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ABSTRACT
The unbiasedness of online product ratings, an important property
to ensure that users’ ratings indeed re�ect their true evaluations to
products, is vital both in shaping consumer purchase decisions and
providing reliable recommendations. Recent experimental studies
showed that distortions from historical ratings would ruin the un-
biasedness of subsequent ratings. How to “discover” the distortions
from historical ratings in each single rating (or at the micro-level),
and perform the “debiasing operations” in real rating systems are
the main objectives of this work.

Using 42 million real customer ratings, we �rst show that users
either “assimilate” or “contrast” to historical ratings under di�erent
scenarios: users conform to historical ratings if historical ratings
are not far from the product quality (assimilation), while users de-
viate from historical ratings if historical ratings are signi�cantly
di�erent from the product quality (contrast). This phenomenon
can be explained by the well-known psychological argument: the
“Assimilate-Contrast” theory. However, none of the existing works
on modeling historical ratings’ in�uence have taken this into ac-
count, and this motivates us to propose the Historical In�uence
Aware Latent Factor Model (HIALF), the �rst model for real rating
systems to capture and mitigate historical distortions in each single
rating. HIALF also allows us to study the in�uence patterns of his-
torical ratings from amodeling perspective, and it perfectly matches
the assimilation and contrast e�ects we previously observed. Also,
HIALF achieves signi�cant improvements in predicting subsequent
ratings, and accurately predicts the relationships revealed in previ-
ous empirical measurements on real ratings. Finally, we show that
HIALF can contribute to better recommendations by decoupling
users’ real preference from distorted ratings, and reveal the intrinsic
product quality for wiser consumer purchase decisions.

1 INTRODUCTION
Online rating system is perhaps one of the most important modules
in a wide variety of contemporary web applications ranging from e-
commerce websites [18, 27] to online video/news platforms [7, 31].
Such online rating systems allow users to rate items (e.g., products,
videos, etc.) they have recently consumed, and these ratings can
help subsequent users in making decisions on whether to consume
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this item or not. In order to have correct subsequent decision mak-
ing, the unbiasedness of ratings, a property to ensure that users’
ratings indeed re�ect their true evaluations to the product, is crucial.
Furthermore, unbiased users’ ratings are also important to recom-
mender systems so that they can provide reliable recommendations.

However, recent experimental studies [3, 19, 22, 30] showed
that the disclosed historical ratings would ruin the unbiasedness
of subsequent ratings, making them inaccurate to convey users’
intrinsic evaluations to products. Such distortions bring bothmacro-
level and micro-level e�ects. At the macro level, the distortions
from historical ratings will make overall rating distribution deviate
from the intrinsic product quality, thereby misleading subsequent
consumers to wrong purchase decisions [19, 22, 30]. At the micro
level (or at the granularity of each single rating), the distortion in
the rating provides an adulterated view of user’s preference for
the product, weakening recommender systems’ ability to provide
high-quality recommendations [3]. As in [3], even for products with
the same quality, users tend to rate higher when they observe high
historical ratings as compared to low historical ratings. Thus, when
a user rates a product high under high historical ratings, the high
rating may not suggest the user’s high preference to the product
anymore, since it may be the result of high historical ratings.

Recently, Wang et al. [28] studied the macro-level in�uence from
historical ratings. However, to debias the historical distortions in
recommendations, we need a micro-level model to characterize the
historical ratings’ in�uence in each single rating. Previously, several
works [2, 13] tried to mitigate the micro-level historical ratings’
in�uence with an assumption that we know users’ intrinsic ratings,
the ratings given when users couldn’t observe historical ratings.
However, their models are inapplicable in real rating systems where
users’ intrinsic ratings are usually latent. To the best of our knowl-
edge, there is no work to characterize and debias the micro-level
in�uence from historical ratings in real rating systems. The main
challenge is that people do not fully understand how historical
ratings a�ect the user who gives the next rating.

Present work. The goal of this work is to develop a model for
real rating systems to accurately characterize and debias the in�u-
ence from historical ratings in each single rating microscopically.
To handle the challenge mentioned before, we analyze real ratings
to understand how historical ratings a�ect user’s rating behavior.

In this work, we �rst analyze a dataset of 42 million ratings from
Tripadvisor and Amazon. We �nd that users either assimilate or con-
trast to historical ratings under di�erent scenarios: a user tends to
give a rating similar to historical ratings when historical ratings are
not far from the product quality (assimilation), while deviating from
historical ratings when historical ratings di�er signi�cantly from
the product quality (contrast). In fact, this phenomenon can be well
explained by the “Assimilate-Contrast” theory [4] in psychology.
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Then, we �nd that the previous works [2, 13, 28] were unable to
explain our empirical results. Thus we propose Historical In�uence
Aware Latent Factor Model (HIALF), the �rst model designed for real
rating systems to capture andmitigate themicro-level in�uence from
historical ratings. In HIALF, we do not make any assumptions about
in�uence patterns of historical ratings, but we discover the most
likely in�uence pattern from data. The discovered in�uence patterns
via HIALFmatch perfectly with the assimilation and contrast e�ects
in empirical observations. Comparedwith previousmethods, HIALF
reveals the closest �tting to the relationships observed in previous
empirical measurements on real ratings, and signi�cantly reduces
the mean-squared error (MSE) in predicting subsequent ratings, i.e.,
up to 39% as compared with HEARD [28] and 12% as compared
with the standard latent factor model [21].

Finally, we demonstrate two applications of HIALF. HIALF en-
ables us to separate users’ intrinsic interests from historical dis-
tortions, leading to better product recommendations. Also, we can
directly compare products by their intrinsic qualities, without being
misguided by distorted historical ratings.

Contributions. Overall, we make the following contributions:
• Observations. We �rst reveal the assimilation and contrast
e�ects in user’s rating behavior caused by historical ratings.
We also provide an explanation for our observations by a
well-known psychological theory (Section 2).
• Modeling.We develop the �rst model (HIALF) for real rat-
ing systems to characterize and mitigate historical distor-
tions in each single rating microscopically (Section 3).
• Performance. The discovered in�uence patterns of histori-
cal ratings via HIALF perfectly match the assimilation and
contrast e�ects in observations. Moreover, HIALF achieves
signi�cantly improvements in predicting subsequent ratings,
and accurately �ts the relationships revealed in empirical
measurements on real ratings (Section 4).
• Applications. HIALF can contribute to better recommenda-
tions by separating users’ intrinsic interests from historical
distortions. It can also facilitate wiser purchase decisions by
revealing the intrinsic product quality (Section 5).

2 HOWHISTORICAL RATINGS AFFECT THE
NEXT SINGLE RATING

We conduct empirical measurements on real world datasets to study
how historical ratings a�ect its next single rating. In this section, we
�rst describe these rating datasets, then we discuss how to measure
the impact of historical ratings on its next rating. Finally, we propose
an explanation of our empirical observations, and verify that the
existing works [2, 13, 28] cannot explain our observations, which
motivates us to design a model for real rating systems to depict the
micro-level historical ratings’ in�uence in the next section.

2.1 Rating Datasets
We �rst introduce two large scale public available rating datasets
from Amazon1 and TripAdvisor2, respectively.

Amazon is a popular e-commerce website that allows users to re-
view and rate products they recently consumed, e.g., books, clothes,
1https://www.amazon.com
2https://www.tripadvisor.com

etc. In the Amazon dataset [18], we focus on ratings of the top four
largest categories: books, movies, electronics, and clothes. These
four categories cover about 48.8% of all products, and 50.4% of all
ratings on Amazon. The dataset spans from May 1996 to July 2014.

TripAdvisor is a popular travel website that provides reviews and
ratings of travel-related contents, e.g., hotels, restaurants, etc. We
use the entire ratings on it from April 2001 to September 2012 [26].

Table 1 summarizes the basic statistics of our dataset.

Table 1: Summary of rating datasets.
category # products # users # ratings

Amazon-books 2, 370, 585 8, 026, 324 22, 507, 155
Amazon-clothes 1, 503, 384 3, 117, 268 5, 748, 920

Amazon-electronics 498, 196 4, 261, 096 7, 824, 482
Amazon-movies 208, 321 2, 088, 620 4, 607, 047
TripAdvisor 12, 730 781, 329 1, 621, 956

2.2 Empirical Measurements and Observations
We conduct empirical measurements on the above datasets to study
how historical ratings a�ect its next rating.

Let rp,i denote the i-th rating of product p, and let Hp,i ,
(rp,1, . . . , rp,i�1) denote a sequence of i � 1 ratings of product p
received before rp,i (in the chronological order of receiving time).
Hp,i will be referred to as the historical ratings of rp,i .

We want to measure how historical ratingsHp,i a�ect its next
rating rp,i . Intuitively, there are two factors that could a�ect a user’s
decision on rating a product: (1) the product quality; (2) other users’
ratings/reviews to which the user was exposed.

The �rst factor is latent and around the average of ratings given
by a large population who were not exposed to historical rat-
ings [25]. To process our dataset, we group products with similar
average ratings into one group such that each group has amaximum
deviation of 0.2 in the average rating. For example, consider the two
selected groups of products with average ratings in [2.9, 3.1] and
[3.9, 4.1], and we assume the �rst (second) group has an approxi-
mately true quality of 3 (4). We only consider groups containing
more than 100 products and on average, each dataset has 10 groups.

Then, in each product group, for each rating rp,i , we �rst calcu-
late its prior expectation formed on historical ratingsHp,i : ep,i =
1
i�1
Pi�1
k=1 rp,k , resulting in a pair (ep,i , rp,i )3. We �nd that a set

of pairs {(ė, ṙ1), . . . , (ė, ṙk )} have the same prior expectation ė , but
the ratings {ṙ1, . . . , ṙk } are given by thousands of di�erent users.
We aggregate ratings {ṙ1, . . . , ṙk } to get r̄ = 1

k
Pk
i=1 ṙi . Thus, the

resulting list {(ė, r̄ )} describes how prior expectation ė a�ects its
next rating r̄ , on average, in this product group. Finally, we plot the
relationship between prior expectation ė and the average of the next
rating r̄ for each selected product group in Figure 1. Relationships
in other groups are similar with the two selected groups.

Some may argue that the user’s personal taste is another factor
that a�ects the user’s rating. However, the user’s personal taste
will not a�ect the plotted relationships, because for each prior
expectation ė , we aggregate thousands of users’ ratings to obtain the
average of the next rating r̄ , the aggregated distortions of thousands
of users’ personal tastes will be insigni�cant and can be ignored.

3In all our analysis, we round ep,i to one decimal place.
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(e) Tripadvisor
Figure 1: Relationship between prior expectation ė and the average
of the next rating r̄ . The group 1 (group 2) contains products with
average ratings in [2.9, 3.1] ([3.9, 4.1]).We observe that products’ his-
torical ratings do a�ect its next rating, and each curve with ⇤ (�) is
divided into two parts by the group’s approximately true quality (3
for group 1, and 4 for group 2).

Observations. We obtain two main observations from Figure 1:
• Products’ historical ratings do a�ect the next rating. For exam-

ple, in Figure (1a), the Pearson correlation coe�cient of group 1
(products with average ratings in [2.9, 3.1]) and group 2 (prod-
ucts with average ratings in [3.9, 4.1]) are 0.66 and 0.93 respec-
tively. In general, the Pearson correlation coe�cients (PCC)
are in the range [0.59, 0.94], this re�ects a positive correlation
between prior expectation and the next rating.
• Each curve with ⇤ (�) is divided into two parts by the group’s

approximately true quality (3 for group 1, and 4 for group 2). The
black line represents a hypothetical linear relationship between
prior expectation and its next rating, i.e., the user will give a 4-
star rating as long as his prior expectation is 4. Take the group 2
in Figure (1a) as an example, when prior expectation is below the
group’s approximately true quality of 4, it will receive a rating
higher than the prior expectation, on average; and when prior
expectation is above the group’s approximately true quality
of 4, it will receive a rating lower than the prior expectation,
on average. It is important to note that this phenomenon is
consistent among all groups of products in our dataset, and it is
interesting to �nd an explanation of this result.

2.3 Proposed Explanation of Observations
Let us now answer two fundamental questions: (1) why do historical
ratings in�uence its next rating? (2) why does the in�uence of
historical ratings behave consistently like those in Figure 1?

One possible answer to the �rst question is that di�erent histor-
ical ratings lead the user to form di�erent prior expectations for
the product, which impact the user’s overall satisfaction with the
product (the given rating). Before consuming a product, a customer
usually refers to previous aggregated ratings to see whether the
product really meets his needs. At this stage, he forms his “prior
expectation” for that product. Using the customer satisfaction the-
ory [20], user’s prior expectation of the product and the product
quality together determine the user’s satisfaction on the product.
Thus, di�erent historical ratings lead to di�erent prior expectations,
which in turn a�ect the next single rating.

To answer the second question, we refer to three well-known
psychological theories [4] which describe how the user’s prior
expectation for the product and the product quality together deter-
mine the user’s overall satisfaction with the product. Figure (2a)
shows the sample representations of three theories. The product
quality is 3 and is represented by the line parallel with x axis.
• “Assimilate” theory: The user’s satisfaction of the product is

always similar to his prior expectation (the orange line with 4).
• “Contrast” theory: The customer will magnify the di�erence
between his prior expectation for the product and the product
quality; i.e., if his prior expectation is below (above) the product
quality, the user will evaluate the product more (less) favorably
than the product quality (the purple line with �).
• “Assimilate-Contrast” theory: If the disparity between his
prior expectation and the product quality can be accepted by
the user (in [� ,� ] in Figure (2a)), the user’s satisfaction with
the product assimilates to his prior expectation; otherwise, the
di�erence between the prior expectation and the product quality
tends to be magni�ed (the red line with ⇤).
One interesting question is which theory can explain our empir-

ical observations. To answer this question, we combine all groups
with the same average rating range in �ve datasets. For exam-
ple, Figure (2b) illustrates the relationship for all products with
average ratings in [2.9, 3.1]. We choose this group because its ap-
proximately true quality is in the middle of the rating scale of
Amazon and Tripadvisor. One can see that the relationship follows
the “Assimilate-Contrast” theory in that (1) prior expectation has
a positive correlation with its next rating (contradicting with the
“Contrast” theory), and (2) when prior expectation is in [1, 1.8) and
(4.6, 5], the average of the next rating diverges from the increasing
trend in [1.8, 4.6] (contradicting with the “Assimilate” theory).
Hypothesis Test. Let us now design a statistical hypothesis test
to see whether the “Assimilate-Contrast” theory can explain our
observations in general. The “Assimilate-Contrast” theory di�ers
from the other two theories because its slope changes when the
di�erence between prior expectation and the product quality is
large, for example, when prior expectation is in [1,� ) and (� , 5]
in Figure (2a). In our test, each data point is a pair (e, re ), where e
is the prior expectation, and re is the rating given under e . Thus,
we can construct four sets. The set C1 (C3) contains all data points
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Figure 2: (a) Sample representations of three theories. (b) Relation-
ship between prior expectation and the average of the next rating
in products with average ratings in [2.9, 3.1] in all �ve datasets.

with prior expectation e much smaller (larger) than the product
quality q, C1 = {(e, re ) |e < � < q} (C3 = {(e, re ) |e > � > q}). The
set C2 (C4) contains data points with prior expectation e smaller
(larger) than but near the product quality q, C2 = {(e, re ) |� <
e < q} (C4 = {(e, re ) |q < e < � }). Then, we calculate the slope
between (� , r̄� ) and each point in C1 (C2), putting it in S1 (S2), i.e.,
Si = { re�r̄�e�� |(e, re ) 2 Ci }, i = 1, 2. Here, r̄� is the average of ratings
under prior expectation � . Similarly, we calculate the slope between
(� , r̄� ) and each point inC3 (C4), getting S3 (S4).Wewill discuss how
we set � and � in the next paragraph. If the “Assimilate-Contrast”
theory holds, the mean of S1 (S3) should be smaller than the mean of
S2 (S4). Otherwise, the mean of S1 (S3) equals to the mean of S2 (S4).
We use student t-test to examine whether there exists a signi�cant
di�erence between the mean of S1(S3) and S2(S4).

Speci�cally, we �rst group products with similar average ratings
as before. In each group, we divide the {(e, re )} pairs into distinct
partitions such that pairs in each partition share a unique prior
expectation. We discretize real-valued e by equal-interval partition,
i.e., prior expectations in [a � �,a + �]4 are taken as the same prior
expectation as a. Then, we get Si , i = 1, 2, 3, 4 and apply the student
t-test 5. We use Welch-Satterthwaite approximation [23] to get the
degrees of freedom. Let �̂ (�̂ ) be the fourth smallest (largest) prior
expectations, then we set � = min{�̂ ,q � 1}, and � = max{�̂ ,q + 1}.
The null hypothesis in our test is that there exists no statistically
signi�cant di�erence between the mean of S1(S3) and S2(S4), while
the alternate hypothesis is that the mean of S1 (S3) is smaller than
the mean of S2 (S4). We test all hypothesis at the 0.05 signi�cance
level. We observe that 11 out of 12 groups reject the null hypothesis
of the t-test between S1 and S2, and 7 out of 8 groups reject the
null hypothesis of the t-test between S3 and S4. Since almost all
groups reject the null hypothesis, the “Assimilate-Contrast” theory
is a more appropriate theory to explain how customers are a�ected
by historical ratings.

2.4 De�ciencies of existing works
Next, we show that existing works on modeling historical ratings’
in�uence [2, 13, 28] fail to explain our previous observations.

In our dataset, users’ intrinsic ratings are latent, thus we are un-
able to build the model in [2, 13].Wang et al. [28] developed HEARD
to model how historical ratingsHp,i in�uence the general rating
distribution after next M ratings xp,i+M at the macro level. Here,

4we set � = 0.1.
5We discard groups containing less than 100 products and prior expectations followed
by less than 100 ratings due to their low statistical reliability.

for a one-to-K star rating system, xp,i+M , [x (1)p,i+M , . . . ,x
(K )
p,i+M ],

where x (k )p,i+M represents the proportion of level-k ratings in the
�rst (i + M � 1) ratings of the product p. Note that the goal of
HEARD is fundamentally di�erent from ours. However, given his-
torical ratingsHp,i , the probabilistic model of HEARD can reveal
the probability P (rp,i = k |Hp,i ),8k 2 {1, . . . ,K }. Hence, HEARD
can be taken as a model to predict the next rating rp,i given its his-
toryHp,i . Thus, we perform experiments to see whether HEARD
can reveal our previous observations. Speci�cally, we �rst train
HEARD with each dataset. Then, we select the same groups of prod-
ucts in each dataset as in Figure 1. In each selected group, for each
rating, given its historical ratingsHp,i , we use HEARD to predict
the next rating rHp,i = ar�maxkP (rp,i = k |Hp,i ). We also calculate
its prior expectation ep,i = 1

i�1
Pi�1
k=1 rp,k based on real ratings, ob-

taining a pair (ep,i , rHp,i ). Finally, for each distinct prior expectation
e , we calculate the average of the next HEARD-generated ratings
under e , denoting as rHe .

Before checking the slope changes as in hypothesis tests, we �rst
check whether the resulting list {(e, rHe )}meets rHe  e , when e � q,
as in Figure 1. Here q refers to the approximately true quality of the
product group. Let E+q denote those prior expectations larger than q:
E

+
q = {e |e �q � 0}. We calculate the average deviation from e to rHe

when e � q: dH = 1
|E+q |
P
e 2E+q (e �rHe ). Let r⇤e be the average of the

next real rating given under prior expectation e . We also calculate
the average deviation from e to r⇤e when e � q, which we denote
as d⇤. Note that d⇤ is always positive in the real rating datasets,
because re  e , when e � q in Figure 1. We present dH and d⇤ in
both groups on all �ve datasets in Table 2. From Table 2, we observe
that all dH are negative and signi�cantly di�erent from the positive
d

⇤. For example, in Amazon-books, for all e , on average, HEARD
predicts a larger rHe than e in both groups (dH < 0), while in real
ratings, re should be smaller than e (d⇤ > 0). This already suggests
that HEARD fails to explain our observations in real rating datasets,
and there is no need for the hypothesis tests. The de�ciency of
HEARD is because HEARD mainly focuses on the macro-level
historical ratings’ in�uence in overall rating distribution, rather the
micro-level historical in�uence in each singe rating.

Table 2: dH and d⇤ on all �ve datasets.

category HEARD (dH ) real ratings (d⇤)
group 1 group 2 group 1 group 2

Amazon-books -0.7899 -0.4305 0.5697 0.3681
Amazon-clothes -0.8629 -0.4438 0.3733 0.4396

Amazon-electronics -0.4944 -0.4421 0.4202 0.3868
Amazon-movies -0.8194 -0.4332 0.5333 0.3913
TripAdvisor -0.5097 -0.2339 0.2784 0.4368

3 PROPOSED MODEL
In this section, we describe in detail the Historical In�uence Aware
Latent Factor Model (HIALF) which leverages previous observations
to characterize the micro-level in�uence from historical ratings in
real rating systems. Our objectives are: (1) to model the in�uence of
historical ratings so as to do a better prediction of the next rating;
(2) to reveal the intrinsic qualities of products and users’ intrinsic
preference so to do a better job in product recommendations.
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3.1 Preliminary: Latent Factor Model
One can �rst consider using the classical latent factor (LF)model [21]
to predict the rating ru,p for user u and product p as:

ru,p = � + bu + bp + xu
T
Äp (1)

Here� is the overall rating for an arbitrary user and product; bu and
bp denote the user and item bias, respectively; xu and Äp represent
vectors of latent features for user u and product p.

We need to emphasize that the standard latent factor model can-
not explain our empirical observations because it does not consider
factors due to the e�ects of historical ratings to subsequent ratings.
We mention the standard latent factor model because HIALF is an
enhanced version of the LF model.

3.2 Historical In�uence Aware Latent Factor
Model (HIALF)

Let the term useru’s experienced quality of productp refer to product
p’s quality in user u’s view. We use hp,i to represent the distortion
from historical ratingsHp,i .

In HIALF, the i-th rating of product p given by user u is mainly
taken as a combination of two factors: (1) user u’s experienced qual-
ity of product p, denoted as qu,p ; (2) the distortion from historical
ratings hp,i . The �rst factor is determined by product p’s intrinsic
quality and user u’s overall interest in product p. We model it by

qu,p = � + bp + xu
T
Äp (2)

According to previous observations, the second factor hp,i de-
pends on the discrepancy between qu,p and the prior expectation
formed on the historical ratings (i.e., ep,i ). Thus, we use a categori-
cal function � (x ) to represent the induced bias when the di�erence
between ep,i and qu,p is x , i.e., x = ep,i � qu,p . We call � (x ) as the
discon�rmation bias curve. Moreover, applying Latané’s theory [14],
the size of historical ratings |Hp,i | will boost the distortion hp,i .
For example, 100 historical ratings will exert a larger in�uence on
the next rating than only 1 historical rating. Thus, let f (x ) be a
scaling function to represent the magnitude of impact by historical
ratings of size x . We have:

hp,i = f ( |Hp,i |)� (ep,i � qu,p ) (3)

All in all, HIALF predicts r̂p,i,u for the i-th rating of product p
given by user u as follows:

r̂p,i,u = bu + qu,p + �uhp,i

= � + bu + bp + xu
T
Äp + �u f ( |Hp,i |)� (ep,i � qu,p )

(4)

Here, �,bu ,bp ,xu ,Äp take on the same roles as in the basic latent
factor model; �u models how easily user u will be in�uenced by
historical ratings. A larger �u means that user u is easier to be
a�ected. Next, we describe how to model � (x ), f (x ), and give a
more realistic formula of ep,i .
Modeling the discon�rmation bias curve � (x ).We use a data-
driven approach to model � (x ), i.e., we do not constrain the form
of � (x ) (i.e., to be linear or quadratic). Instead, we learn the most
appropriate format from data.We expect the learned � (x ) canmatch
the assimilation and contrast e�ects in previous observations.

Online rating systems usually have a limited rating range. For
example, Amazon and Tripadvisor adopt one-to-�ve-star rating sys-
tem. Thus, x = ep,i � qu,p is in a �xed known range [xa ,xb ]. For
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Figure 3: Using kernel function to approximate three di�erent
functions with x in [�4, 4]: (a) � (x ) = x

4 ; (b) � (x ) = sin( �x4 );
(c) � (x ) = ( x4 )

2. In kernel function, we use {x1, . . . , xn } =
{�4, �3.5, �3, . . . , 3, 3.5, 4} and � = 10.

example, on both Amazon and Tripadvisor, x 2 [�4, 4] since both
ep,i and qu,p are in [1, 5]. In this work, we use non-parametric
kernel regression [29] to model � (x ).

In kernel regression, given a set of i.i.d. samples {(xi ,�i )}ni=1
from model �i = �(xi ) + �i , where �i represents the noise from
the standard normal distribution, we can approximate �(x ) by a
kernel function �k (x ) =

Pn
i=1w (x,xi ) ·�iPn
i=1w (x,xi )

. The termw (x ,xi ) gives a
greater weight to x that is closer to xi , and we select w (x ,xi ) =
exp (�� (x � xi )2), where � controls the smoothness of the function.
Figure 3 shows examples using kernel methods to approximate
three di�erent �(x ) with x in [�4, 4], and �k (x ) always gives a good
approximation to �(x ).

Thus, if we can get a set of samples {(el ,�l )}nl=1 from the discon-
�rmation bias curve, i.e., �l = � (el ) + �l , where �l represents the
noise from the standard normal distribution, we represent � (x ) as:

� (x ) =

Pn
l=1w (x , el ) · �l
Pn
l=1w (x , el )

(5)

To obtain the set of samples {(el ,�l )}nl=1, we let {e1, . . . , en } be
uniformly distributed in the known range of x ([xa ,xb ]), i.e., in
our dataset, we set {e1, . . . , en }= {�4,�3.5, . . . , 3.5, 4}. And we take
{�1, . . . ,�n } as parameters and learn them from data.
Modelingmagnifying curve f (x ). Intuitively, themore historical
ratings exist, the larger the magnifying e�ect will be. The previous
psychological study [14] showed that the slope of f (x ) decreases
as x increases, but the slope remains positive. In this work, we use
the following magnitude function f (x ) to describe the magnifying
e�ect of historical ratings with a size x .

f (x ) =
a

1 + exp (�b ⇤ x ) �
a

2
(6)

The �rst component is a sigmoid function while the second compo-
nent (subtracting a/2) is to ensure that f (0) = 0, because when we
do not have any historical ratings, no magnifying e�ect exists.
Modeling prior expectation ep,i . In previous measurements, we
used the average of historical ratings as prior expectation ep,i . In
reality, users focus more on recent ratings instead of all ratings of a
product. Hence, we represent ep,i by the following general formula:

ep,i =

Pi�1
k=1 � (i � k ) · rp,kPi�1

k=1 � (i � k )
(7)

Here, � (d ) = exp (�� ⇤ d ) denotes an exponential triggering kernel,
which models the decay of in�uence; rp,k is the k-th real rating
of product p; � controls the extent to which users prefer recent
ratings. If � is 0, then ep,i is exactly the average of historical ratings.
A larger � means that users focus more on recent ratings. In our
case, � is set by cross-validation.
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3.3 Model Inference
Overall, our goal is to solve the following optimization problem:

min
�

X

(p,i,u )2K
(rp,i,u � r̂p,i,u )2 + �r ec (b2u + b2p + | |xu | |22 + | |Äp | |22 )

+ �f (a
2 + b2) + �� (

X

l
�

2
l ) + �� (�

2
u )

Here, � = {�, {bu }, {bp }, {xu }, {Äp }, {�u },a,b, {�l }}; rp,i,u is the
real rating; r̂p,i,u is the predicted rating by HIALF (Equation (4));
K contains all (p, i,u) pairs, and a pair (p, i,u) represents that the
i-th rating of product p in the dataset is given by user u. Using this
objective function, we aim to make r̂p,i,u as close as possible to the
real rating rp,i,u . �r ec , �f , �� , �� are regularization hyperparame-
ters to prevent over�tting. We use stochastic gradient descent (SGD)
algorithm to learn parameters, which is widely used in previous
works [8, 11, 12], due to its e�ciency.

4 EXPERIMENTS
We conduct experiments on real rating datasets (Table 1) to compare
the performance of our model (HIALF) with state-of-the-art models.
We compare di�erent models by evaluating: (1) how accurate a
model could predict the subsequent ratings, and (2) how well a
model could �t the previous empirical observations in real ratings.

4.1 Validating The Discon�rmation Bias Curve
One important thing we need to check is whether the discon�rma-
tion bias curve � (x ) meets with the “Assimilate-Contrast” theory
because this will dictate the accuracy of HIALF.

As in Figure 4, all learned � (x ) perfectly match the “Assimilate-
Contrast” theory. � (x ) on Amazon-books, Amazon-movie, Amazon-
electronics and Tripadvisor, have similar formats with the sample
representation of the “Assimilate-Contrast” theory in Figure (2a).
� (x ) on Amazon-clothes also follows the theory: in the range [0, 1],
the bias roughly equals to di�erence between prior expectation and
the product quality, while deviating it out of the range.

We also notice that � (x ) is close to 0 for some x , for example, x in
[�4,�3] or [3, 4] in Figure (4a). There are two possible reasons. For
one thing, x seldom achieves values in these ranges. Take x = �3 as
an example, it means that a user takes an inferior product in others’
views (i.e., forming a prior expectation as 1-star) as a good 4-star
product. In reality, such large discrepancy rarely occurs. With a
high probability, an inferior product in many users’ view is truly a
bad product. Then with constraints on value of �l (i.e., �� ), � (x )
in the above ranges is close to 0. For another, from a psychological
point of view, as mentioned in [32], if users �nd others’ opinions
highly contradict with their own opinions, they may tend to insist
on their own opinions.

4.2 Predicting Subsequent Ratings
For the rating sequence of each product, we split it into the training
subsequence and the testing subsequence, and put the two sub-
sequences into the training set and the testing set, respectively.
We train the model on the training set, and validate the model on
the testing set in terms of mean squared error (MSE). We compare
HIALF with several state-of-the-art models: HEARD [28], latent
factor (LF) model [21], and also a variant of HIALF model, denoted
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Figure 4: The learned discon�rmation bias curve � (x ). All � (x ) per-
fectly match the “Assimilate-Contrast” theory.

by HIALF-AVG. In HIALF-AVG, prior expectation is taken as the
average of historical ratings without emphasis on recent ratings.

Results. Table 3 shows that our model signi�cantly outperforms
alternatives on all datasets. On average, HIALF achieves a 33%
reduction in MSE compared to HEARD, and a 6% reduction to LF.

Note that improvements over LF are bounded by the extent to
which ratings in the dataset are a�ected by historical ratings. We
apply curve �tting to all lines in Figure 1 with a linear model � =
ax +b. Here, the slope a represents the average increase in the next
rating when prior expectation moves from x to x + 1, thus a larger
a implies the larger distortions from prior expectations (historical
ratings). The average slope of two �tting curves in Amazon-movie is
the largest (0.34), whileAmazon-clothes reveals the smallest average
slope as 0.22. In other words, Amazon-movie su�ers the largest
distortions from historical ratings, while Amazon-clothes su�ers the
smallest historical distortions. From Table 3, HIALF has the most
signi�cant bene�ts on Amazon-movie over LF and the least bene�ts
on Amazon-clothes over LF. Furthermore, HIALF is consistently
more accurate thanHIALF-AVG, because users focusmore on recent
ratings when shaping prior expectations.

4.3 Fitting Empirical Observations
Next, we re-do the empirical measurements in Section 2 with the
predicted ratings by HEARD, LF, HIALF, respectively. Note that
an accurate model should reveal a similar relationship as in our
previous observations in real ratings.
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Table 3: MSE on �ve datasets
Amazon-movie Amazon-books Amazon-electronics Amazon-clothes Tripadvisor

HEARD 1.5826 1.5548 3.1170 2.1550 1.3135
LF 1.2794 1.0777 1.9634 1.4123 1.0074

HIALF-AVG 1.2054 1.0619 1.9357 1.3985 0.9805
HIALF 1.1194 1.0318 1.8764 1.3759 0.9405

bene�ts of HIALF over HEARD 29.27% 32.83% 39.80% 35.17% 28.40%
bene�ts of HIALF over LF 12.51% 4.26% 4.43% 2.58% 6.64 %
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Figure 5: Relationship between prior expectation (de�ned in Equation (7)) and the average of the next rating. A smaller d implies a better
�tting.
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Figure 6: Relationship between prior expectation (the average of historical ratings) and the average of the next rating. A smaller d implies a
better �tting.

Due to the page limit, we only describe the experimental steps
on HIALF here. Experiments on other models are similar. For each
dataset, we �rst model it using HIALF. Then, we select the same
groups of products as in Figure 1. In each selected group, for each
rating, given its history Hp,i , we use HIALF to predict the next
rating rHIALF

p,i . We also calculate its prior expectation ep,i based on
real ratings, getting one pair (ep,i , rHIALF

p,i ). We consider two types
of ep,i here: (1) the average of historical ratings; (2) the one de�ned
in Equation (7) that focuses more on recent ratings. Finally, for each
type of ep,i , we plot the relationship between prior expectation and
the average of the next HIALF-generated rating. Figure 5 shows the
results with prior expectation de�ned in Equation (7), while prior
expectation in Figure 6 is the average of historical ratings. Here, we
only plot the relationship for the group of products with average
ratings in [3.9, 4.1] in each dataset because this group contains
more products. Similar patterns are also found in other groups of
products.
Summary of results. Both Figure 5 and Figure 6 indicate that
HIALF provides the best �t to previous observations in real ratings.
Take Figure (5a) and Figure (6a) as examples. The black lines with
� are the relationship between prior expectation and the average of
the next rating in real ratings, andwe can �nd ourmodel HIALF (red
line with⇤) �ts the relationship of real ratings the best, as compared
to LF (blue line with 4) and HEARD (the purple line with ⇥). We
also de�ne a quantative metric to measure the di�erence between
relationship in real ratings and in ratings generated by model A
(where A can be HEARD/LF/HIALF) as: d =

P
e2E (re�rAe )2

|E | , where
E contains all distinct prior expectation e , re is the average of real

ratings under e , and rAe is the average of model A-generated ratings
under e . HIALF also reveals the smallest d , implying the closest
�tting to empirical observations in real ratings. The latent factor
model (LF) reveals relationships that are approximately parallel to
the x axis, since LF does not consider the factors of distortions from
historical ratings. HEARD is too optimistic since it always tends to
predict high ratings when prior expectations are larger than 3.

5 APPLICATIONS
In this section, we apply HIALF to improve recommendations and
to help users to make wiser consuming decisions.

5.1 Debiased Recommender System
Using HIALF, one can easily obtain users’ and products’ intrinsic
features (bp ,bu ,xu ,Äp ) without any contamination from historical
ratings. Thus, base on these intrinsic features, for a product p that
useru has not consumed, we can generate a recommendation score:

rec (p,u) = � + bp + bu + xu
T
Äp (8)

here �,bp ,xu ,Äp ,bu are learned parameters in HIALF. Products
with high recommendation scores are those potential products that
useru may like, and therefore we recommend these products to user
u. We call a recommender system using the above methodology as
debiased recsys.

We compare debiased recsyswith the standard latent factor model
(LF) since HIALF is built on top of the latent factor model. Note that
HIALF is orthogonal to other techniques to improve recommenda-
tions, such as modeling evolution of users’ expertise [17], modeling

Unbiased and Private RecSys’17, August 27–31, 2017, Como, Italy

104



Table 4: RMSE on �ve datasets
category LF debiased recsys

Amazon-movie 1.0639 1.0465
Amazon-books 0.9125 0.8922

Amazon-electronics 1.2273 1.2083
Amazon-clothes 1.1239 1.1034
Tripadvisor 1.1919 1.1776
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Figure 7: Two products with similar intrinsic quality have di�erent
rating growth histories, leading to signi�cantly distinct ratings.

temporal dynamics [12], etc. For the future work, we can combine
HIALF with the above techniques for further improvements.

We take the set of ratings without historical ratings as the ground
truth. We train HIALF with the rest of ratings using the same
hyperparameters (�� , �f , etc .) as in Section 4.2. We report the Root
Mean Square Error (RMSE) on the ground truth in Table 4. RMSE is
widely used to evaluate the quality of recommendations [8, 11, 12].

As in Table 4, debiased recsys consistently reveals smaller RMSE
than LF, implying that it can provide better recommendations.

5.2 Exposing The Intrinsic Product Quality
The intrinsic quality of a product is around the aggregated collective
ratings given by a large group of users who were not exposed to
historical ratings [25]. With HIALF, we can also easily get the
intrinsic quality of product p, which we denote as q⇤p , by factoring
out the distortions from historical ratings.

q

⇤
p =
X

i
(� + bp + xũ (p,i )

T
Äp ) (9)

Here ũ (p, i ) is the user who gave the i-th rating of product p.
We use the case study in Figure 7 to illustrate the signi�cance

of revealing the intrinsic qualities of products. Figure 7 shows the
dynamics of the average rating of two selected products in Amazon-
movie. These two products have similar intrinsic quality (around
4) and similar initial ratings. Note that initial ratings su�er small
historical distortions. However, after they experienced a sequence
of ratings with di�erent trends, the average rating of product 1
and product 2 are 3.2 and 4.9 respectively (di�er at about 1.7). This
shows the impact of historical ratings’ distortions. With HIALF, one
can perform debiasing operation and obtain the intrinsic quality so
that users will not be misguided by historical ratings.

6 RELATEDWORK
Biases in rating system. Users’ ratings are often biased, due to
a variety of causes, such as ratings from spammers [15] or water-
armies [1], evolution of users’ expertise [17], temporal dynam-
ics [12], dimensional biases [9], biases across categories [10], biases

due to algorithms [24] etc. In this paper, we focus on a di�erent
kind of bias caused by in�uence from historical ratings.
Experiments onhistorical ratings’ in�uence.Recent studies [3,
19, 22, 30] found that the disclosed historical ratings would distort
subsequent ratings. Experiments [19, 30] revealed that small posi-
tive manipulations would encourage more positive future ratings,
creating accumulative herding that boosts the �nal average ratings.
Even for products with the same quality, users tend to rate higher
when they are displayed with higher historical ratings [3, 22]. Our
work is motivated by the above �ndings, however, our goal is to
model rather than to test the in�uence from historical ratings.
Modeling historical ratings’ in�uence. Previous works [2, 13]
have attempted to mitigate the micro-level in�uence from historical
ratings. However, their models were developed for specially de-
signed rating systems, and one needs to know users’ ratings given
when users cannot see historical ratings, which is usually latent
in reality. Wang et al. [28] then developed a more practical model
(HEARD) to characterize the macro-level in�uence from historical
ratings on Amazon, i.e., how historical ratings of a product will
a�ect its general rating distribution after 100 ratings. The goal is
di�erent from our work since we aim to capture the microscopic
in�uence, i.e., how historical ratings will a�ect its next single rating.
Social network-based in�uence. Several works [5, 6] also mod-
eled and debiased the in�uence in social network, i.e., peer e�ects.
Peer e�ects are interactive and more credible, i.e., users and their
friends will in�uence each other and users often trust each other.
The historical ratings are usually generated by strangers, and only
previous ratings can in�uence the subsequent ratings. The di�er-
ence between these two types of in�uence makes our work di�er
from this line of works.

7 CONCLUSION AND FUTUREWORK
In this paper, using 42 million ratings from Tripadvisor and Amazon,
we �rst reveal and explain the assimilation and contrast e�ects in
users’ given ratings caused by historical ratings. Then we propose
HIALF, the �rst model for real rating systems to characterize the
micro-level in�uence from historical ratings in each single rating.
We demonstrate the e�ectiveness of HIALF in predicting subse-
quent ratings, capturing dynamics in real ratings, and providing
better recommendations, and further revealing products’ intrinsic
qualities for subsequent wiser decisions on purchasing products.

There are several directions for future work. First, besides rat-
ings, review texts also contain a lot of information. The recent work
[16] has combined reviews and ratings for better recommendations.
Thus one can further improve the HIALF model by incorporating
useful information embedded in the review texts. Also, HIALF is
orthogonal to other factors in ratings, such as evolution of user’s
expertise [17], temporal dynamics [12], etc. Considering these fac-
tors may contribute to a better model, we plan to do this in our
future work.
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