIX (Internet Protocol Flow Informaeach of these four keys, while clusters are defined by unique
tion eXport) also recommends aggregating similar flows int@lues forsomeof these key values. In other words, values for
one metaflow [5]. Compared to these predefined aggregatibese keys can be a single value, or all possible value (we use
schemes, our goal is to dynamically find flows which form &to denote this). For example, a cluster with values (srclP =
large clusterand aggregate these flows in real time. *, dstlP = 210.0.0.3, srcPort = *, dstPort = 80, TCP) represents

In [6], authors describe a method of traffic characterizatiadl web traffic to the server with IP address 210.0.0.3.
that automatically groups traffic into minimal clusters of The justification for choosing these four keys to define
conspicuous consumption. Instead of using individual flondusters is that these four keys are consistent with commonly
or other predefined aggregates, they dynamically define mulised keys to define a flow. Additionally, this definition is
dimensional traffic clusters, so that any meaningful aggregatefficient for the existing NetFlow data applications such as

_combinations examples

network planning and application monitoring. Among thes

. I ~srclP most worms
four keys, port and IP address have different sensitivity forgstip smurf attack ([12])
the aggregation process. The reason is as follows, first, almoslc:g + dS“F'f most Porticans oo
rclP + srcPort response from syn flooding victim;
all Do$ attacks, worm spread, port scan, and flash crowd3 response from flash crowds web server
have either a common source or destination IP address, byicip + dstPort W32/Blaster worm ([14])

not always have a fixed port number. Second, some networistiP + srcPort N/A _
applications with a well-known port number such as wepSt!P * dstPort %CVC\C/’?&QE Cart;f,‘\‘fé‘ss([lf’]);
traffic with port 80 are always blg clusters in the network, butsrcip + dstiP + srcPort response from non-IP-spoofing syn flooding
we have no reason to aggregate them to a single flow becausts!P + dstlP + dstPort | non-IP-spoofing syn flooding attacks
they are normal traffic and we surely need to maintain a mor%ift:g N z:gggﬁ N gigg: E"ﬁésf?a"sﬁi%i\rld";orm (13D
detailed information for the accounting purpose.
Clusters are flows with the same value in some combinations TABLE |
of these four keys. We illustrate this using some examples. COMBINATIONS OF FOUR KEYS
In Smurf attack [12], the attacker sends a forged ICMP
packet to a broadcast address and all receivers respond with
a reply to the spoofed IP address (the victim). Cluster for
this type of traffic can be represented by ICMP packets & & range of port numbers such as ports higher than 1024. Yet
the same dstIP (the victim). The MS-SQL server worm [13jther clusters can be designed based on other attributes such
exploits a vulnerability which allows for the execution oS AS numbers. Note that more complex definitions would
arbitrary code on the SQL server computer due to a Sta@guire more flexible algorithms and more Complicated data
buffer overflow. Once the worm compromises a machine, tructures, which may impose too much overhead to real-time
will craft packets of 376-bytes and send the packets (usuaflpw aggregation. This would be a subject of further research.
using the same srcPort) to randomly chosen IP addresses
on port 1434/UDP. A cluster for this type of worm packetg' Data Structure
will have the same srclP (the infected computer) plus the First we take fprobe [16] as an example to illustrate the data
same dstPort (1434/UDP) and the same srcPort. One can fitidicture of ordinary NetFlow process. Fprobe is a libpcap-
packets of DoS attacks often have a common destinationiRsed tool that collects network traffic data and emits it as
(sometimes with a common destination port); Packets of worNetFlow flow records towards the specified collector. It is
spreads often have the same source IP address (sometiame®pen source software distributed under GNU GPL. The
with a common destination port); Packets of port scan usuathata structure used to store active flows in this software is
have a common destination IP address (sometimes withhash table, in which flows are indexed by hash values of their
common source IP address). Besides these flooding attadksy ID. The number of flows is often larger than the length
another network behavior which may cause the NetFlow @ the hash table (in fprobe, there are two choices for the
run out of memory is flash crowds. It occurs when a largength, 256 and 65536), so two or more flows can hash to the
number of users try to access the same server simultaneousyne value. Linked List is used to store flows of this kind
While its intent is quite different from DoS attacks, but fronof hash collisions. Assume flows are defined in terms of five
the network operator's perspective, these two cases are qlitgs, source/destination IP address, source/destination port and
similar. Similar to the DoS attack, a cluster can be definguotocol. When a packet arrives, the system first computes a
for packets with the same dstlP (and maybe with the sarhash value on its flow ID (five keys), and then looks up in
dstPort). the hash table. It looks at every flow in the list with this hash
Based on the above analysis, we regard source and degiue, to determine which flow this packet belongs to, or create
nation IP address as more important than the other two kegsnew flow entry if the packet does not belong to any existing
So for defining clusters we only consider combinations whidtow. Hash table is an appropriate data structure for flow look
at least contain the source or destination IP address. In othpr so softwares that collect network traffic and generate flow
words, we would not consider a cluster which only has thsformation usually use this data structure.
same source port, and/or the same destination port. Among th&Ve need a new data structure for our flow aggregation. This
16 arbitrary combinations of four keys, we would not considés a tradeoff. If we use a simple data structure like hash table
a) clusters with no key, b) clusters with all four keys, and weith linked list as mentioned above, it will be inefficient to
also ignore trivial cases like c) clusters that only have srcPoaggregate flows in a cluster, which needs to traverse every node
d) clusters that only have dstPort, and e) clusters that only hawdghe hash table. We need to put flows which are more likely
srcPort plus dstPort. Finally, we get 11 combinations. Thet® be aggregated later closer. On the other hand, if we use a
combinations and their corresponding examples are showncomplicated data structure like multi-dimensional tree in [6],
Table 1. it will use excessive memory, and bring too much overhead to
This is but only one of many possible ways to define amibrmal flow operations like flow look up.
identify big clusters. Other definitions can be, for example, Our data structure is as shown in Figure 1, which is a two-
based on srclP/dstIP prefixes such as 210.0.0.0/24; or badadensional hash table. One dimension of the hash table is

Lof:f2] .. |ll30| N ICEEEE and destination IP address. Entries in the top list have a

e . : - — flow counter and a pointer pointing to the corresponding IP
0 | dstIP: lZ0.0.0,lH dstIP: 138&)‘0‘4'—4 dstIP: 2A0.0,0,3| s . .

] address node. Now the problem is that the top list is only
2 for source/destination IP address, not for all combinations. In

addition, different combinations have different priorities to be
aggregated. For example, combination of dstIP plus dstPort

115%' srcIP: 137.8.6.5H A Ij B H C H D |

] 1 has a higher priority to be aggregated than combination of
| e R s F{ T only dstlP because it keeps more information.
655) l L

35 |5[c1F:210.7‘:“1A4H X I:; Y |

Fig. 1. data structure

Cluster A:
srcIP = 137.8.6.5
N = 100

Cluster B:
srcIP = 137.8.6.5
dstIP = 138.0.0.2
N = 30

hash value based on flow’s source IP (the left table of hash
number from 0 to 65535 in Figure 1), the other is hash value
based on flow's destination IP (the top table of hash number
from 0 to 65535 in Figure 1). Take source IP as an example,
hash value of a packet is computed based only on its source
IP, instead of its flow ID of five keys. Packets with the same

source IP will definitely be mapped to the same hash value,
on the other hand, packets with different source IP may be

mapped to the same hash value because of hash collision. Has
P 8ur method is to divide different clusters into three levels.

value nodes have a linked list, which consists of all source j]P X | lobal top list it it ¢
mapped to this hash value. For instance, in Figure 1, sourcléere IS only one giobal top list, So 1LS a mixture of source

IP of 137.8.6.5, 202.75.1.7 and 210.70.1.4 are all mapp@dd dels“”a“c:jr? '.z agﬁlfress' tTakegsot‘.’rce IP'ttI'?E)hl'ISt node il
to hash value 115. In addition, every source IP node has yP€, We diviae different combinations wi IS source

list, which consists of all flows having this source IP addres! _to three levels. 1) The lowest level is L.l’ flows in L1 (_:IusFer
The destination IP dimension of the hash table has a simi ly have the same srclP. 2) L2 cluster is about combinations

structure. Hash value of a packet is computed based on qfstWo keys, flows in L2 cluster can have a) the same srclP

destination IP. Hash value nodes have a linked list, whi us destlP, b) the same srcIP plus srcPort, or c) the same

consists of all destination IP addresses mapped to this h §?1IP plus destPort. 3) L3 cluster is about combinations of

value. For example, in Figure 1, destination IP of 120.0.0. ree keys, flows in L3 cluster can have a) the same srclP
138.0.0.2. and 210’0 0.3 are ali mapped to value 130. A s destIP plus srcPort, b) the same srclP plus destIP plus

every destination IP node has a list, which consists of all flo g;tPort, or (f) the ;,'ame SZrdE pllus srcPtl)l'rt plu's dstLFior':.
with this destination IP. or example, in Figure 2, the largest ellipse is a L1 cluster

Every flow ID node has two parents, one is the previo flows with the same srclP of 137.8.6.5 (We define it as
node in the source IP list, the other is the previous no ster A). Flows in this L1 cluster also form two narrower
in the destination IP list. For example, in Figure 1, flow 2 clusters: cluster B has the same srclP of 137.8.6.5 plus

has a parent of flow R in the source IP list of 202.75.1.§?els‘;me dS“FI) of h138'0'0'2;d0“|‘33ter (? has_l'_dr:e same srclP
and has a parent of flow B in the destination IP list of 37.8.6.5 plus the same dstPort of 80. There are even

120.0.0.1. We only consider clusters containing a fixed sour L3 clusters: cluster D and cluster E both have the same

or destination IP, so we compute hash value based on thé?gp plus dstIP plus dstPort. Our definition of clusters allows

two fields. In the source/destination IP list, we put flow plusters to ovgrlap. If there exists a L3 cluster, there must
nodes sorted by destination/source IP. This data structure Ilé?s corresponding L2 cluster(s) and L1 clustgr(s). Actually,
us find flows in one cluster more easily. First, all flows in on&®> cluster S L2 cluster C L1 cluster. This example
cluster of the same source or destination IP are in one Iigf”lS several subset relationships includidg: ¢ B C A,

Second, flow ID nodes in source/destination IP list are sorté)F cCc4dandE C ¢ C A Inadditon, higher level

by destination/source IP, so it's easy to aggregate flows in o ysters havg h|gher. priority to be agg-regated, ‘?ecause they
cluster of the same srcIP plus the same dstIP. keep more information after aggregation. In this example,

when we perform aggregation, cluster D and E have the

C. Three levels of clusters highest priority, cluster B and C have the middle priority, and
In the data structure, every IP node has a counter to indic&téster A has the lowest priority.

the number of flow nodes with this IP address. For example, . , .

in Figure 1, source IP node 137.8.6.5 has a counter of4 Algorithm for identifying clusters

to indicate there are totally 4 flows from this source IP. Next we illustrate the algorithm to identify appropriate

With this counter, we can easily get a top list for sourcelusters. The objectives of this algorithm are, first, flow entries

Cluster D:
srcIP = 137.8.6.5
dstIP = 138.0.0.2
dstport = 80
N = 20

Cluster E:
srcIP = 137.8.6.5
dstIP = 210.0.0.3
dstport = 80
N = 15

Cluster C:
srcIP = 137.8.6.5
dstport = 80
N = 40

Fig. 2. three levels of cluster

freed during aggregating these clusters should satisfy theThe third stepis to determine which IP nodes to be aggre-
memory’s requirement, second, the level of clusters beiggted in levek and which IP nodes to be aggregated in level
aggregated should be as high as possible. We first def{de- 1). Note thatL3 cluster C L2 cluster C L1 cluster,
several parameters and variables: and N3(IP;) < Nyo(IP;) < N;(IP;). Assume aggregating
to level 2, our objective in this step is to choose as many IP

o P:the number of all IP nodes in the top list . .
nodes as possible to aggregate their level 3 clusters. So those

e Mmae. the memory usage that triggers aggregation .

e myes: the expected memory usage after aggregation P nqdes WhO.SéVZ is closer toN shoulq be gho_sen. .

« T the number of entries the aggregation tries to free i.e.ThIS part is implemented by the algorithm in figure 3. First
T = (Munaw — Maes)/sizeof(a flow entry) ' ‘we computed,(IP;), which is the difference ofV;_, (I P;)

« r: the smallest size of clusters the algorithm identifies and N;(IF;), then sort thesed;(IP;) to di(IF;:) such

« Ni(IP;): the number of flow entries which will be freedthat d;(IP;) is ascending. After that we choose the small-

; ; ; t d;(IP;), the correspondingV;(IP;/) is the closest to
2(\)/(\;2 gggregate all level i clusters with the IP address (Zﬁ\fsi_l(Iij). It S Ni oy (IPy) - di(IP;/) is still no smaller
i J B p
than T', we can choose level cluster for IP; and level
The algorithm identifies large clusters based on vallies (; — 1) cluster for other IP nodes. Then we look at the
and the information in the top list. THest stepis to compute second smallest;(IP;/), and so on, until the difference is
N1(IP;), No(IP;), andN3(1P;) for every node in the top list. |ess than7. Through this algorithm, we get resuit For
N1 (IP;) is the number of flow entries which will be freed if{di(IPj/)|1 < j' <t —1}, we choose level clusters for
we aggregate all level 1 clusters with the IP address of nogderresponding P;., and choose leveli — 1) clusters for other
j, so it equals counter of nodg minus 1. For example, in |P nodes.
Figure 2, N; of this IP node is 99, because if we merge all
flows in the L1 cluster - all flows with the same srcIP of

137.8.6.5 - into one flow, we can free 99 flow entries. clusters selection algorithm:

For a fixed source IP address, there are three kinds of level
2 clusters. To comput&/,, we need to compute the followingfor j =1 to P
three values corresponding to three kinds of level 2 clusters: dC]Ei(IPj) = Ni—1(IP;) = N;i(1P;)
endfor
o ng1: number of flows which will be freed if we aggregatesort{di(jpj)‘j =1,..,P}to {d;(IP;))|j' =1,...,P}
all srclP plus dstIPcIustgrs w!th this IP gddress such thatd; (1P;) is ascending.
« n22: NUMber of flows which will be freed if we aggregate;» _ SN (IP)
all srcIP plus srcPortclusters with this IP address for j/ :;1 to P !
« n93: number of flows which will be freed if we aggregate T =T — dy(IP;)
all srcIP plus dstPortclusters with this IP address it T < T brleak'J

Takeny; as an example, we traverse flows in the list of thigndfor

srclP to find clusters with the same dsttR; is the number of ¢t = j’

flows which will be freed if we aggregate all these srcIP plus

dstlP clusters. We can géf; by No = max(nay, n2g, n23).

Because flow nodes in srclP list are sorted by dstIP, finding

clusters with the same dstIP in a srclP list is easy, which Fig. 3. clusters selection algorithm

only needs a counter. While finding clusters with the same

srcPort or dstPort in a srclP list needs some temporary arraysone possibility isY>, Ni(IP;) < T, then even we ag-

Computing N3 is similar to computingVs. gregate all level 1 clusters, the memory freed still can not
After getting NV;(I1P;) (1 <i<3,1<j<P)forthe IP satisfy the requirement. In this situation, the increase in

nodes in the top list, theecond stejis to determine to which number of flows is not caused by a few dominated clusters,

level we aggregate. IB_; N;(IP;) < T < > . N;_1(IF;), so flow aggregation can not deal with the memory exhaustion

we will aggregate to leve(: — 1) clusters. For example, if completely.

> Ns(IPj) <T <7, N2(IP;), then we will aggregate to _

level 2. If we aggregate level 3 clusters for all IP nodes, tife FlOW aggregation and export

sum of all N3 is still less thanT’, which can not satisfy our For every node in the top list, we have decided if we should

needs. But aggregating level 2 clusters for all IP nodes cdn aggregation on clusters for this IP address, and for which

satisfy our needs, so we choose to aggregate to level 2. llagel of clusters, and if for L2 or L3 clusters, which kind

important to note that the level of clusters being aggregateti combinations (eg, srclP plus dstIP, or srclP plus srcPort,

should be as high as possible. So aggregating to lgvell) or srcIP plus dstPort for L2 clusters). After that, we find

means we aggregate levetlusters for as many IP nodes aghe list of flows of this IP address, merge them in selected

possible, and aggregate level 1) clusters for the remaining clusters to one metaflow. Information of the metaflow comes

IP nodes. from information of flows in this cluster. For example, if

the cluster is srclP plus dstIP, then srclP and dstlP of thi. A fixed size of measurement bin is a problem, because its
metaflow are the exact values, but its srcPort and dstPort aptimal size depends on the traffic mix. If the measurement bin
changed to *, denoting all possible values. Other informatias too large, it keeps many short flows unnecessarily long in
of this metaflow is similar to those defined in [5], numbethe memory cache, and uses more memory than necessary. If
of packets/bytes is the sum of number of packets/bytes of #ie memory is bounded, then the adaptive algorithm decreases
aggregated flows, time stamp of first seen packet (create tissmpling rate lower than necessary, and sacrifices the accuracy
of the metaflow) is the minimum of this time stamp of albf all flows. On the other hand, if the measurement bin is
aggregated flows, and time stamp of last seen packet (modifp small, it splits many long flows to several flows, hence
time of the metaflow) is the maximum of this time stamp dfhcreases the export bandwidth and burdens the collector. Once
all aggregated flows. Number of flows can not be countediaptive NetFlowfixes the size of the measurement bin, how
directly, it might be estimated using other techniques. much memory that it uses more thhasic NetFlowdepends

When a packet arrives, the system determines if this packet the traffic mix, while our algorithm uses fixed amount of
belongs to an active flow. For metaflow, only fields of an exaedditional memory.
value are compared with corresponding fields of the packet.2) Export bandwidth: Besides memory, another main re-
For example, if a metaflow is (srclP = *, dstIP = 210.0.0.30urce constraint is export bandwidth. Oadaptive flow
srcPort = *, dstPort = 80,TCP), then all following packetaggregationuses either the same or less export bandwidth
of web traffic to the server with IP address of 210.0.0.3 withanbasic NetFlow Its export bandwidth is the same laasic
be regarded as belonging to this metaflow. Metaflow will bidetFlowwhen the system does not aggregate flows, and less
terminated and exported as other normal flows when thaden basic NetFlowwhen it performs aggregatiofExporting
termination criteria are met, includingactive timerandactive NetFlowmay use a very high export bandwidth, and may flood
timer. Note that criteria of observation of certain TCP flagthe collector. Inadaptive NetFlow router operator specifies
would not be used, because these flags indicate the terminatiom reported number of flow records!/ desired for each
of only one flow but not the metaflow. After metaflow ismeasurement bin, the algorithm guarantees this fixed export
terminated and exported, flows belonging to this cluster abandwidth by decreasing the sampling rate.
not aggregated to one metaflow any more. So deaggregatio) CPU utilization: Because our algorithm intents to per-
is done automatically based on the underlying traffic. form all these operations - keeping flow information, exporting
flow and aggregation - in real time, it must not bring too much
overhead. We will first describe the overhead to normal flow

In this section, we analyze our algorithrad@ptive flow operations, that is, update flow cache when new packets come
aggregatior), and compare it with other solutions including, 1)n and periodically check flow cache looking for expired flows.
NetFlow without memory constrainbésic NetFlow, 2) Net- In extreme conditions, if a large part of flows have the same
Flow which rejects new flows when the cache is fufljécting source or destination IP address, then the corresponding IP
NetFlow), 3) NetFlow which exports more aggressively whenode list will be so long that it would slower flow lookup.
the cache is full¢xporting NetFloy, and 4)adaptive NetFlow Actually, we can define a threshold, length of IP node list
proposed in [3]. We take the implementation of fprobe as amaches this threshold triggers aggregation. Another overhead
example of NetFlow, because the detailed implementation tof normal flow operations is that our algorithm needs to
Cisco NetFlow is not documented. maintain a top list. Every time we create or delete a flow entry,

. we need to update the top list. However, maximum number
A. Resource requirement of top list is not large (20 or even less is enough), and under

First we analyze the resources required by the algorithnmormal conditions the number of top list entry is often less
The key resource measures include the size of flow mematlyan the maximum number. So this part of overhead is not
the size of export bandwidth, and CPU utilization. large.

1) Flow memory:Because of our modified data structure, We need some extra process for performing aggregation.
our algorithm uses a bit more memory thhasic NetFlow First, we need to traverse lists of all IP nodes in the top list to
AssumeS; is the size of a flow entrys;, is the size of a IP computeN,, which is the number of flow entries that will be
Node in Figure 1. Considering the worst case, every flow entineed if we aggregate all level 2 clusters with this IP address.
has different source IP and destination IP, then our algorithifithere are level 3 clusters with this IP address, we also need
uses(Sy + 2 x* Sy, +4)/S; times memory obasic NetFlow to traverse this list again to gé¥s. After that, we need one
4 denotes we use one more pointer in the flow enfty.is more traversal to do aggregation for those IP nodes which
around 64 bytesS;,, is around 10 bytes (two pointers and on@eed aggregation. Assume the number of all IP nodes in the
counter). So our data structure uses 1.4 times memdpgsit top list is P, the maximum length of IP node lists Is,,, then
NetFlowin the worst case. the running time of the aggregation operation is bounded by

Adaptive NetFlowmay also use more memory théasic 3% P * L,,.

NetFlow The algorithm divides the NetFlow operation into In adaptive NetFlow for finding the right sampling rate,
measurement bins. They do not terminate flow records duritigey also need to maintain a histogram by performing one
the bin, but terminate all active flow records at the end of threore addition and one subtraction for each processed packet.

IV. Analysis

This histogram is the sizes of the packet counters, that is, holusters of srclP plus dstIP. Then we would get some errors
many flow entries have 1 packet, and how many flow entrifswe are interested in breakdowns by the IP protocol and
have 2 packets, and so on. When decreasing the sampling rayeapplications, but we would get accurate results if we are
first they compute the right sampling rate using this histograimterested in breakdowns by hosts, by IP prefixes associated
and then renormalize all existing flow entries. While we onlwith networks, or by ASes and countries. We would note that
need to perform aggregation on flows in the lists of those fBr accurate results we only mean the number of packets and
nodes in the top list, which is a small part of the existing flowytes, because the number of flows are not counted after we

entries. merge flows in one cluster to a metaflow. Another example is
that we aggregate L2 clusters of dstIP plus dstPort. Assume
B. Accuracy this large cluster is caused by a busy web server (produced by

When there is anomaly in the network, the number dlash crowds) instead of a DDoS victim, such that the srcIP
flows generated would exceed the resource constraints. illmeaningful. Then we get accurate results for protocol and
kinds of countermeasures would affect the accuracy of thgplication breakdowns. However, if the network operators are
result. Rejecting NetFlowrejects all new flows when theinterested in the source of this web traffic, we would lose this
cache is full. Forexporting NetFlow even the system cankind of information.
process all packets and export all flow records, there areFrom above examples and analysis, we get the following
still two ways which bring inaccuracy. First, routers expoftonclusions. The inaccuracy thataptive flow aggregation
NetFlow records to the collector using UDP. So flow recordsould bring depends on both what kind of aggregation that we
may be lost during periods of congestion. [17] showed thgerform and what kind of information that network operators
errors introduced by lost NetFlow records. Second, many poated. The aggregation is based on five dimensions, and the
processing analysis and visualization tools can not procésformation that network operators are interested is also about
this avalanche of flows. FlowScan [18] is a package used fitiese five dimensions, because other information such as IP
visualizing network traffic. The author said its near real-timprefix, ASes or countries would be kept if we keep the
processing can not catch up when processing flows producichension of IP address. If the dimensions that we discard
during most Denial-of-Service attacks. Fataptive NetFlow during aggregation are included in the dimensions network
it would automatically choose a lower sampling rate during @perators are interested, then the result would be inaccurate,
DosS attack, which affects accuracy of all flows. Results of oatherwise, it would be accurate.
adaptive flow aggregatioalso lose information, because our Above is the general case. In practice, keeping or discard-
solution reduces resolution for some clusters. ing which dimensions is dynamically decided based on the

Comparison of lower resolution with lower sampling rateinderlying traffic. First, we choose as high level clusters as
of adaptive NetFlows hard to quantify. Lower sampling ratepossible to keep more dimensions. Second, flow aggregation is
will affect the accuracy of all flows with equal probability, sausually triggered by network anomaly, so the dimensions we
inaccuracy for all kinds of aggregates (by ports, IP address, Afscard are often less important, for example, large amount
numbers etc.) is probabilistically equivalent. [3] presents tho# spoofed source IP addresses in DoS/DDoS attacks, random
relative standard deviation for the number of packets and tbieosen destination IP addresses in worm spread, and random
number of bytes when estimating the traffic of any aggregateosen destination ports in port scans.
amounting to a fraction of the total traffic. On the other hand, o
our adaptive flow aggregatiomses a lower resolution only ¢ Implementation issues
for some, but not all clusters, so inaccuracy for different Often the reason for abnormal traffic conditions is due to
aggregates is quite different. security attacks and such attacks often have some common

There are many analysis and visualization tools. Flowscpatterns. So our algorithm can relieve the resource overload by
[18] uses NetFlow data to give detailed information about thdentifying these traffic clusters in real-time and aggregating
traffic, while CoralReef [19] produces breakdown of traffithese large amount of short flows into a few flows. Sometimes,
based on packet traces instead of NetFlow data. AutoFot¢he overload may be caused by undifferentiated traffic not
[6] analyzes traffic along dynamically defined multiple didominated by any particular cluster, e.g., a shift in load caused
mensional clusters. These tools extract, record and help hyslink failure or routing change. In this situation, even we
understand the flows. They measure the traffic in the numlzgggregate all level 1 clusters, the memory which will be freed
or rate of packets, bytes and flows by breaking it down inraay still not satisfy the requirement. In other words, our
number of ways: by the IP protocol; by well-known services @olution can not deal with this case. From this point of view,
applications; by hosts; by IP prefixes associated with networksjr solution should be considered as a way to complement
or by ASes and countries. These keys (protocol, applicatiomsher current solutions, rather than completely replace them.
hosts etc.) can be predefined such as finding out how mué€lour algorithm fails to find appropriate clusters, we conclude
web traffic on your link, or the topgV entries such as finding that the traffic is undifferentiated and take other actions such as
hosts generating the most traffic. in Rejecting NetFlowexporting NetFlowor adaptive NetFlow

We will present some examples to show the inaccuracy forThe recent rise in the use of peer-to-peer applications may
different aggregates. The first example is that we aggregate &l2o cause overload of NetFlow, because one host would open

A T n T Description
A | 10s | 1s | [900, 1200] [0, 5400s]
B | 10s | 5s [180, 240] [0, 5400s]
C| 10s | 1s [180, 240] [0, 5400s]
D | 10s | 5s [36, 48] [0, 5400s]
E | 0.1s| 0.1s [2, 20] [2700s, 3700s] DoS attack
F | 0.1s| 0.1s [2, 20] [2000s, 4000s]| worm spreading
G | 10s 1s [180, 240] [0, 5400s] web traffic
TABLE I

FLOW INFORMATION

process, and the inter flow time is exponentially distributed
with mean);. In every flow, the packet arrival is also Poisson,
and inter packet time is exponentially distributed with mean
7;. The number of packets for every type of flow is a uniform
distribution ofn;. Characteristic of these seven types of flows
is shown in Table Il. Flow E is a simulated DoS attack, all
flows of type E have the same dstIP and dstPort. It does not
last during the whole duration of 5400s, but starts at 2700s
and ends at around 3700s. Flow F is a simulated worm spread,
all flows of type F have the same srclP. It starts at 2000s, and
ends at around 4000s. Flow A, B ,C, D and G are simulated

many connections to its peers and thus lead to the increasé@@mal traffic, they last during the whole duration.. andn
number of active flows. Although unlike flows of DoS attackd'e different for each type, so they have different characteristic,
and worm spreading traffic, which could be aggregated to olgg-lived or sho.rt-llved, dense or sparse. But compar.ed with
or a few flows, aggregating the flows originating from the sanfl®W E and F, thein\ andy. are longer, and. is larger. Their IP

host also could mitigate the resource problem. :
There are links in the network that are dominated Bjf type G are web traffic to the same dstlP.

particular clusters, in the normal case. Network operators can
use policy if they want to protect such clusters, resulting in the
algorithm looking for other clusters or perform aggregation

only when they exceed their policy defined limits. Another

threshold that network operators can setrjswhich is the

smallest number of flows in an identified cluster.

address and port are randomly generated except that all flows

exporting NetFlow

x10°
6

memory usage (byte)

V. Experimental evaluation

In this section, we evaluate different solutions by running
them on a synthetic trace file and traces of actual traffic.
These solutions includéasic NetFlow rejecting NetFlow
exporting NetFlowadaptive NetFlowand ouradaptive flow
aggregation We first present our experimental setup, and then

3000
systime (sec)

Fig. 4. memory usage fagxporting NetFlow

give out evaluation results on different trace files.

A. Experimental setup

We first present our metrics and experimental datasets. The

metrics we use to evaluate these solutions are:

« memory usage - memory used at the observation point
o export bandwidth - flows exported during the past 2

minutes
o run time - time spent by the entire process

« relative error - average error for byte, packet, or flow

estimates:

| X
lerr = | = E
relerr N izl(

ﬁi — N,

Uz

)? 1)

x10° adaptive NetFlow

memory usage (byte)
©

Fig. 5. memory usage faxdaptive NetFlow

For calculating the memory usage, we only count memory

In Equation 1,7; is the estimated value for number ofallocated for storing the active flows and record the memory
bytes, packets or flows; is the accurate value.

The data sets that we measure different solutions are:

usage every 10 seconds. Figure 4, Figure 5, and Figure 6 are
memory usages a#xporting NetFlowadaptive NetFlowand

« “Synthetic” - a synthetic trace file generated by CSIM adaptive flow aggregatiomespectively. The solid lines with
. “DarpalDE” - the training data of the 1998 DARPADPointer marker in these three figures are memory usage of

Intrusion Detection Evaluation

B. Resource evaluation on synthetic trace file
We use CSIM to generate a synthetic trace file. During ti@ndwidth for these solutions.

observation time of 5400s, there are seven types (A, B, C,In these experiments, we define,,,., = 40000, and

D, E, F, G) of flows. Flows of each type arrive as a Poisson,., = 30000. When memory usage reaches,,,., the

basic NetFlow served as the benchmark. We record export
bandwidth every 2 minutes, which is defined as number of
flows exported during the past 2 minutes. Figure 7 is export

x10" adaptive NetFlow

/
!
i

memory usage (byte)
@
T

memory usage

o
T

L L L
2200 2220 2240 2260 2280
sec)

o L L L
2100 2120 2140 2160 2180
systime (;

Fig. 6. memory usage faxdaptive flow aggregation

Fig. 8. memory usage and sampling rate in several measurement bins

export bandwidth
6000 T

sampling rate. At the end of one measurement bin, all active
] flows in the cache memory are exported and the sampling rate
| ‘ is reset to 1. In this experiment, the sampling rate decreases
\ 1 to a low value of around 1/30 (as shown in Figure 8).
| For adaptive flow aggregatiqgrbefore reachingn,,q., its

| memory usage is larger than thatlifsic NetFlowdue to the

. @f P \“ o overloads caused by the new data structure, as we analyzed
oo eenony S N OO in section IV-A.1. Its export bandwidth is the same as that of
o e e ww basic NetFlow At time around 2000 sec, the memory usage
exceedsm,,.... The algorithm identifies the cluster of the
simulated worm spread (with the same srclP) and aggregates
flows in this cluster. Both the memory usage and export
) bandwidth are much lower than those ldisic NetFlow At
system performs some operations to reduce memory Usaggifs around 2700 sec, the simulated DoS attack is generated,
mges. IN exporting NetFlowthe operation is to export SOMegg the memory usage exceeds,.. again, which triggers the
oldest flows. Inadaptive NetFlowthe operation is to decreaseygong aggregation. The third aggregation occurs at around
sampling rate as described in [3]. While adaptive flow 3g050 sec. The reason is that we use aative timerof 30

aggregation the operation is to find some large clusters anghintes, the metaflow generated from aggregation at time
aggregate flows in these clusters. Packet processing is sto sec is terminated and exported. But packets in this worm

during these operations, because input to the system is a tr?ﬁ?ead have not stopped, many new generated flows make the

file. In practice, these operations need to proceed in paral{lﬁémory usage reachu,,,, again. Except flow E and F, the
with the processing of new packets. arrival of other flows is stable. The system aggregates all flows
For exporting NetFlowbefore reachingn,q., its memory iy type E and F to one or two flows, so export bandwidth is
usage and export bandwidth are the same as thatasfc staple after the initial phase. The increase at the end of the
NetFlow After exceedingnq., its memory usage is boundedgpservation duration is because we flush out all active flows
by mmaz, but the export bandwidth is much higher than thaft the end of the program.
of basic NetFlow Finally, another metrics is the run time of these different
For adaptive NetFlowwe use the measurement bin of Jrocesses. We find from multiple runs of these experiments
minute. Before reachingn,,.., memory usage ohdaptive that the run time of ouadaptive flow aggregatiois similar
NetFlowis a little greater than that dfasic NetFlow due to to that of basic NetFlow The run time ofadaptive NetFlow
the unnecessarily long time thatiaptive NetFlovkeeps short even shorter than that dfasic NetFlow The reason is that
flows in the memory, as we mentioned in section IV-A.1. OBther solutions check all flows in memory to look for expired
the other hand, export bandwidth atﬂaptive NetFlows also flows every 2 sec (fprobe checks memory every 5 sec), while
greater than that obasic NetFlow The reason is that many adaptive NetFlowonly terminates all flows in memory every
flows we generated are much longer than the measuremenhin (we use 1 min as the size of measurement bin).
bin of 1 minute, so they are split to several flows. After)
exceedingnmqz, its memory usage is bounded by, and C. Resource evaluation on “DarpalDE” dataset
export bandwidth is stable. For more detail, its memory usageFrom the above section, the evaluation result on the syn-
and sampling rate in several measurement bins are shaiatic trace file is quite consistent with what we expect. In this
in Figure 8. At the beginning of one measurement bin, theection, we will show results from experiments on traces of
sampling rate is equal to 1 (process every packet). When thetual traffic. The dataset we use is part of the training data of
memory usage reaches.,.., adaptive NetFlowdecreases the 1998 DARPA Intrusion Detection Evaluation [20], which

5000 - =\
s/
[\

4000 -

export bandwidih

2000

1000

Fig. 7. export bandwidth for different solutions

x 10" basic NetFlow x 10" adaptive flow aggregation

basic NetFlow

~&- adaptive flow aggregation

memory usage (byte)
N
o

memory usage (byte)

1 i 1 1 1 . . 1 1 i
o 1 2 3 4 5 3 7 8) 1000 2000 3000 4000 5000 6000
systime (sec) x10* systime (sec)

Fig. 9. memory usage dfasic NetFlow Fig. 11. memory usage @fdaptive flow aggregation

x 10" adaptive NetFlow 1500

—— basic NetFlow
—&- adaptive NetFlow
—=— adaptive flow aggregation

1000

export bandwidth

500 H

1 1 1 1 1 i i i ; i
() 1000 2000 3000 4000 5000 6000 1000 2000 3000 4000 5000 6000
systime (sec) systime (sec)

Fig. 10. memory usage @daptive NetFlow Fig. 12. export bandwidth cidaptive NetFlow& adaptive flow aggregation

contained a wide variety of simulated intrusions. We choo&eep the memory usage boundedshy,.., the sampling rate
Wednesday data of week 1 as our experiment data, becawé&s decreased once and again, with the lowest value of less
it contains DoS attacks such as smurf and neptune. Figuréhen 1/100. The attack stopped at time 1046 sec, but the
is the memory usage dfasic NetFlow The peak memory sampling rate would not be increased until the beginning of
usage is caused by the smurf attack (ICMP packets to the samgat measurement bin of 1070 sec.
deslIP). Figure 10, 11, and 12 are memory usage and exporfor adaptive flow aggregatiorthe memory usage is a little
bandwidth ofadaptive NetFlovandadaptive flow aggregation higher than that obasic NetFlow Its export bandwidth is the
In this experiment, we record memory usage every 60 seégme as or less than (when performing aggregation) that of
which is the maximum memory usage during the past 60 seasic NetFlow as expected. Figure 14 is its memory usage
instead of memory usage at the observation point. when DoS attack occurred. When its memory usage reached
In this experiment, we usen,,,, = 30000, andmg.s "Mmax, the cluster of ICMP packets to the victim was identified
= 20000. From figure 10 and 11, one can find that thnd flows in this cluster were merged to one metaflow. After
memory usage diasic NetFlowonly exceedsn,,.. at around that, the memory usage would not increase any more because
1000 sec. However, bothdaptive NetFlonandadaptive flow all following attack packets belonged to this metaflow.
aggregationmay use more memory thamasic NetFlowand
their memory usage may exceed,, at other points besides
at around 1000 sec, so they decrease sampling rate or performio compare the accuracy aflaptive NetFlovandadaptive
aggregation more than once. flow aggregation we perform post-processing on the flow
For adaptive NetFlowbefore reachingn,,...., its memory records exported froradaptive NetFlowadaptive flow aggre-
usage is often greater than thathafsic NetFlow even greater gation and basic NetFlow We perform three post-processing
than that ofadaptive flow aggregatiomost of the time. The based on the applications used by most analysis and visual-
reason is that many of the flows in this data set are shorteation tools.
than the measurement bin of 1 min and are kept in memoryThe first post-processing is protocol breakdown. For these
longer than necessary. Its export bandwidth is similar to eolutions, protocol breakdown counts the number of bytes,
less than (when decreasing the sampling rate) thatasic packets and flows for TCP, UDP and ICMP. We repeat each
NetFlow Figure 13 is its memory usage and sampling ragxperiment for 5 times, and getlerr using Equation 1.
when DoS attack occurred. When the smurf attack occurrétie configuration for these experiments is the same as in
at 1010 sec, the memory usage quickly reached,,. To section V-C:m,,., = 30000, mg.s = 20000, and the size

D. Accuracy evaluation on “DarpalDE” dataset

10800 1010 1020 1030 adapiveMPFow 1050 tos0 1070 1080 adaptive NetFlow

protocol | % of total | byte error | packet error| flow error
ey TCP 85.2 0.002147 0.002827 0.151821
[UDP 0.6 0.009679 | 0.007714 | 0.331545
J ICMP 14.2 0.212056 | 0.210449 | 0.369882

T ‘ adaptive flow aggregation
8% protocol | % of total | byte error | packet error| flow error
z TCP 85.2 0.000000 | 0.000000 | 0.007840
g UDP 0.6 0.000000 0.000000 0.059900
ICMP 14.2 0.000000 | 0.000000 | 0.663537

I TABLE Il
RELATIVE ERROR OF PROTOCOL BREAKDOWN

0 L L L&
1000 1010 1020 1030

Fig. 13. memory usage afdaptive NetFlowunder DoS attack

adaptive NetFlow

srcPort % of total | byte error | packet error| flow error
\ 80, tcp 66.54 0.003118 0.003229 0.166314
. 20, tcp 11.45 | 0.002629 | 0.002636 | 0.083098
as ~=-adaptve fow 25, tcp 0.58 0.006846 | 0.003628 | 0.029989
A 53, udp 0.52 0.017324 0.012561 0.266825
21, tcp 0.075 0.012907 0.004036 0.213127
o 23, tcp 0.072 0.020535 | 0.012695 | 0.161913
2 o 123, udp 0.069 0.029045 0.029045 0.379118
8.6 11306, tcp 0.019 0.000000 | 0.000000 | 0.000000
g 11360 , tcp 0.019 0.000000 0.000000 0.000000
B 11304 , tcp 0.019 0.000000 0.000000 0.000000

ver adaptive flow aggregation
1 srcPort % of total | byte error | packet error| flow error
osf 80, tcp 66.54 0.000000 [0.000000 | 0.006993
B 20, tcp 11.45 0.000000 | 0.000000 | 0.000000
0 25, tcp 0.58 0.000000 0.000000 0.000000
53, udp 0.52 0.000000 | 0.000000 | 0.000000
Fig. 14. memory usage afdaptive flow aggregationnder DoS attack 21, tcp 0.075 0.000000 | 0.000000 | 0.000000
23, tcp 0.072 0.000000 0.000000 0.000000
123, udp 0.069 0.000000 | 0.000000 | 0.000000
11306, tcp 0.019 0.000000 | 0.000000 | 0.000000
11360 , tcp 0.019 0.000000 0.000000 0.000000
of measurement bin foadaptive NetFlowis 1 min. Relerr 11304 ,tcp| 0.019 0.000000 | 0.000000 | 0.000000

results foradaptive NetFlowand adaptive flow aggregation
TABLE IV

are shown in Table IlI.

. . . RELATIVE ERROR OF PORT BREAKDOWN
The second post-processing is port breakdown, which

counts the number of bytes, packets and flows for different

ports. Foradaptive NetFlovandadaptive flow aggregatigrnve

calculaterelerr for the top 10 source/destination ports sorteg, Adjusting parameters
by the number of bytes, packets and flows. For brevity, we only
showrelerr of the top 10 source ports sorted by the numb

of bytes ofadaptive NetFlowand adaptive flow aggregation gregationandm, ., mue. for both of them. We set,,q, =

in Table I_V, and omit the -othe-r f|veel-err tables. 30000, 35000, 40000, 45000, and .. = m0s — 10000, We
The third post-processing is to find the top 10 hosts Ryhoose 10s, 30s, 60s and 90s for the size of measurement bin,

bytes, packets or flows of traffic generated/received. We g@{d 2 4,5,10 for. For brevity, we only give some conclusions
six tables similar to port breakdowRelerr results of top 10 here:

source IP addresses sorted by bytesddptive NetFlowand

adaptive flow aggregatioare shown in Table V. NetFlow uses less memory but more export bandwidth,
From theseelerr results, we conclude that oadaptive flow and therelerr is low.

aggregationprovides better accuracy for legitimate flows than « The values we chose for have little impact on memory

adaptive NetFlowIts measurement for the number of bytes usage, export bandwidth, and theerr. This is because

and packets are all accurate in these scenarios, ameléts the sizes of all clusters identified are greater than these

for the number of flows is also lower than that adaptive r.

NetFlow Its only relerr greater than that didaptive NetFlow « Whenm,,., is large,relerr is low.

is flow error for ICMP, because the algorithm aggregates the

ICMP packets in the smurf attack. The aggregation can keep

the number of bytes and packets accurate, but can not counletFlow is the traffic measurement solution most widely

the number of flows directly. used by ISPs to determine the composition of the traffic

rThese solutions have some parameters including, size of
Fheasurement bin fadaptive NetFloyr for adaptive flow ag-

o When the size of measurement bin is smalilaptive

VI. Conclusion

adaptive NetFlow
srclP % of total | byte error | packet error| flow error
197.218.177.69 6.16 0.004704 | 0.009845 | 0.050996 [1]
172.16.114.148 4.95 0.010789 | 0.012045 | 0.193561 2]
208.134.241.210 3.79 0.008269 | 0.010362 | 0.166214
207.25.71.143 3.09 0.015963 | 0.017205 | 0.206470 [3]
207.25.71.29 2.79 0.039143 | 0.021262 | 0.174608
167.8.29.15 2.46 0.008376 | 0.008679 | 0.139553
207.46.130.138 2.09 0.015371 | 0.033316 | 0.267461
199.95.74.90 2.01 0.016042 | 0.029919 | 0.230012 [4]
192.168.1.10 1.25 0.008386 | 0.027705 | 0.368439
205.181.112.65 1.14 0.025910 | 0.022647 | 0.271724 [5]
adaptive flow aggregation
srclP % of total | byte error | packet error| flow error [6]
197.218.177.69 6.16 0.000000 | 0.000000 | 0.000000
172.16.114.148 4.95 0.000000 | 0.000000 | 0.033207
208.134.241.210 3.79 0.000000 | 0.000000 | 0.000000
207.25.71.143 3.09 0.000000 | 0.000000 | 0.000000
207.25.71.29 2.79 0.000000 | 0.000000 | 0.000000 [7
167.8.29.15 2.46 0.000000 | 0.000000 | 0.000000
207.46.130.138 2.09 0.000000 | 0.000000 | 0.000000
199.95.74.90 2.01 0.000000 | 0.000000 | 0.081798 [8]
192.168.1.10 1.25 0.000000 | 0.000000 | 0.000000
205.181.112.65 1.14 0.000000 | 0.000000 | 0.000000
E]
TABLE V

RELATIVE ERROR OFIP BREAKDOWN
[10]

[11]
mix in their networks. However, NetFlow has the problem
of overrunning available memory for flow records during
abnormal situations. Currently available countermeasures héZ
their own problems. We proposadaptive flow aggregatign
which identifies large clusters in real-time and aggregates langsg
amount of short flows into a few flows. This mechanism,
while certainly not a panacea, provides relief from DoS attacké
and other security breaches. Additionally, it guarantees tjg)
accuracy of legitimate flows.

We choose five fields typically used to define a flow, angs]
use 11 combinations of these five fields to define clusters. [l
efficiently implement the algorithm in real-time, we design
a new data structure called two-dimensional hash table. One
objective of the algorithm is to keep as much informatioli8l
as possible when performing aggregation. We divide differem,l

REFERENCES

http://www.cisco.com/warp/public/732/Tech/nmp/netflow/index.shtml.
http://www.cisco.com/univercd/cc/td/doc/product/software/ios120/
120newft/120limit/120s/120s11/12&nf.htm.

C. Estan, K. Keys, D. Moore, and G. Varghese, “Building a better
netflow,” in SIGCOMM '04: Proceedings of the 2004 conference on
Applications, technologies, architectures, and protocols for computer
communicationspp. 245-256, ACM Press, 2004.
http://www.cisco.com/univercd/cc/td/doc/product/software/ios120/
120newft/120t/120t3/netflow.htm.
http://www.ietf.org/internet-drafts/draft-dressler-ipfix-aggregation-

00.txt.

C. Estan, S. Savage, and G. Varghese, “Automatically inferring patterns
of resource consumption in network traffic,’ 8iGCOMM '03: Proceed-
ings of the 2003 conference on Applications, technologies, architectures,
and protocols for computer communicatiomp. 137-148, ACM Press,
2003.

K. Keys, D. Moore, and C. Estan, “A robust system for accurate real-
time summaries of internet traffic3IGMETRICS Perform. Eval. Rev.
vol. 33, no. 1, pp. 85-96, 2005.

R. Mahajan, S. M. Bellovin, S. Floyd, J. loannidis, V. Paxson, and
S. Shenker, “Controlling high bandwidth aggregates in the network,”
SIGCOMM Comput. Commun. Rewol. 32, no. 3, pp. 62-73, 2002.

C. Estan and G. Varghese, “New directions in traffic measurement and
accounting,” inSIGCOMM °'02: Proceedings of the 2002 conference
on Applications, technologies, architectures, and protocols for computer
communicationspp. 323-336, ACM Press, 2002.

B.-Y. Choi, J. Park, and Z.-L. Zhang, “Adaptive random sampling for
load change detectionSIGMETRICS Perform. Eval. Revol. 30, no. 1,

pp. 272-273, 2002.

N. Duffield, C. Lund, and M. Thorup, “Estimating flow distributions
from sampled flow statistics,” irBIGCOMM '03: Proceedings of the
2003 conference on Applications, technologies, architectures, and pro-
tocols for computer communicatigngp. 325-336, ACM Press, 2003.
CERT Coordination Center. CERT Advisory CA-1998-01 Smurf
IP Denial-of-Service Attacks, http://lwww.cert.org/advisories/CA-1998-
01.html.

CERT Coordination Center. CERT Advisory CA-2003-04 MS-SQL
Server Worm, http://www.cert.org/advisories/CA-2003-04.html.

] CERT Coordination Center. CERT Advisory CA-2003-20 W32/Blaster

worm, http://www.cert.org/advisories/CA-2003-20.html.

CERT Coordination Center. CERT Advisory CA-1996-21 TCP SYN

Flooding and IP Spoofing Attacks, http://www.cert.org/advisories/CA-
1996-21.html.

http://sourceforge.net/projects/fprobe.

N. Duffield and C. Lund, “Predicting resource usage and estimation
accuracy in an ip flow measurement collection infrastructure /M

'03: Proceedings of the 3rd ACM SIGCOMM conference on Internet
measurementpp. 179-191, ACM Press, 2003.

D. Plonka, “Flowscan: A network traffic flow reporting and visualization

tool,” in Proceedings of USENIX LISR000.

D. Moore, K. Keys, R. Koga, E. Lagache, and kc Claffy, “Coralreef

clusters to three levels and maintain counters to help assess software suite as a tool for system and network administrators,” in

their effect for aggregation. We then choose as high levels of
clusters as possible to aggregate to minimize loss of resolutiéiy)

We analyze the resource requirement and accuracy of our
solution, and compare it with other current solutions including
rejecting NetFlow exporting NetFlowandadaptive NetFlow
Experimental evaluations on synthetic and actual trace files
confirm our analysis on resource requirement, and show that
our solution provide better accuracy for legitimate flows.

Our future work includes: first, formal model and analysis
for accuracy comparison aidaptive NetFlovand ouradaptive
flow aggregationwhich depends on traffic characteristics and
what is the use of the flow information. In this paper, we
only give some scenarios in the analysis and experimental
evaluation part. Second, more experiments on additional data
sets of different traffic characteristics.

Proceedings of USENIX LISR001.
http://www.ll.mit.edu/IST/ideval/data/1998/training/.

