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ABSTRACT
This paper studies the strongly-convex-strongly-concave minimax
optimization with unbalanced dimensionality. Such problems con-
tain several popular applications in data science such as few shot
learning and fairness-aware machine learning task. The design of
conventional iterative algorithm for minimax optimization typi-
cally focuses on reducing the total number of oracle calls, which
ignores the unbalanced computational cost for accessing the infor-
mation from two different variables in minimax.We propose a novel
second-order optimization algorithm, called Partial-Quasi-Newton
(PQN) method, which takes the advantage of unbalanced structure
in the problem to establish the Hessian estimate efficiently. We
theoretically prove our PQN method converges to the saddle point
faster than existing minimax optimization algorithms. The numeri-
cal experiments on real-world applications show the proposed PQN
performs significantly better than the state-of-the-art methods.
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1 INTRODUCTION
We study the minimax optimization problem of the form

min
x2R=G

max
y2R=~

5 (x, y), (1)

where 5 (x, y) is smooth, strongly-convex in x and strongly-concave
in y. This formulation has received increasing attention recently
because of it contains a lot of applications in machine learning and
data mining [8, 14, 16, 25, 26, 39, 54, 55].

There are a great number of first-order algorithms for solving
the general strongly-convex-strongly-concave (SCSC) minimax
problem (1), including extragradient method [19, 29, 33, 48], op-
timistic gradient descent ascent [9, 37], proximal point method
[23, 41, 49, 50] and dual extrapolation [31].These algorithms achieve
linear convergence rate and their extension to stochastic setting
also be well studied [1, 7, 27, 28, 34, 47]. Second-order optimization
algorithms usually have superior convergence behavior compared
with the first-order methods. Huang et al. [17] proposed cubic reg-
ularized Newton (CRN) method [30, 31] for solving problem (1).
CRN has quadratic local convergence but it requires constructing
the Hessian matrix exactly at each iteration. Recently, Liu and Luo
[24] proposed quasi-Newton methods, which enjoy explicit local
superlinear convergence rate and their iterations avoid computing
the exact Hessian.

The minimax formulation for plenty of machine learning ap-
plications has the characterization of unbalanced dimensionality,
that is, we usually have =G � =~ (or =G ⌧ =~ )1. We list some
popular models that naturally lead to minimax optimization with
unbalanced dimensionality.

• AUC Maximization: Area under ROC (AUC) is a metric
which is important in few-shot learning and widely used for
measuring the performance of binary classification for im-
balanced data [16]. The idea of AUC maximization [8, 54] is
to find a classifier on the imbalanced training set {a8 ,18 }<8=1
where a8 2 R3 and 18 2 {+1,�1}, whose minimax formulation
can be written as

min
x2R3+2

max
~2R

5 (x,~)
def=

1
<

<’
8=1

58 (x,~; a8 ,18 ) +
_

2
kxk

2, (2)

where each 58 (x,~; a8 ,18 ) is convex in x, strongly-concave in
~ and _ > 0 is the regularization parameter.

1Without loss of generality, we only consider =G � =~ in remainders of this paper.
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• Fairness-Aware Machine Learning:The issue of addressing
fairness in AI systems is a hot topic for data science in re-
cent years [39]. Adversarial learning [26] is a popular way for
fairness-aware machine learning [55]. Consider that we have
the training set {a8 ,18 , 28 }<8=1 where a8 2 R

3 contains all input
variables of 8-th example, 18 2 R is the corresponding output
and 28 2 R is the input variable which we want to protect
and make it unbiased. Then we can formulate the following
minimax optimization problem

min
x2R3

max
~2R

1
<

<’
8=1

(;1 (18a
>

8 x) � V;2 (28~a
>

8 x)) + _ kxk2 � W~2, (3)

where both ;1 (·) and ;2 (·) are the convex loss functions; V > 0
is the trade-off parameter.

Typically, computing the (second-order) partial derivative with
respect to x is much more expensive than computing the one with
respect to y in above applications2. However, the designs of all
existing first-order and second-order algorithms for SCSC minimax
optimization do not consider such unbalanced characterization.

In this paper, we proposed a novel type of second-order optimiza-
tion algorithms for SCSC minimax optimization with unbalanced
dimensionality, called partial-quasi-Newton (PQN) methods. The
algorithms construct the Hessian estimator by approximating the
second-order partial derivative with respect to x via quasi-Newton-
type update and computing the other second-order information
exactly. The exact second-order information helps PQN converges
to saddle point faster than Liu and Luo [24]’s quasi-Newton meth-
ods for SCSC minimax problems. We summarize the comparison
of the convergence results for PQN and existing quasi-Newton
methods in Table 1. Furthermore, the unbalanced dimensionality
in minimax problem allows PQN methods to compute the required
exact second-order information efficiently. We also provide the nu-
merical experiments on the applications of AUC maximization and
fairness-aware machine learning, which show the proposed PQN
performs significantly better than the state-of-the-art algorithms.

Paper Organization. In Section 2, we introduce the notation and
preliminaries that will be used in this paper. In Section 3, we survey
the recent advances in quasi-Newton methods. In Section 4, we
propose partial-quasi-Newton (PQN) methods for solving SCSC
minimax optimization problems with unbalanced dimensionality. In
Section 5, we provide numerical experiments on popular machine
learning models to validate the effectiveness of our algorithms.
Some detailed proofs are deferred to appendix.

2 NOTATION AND PRELIMINARIES
We use k·k to present spectral norm and Euclidean norm of matrix
and vector respectively. We denote the standard basis for R3 by
{e1, . . . , e3 } and let I=x

and I=y
be the corresponding identity ma-

trix. The trace of a square matrix is denoted by tr(·). Following the
notation of problem (1), we let z = [x; y] 2 R= where = def= =G + =~
and use z⇤ = [x

⇤; y⇤] 2 R= to present the solution of the minimax
problem.We denote the gradient and Hessianmatrix of 5 at (x, y) as
g(z) 2 R= and H(z) 2 R=⇥= . Additionally, we use Hxx (z), Hxy (z),

2We present the detailed expression of 58 for AUC maximization and ;1 , ;2 for fairness-
aware machine learning models in Section 5.

Hyx (z) and Hyy (z) to denote r2
xx 5 (x, y) 2 R

=G⇥=G , r2
xy 5 (x, y) 2

R=G⇥=~ , r2
yx 5 (x, y) 2 R=~⇥=G and r

2
yy 5 (x, y) 2 R=~⇥=~ respec-

tively. We also define P(z) def= Hxx (z) � Hxy (z)H
�1
yy (z)Hyx (z).

We suppose the minimax optimization problem (1) satisfies the
following assumptions.

Assumption 2.1. The objective function 5 (x, y) is twice differen-
tiable and it has !-Lipschitz continuous gradient and !2-Lipschitz
continuous Hessian, i.e., there exist constants ! > 0 and !2 > 0
such that ��g(z) � g(z

0
)
��  !

��z � z
0
�� (4)

and ��H(z) � H(z
0
)
��  !2

��z � z
0
�� . (5)

for any z = [x; y], z0 = [x
0; y0] 2 R= .

Assumption 2.2. The objective function 5 (x, y) is twice differ-
entiable, `-strongly-convex in x and `-strongly-concave in y, i.e.,
there exists constant ` > 0 such that

r
2
xx 5 (x, y) ⌫ `I and r

2
yy 5 (x, y) � �`I

for any (x, y) 2 R=G ⇥ R=~ .

The inequality (4) means the spectral norm of Hessian matrix
H(z) can be upper bounded, that is, we have kH(z)k  ! for all
z 2 R= . Additionally, the condition number of the objective function
is defined as ^ def= !/` and ^2

def= !2/`.

3 RELATED WORK
Before presenting our algorithms, we briefly survey the related
work of quasi-Newton methods.

3.1 Quasi-Newton Methods for Minimization
Problems

Quasi-Newton methods [2–5, 10, 18, 20, 22, 43, 44, 46, 53] are pop-
ular algorithms for convex optimization. They have superior local
convergence than first-order methods and avoid accessing exact
second-order information. The famous quasi-Newton methods in-
cluding Davidon-Fletcher-Powell (DFP) method [10, 13], Broyden-
Fletcher-Goldfarb-Shanno (BFGS) method [3, 4, 46] and symmetric
rank 1 (SR1) method [2, 10], which approximate the Hessian matrix
based on the Broyden family updating formula [2] that is defined
as follows.

Definition 3.1 ([32, Section 6.3]). Suppose two positive definite
matrices Ĥ, Ĝ 2 R=̂⇥=̂ satisfy Ĥ � Ĝ. For any u 2 R=̂ , if Ĝu = Ĥu,
we define Broydg (Ĝ, Ĥ, u)

def= Ĥ. Otherwise, we define

Broydg (Ĝ, Ĥ, u)
def= (1 � g)


Ĝ �

(Ĝ � Ĥ)uu
>
(Ĝ � Ĥ)

u> (Ĝ � Ĥ)u

�

+ g


Ĝ �

Ĥuu
>
Ĝ + Ĝuu

>
Ĥ

u>Ĥu

+

✓
u
>
Ĝu

u>Ĥu

+ 1
◆
Ĥuu

>
Ĥ

u>Ĥu

�
.

(6)

In this paper, we focus on the popular SR1 update by choosing
parameter g = 0 for formula (6), leading to

SR1(Ĝ, Ĥ, u)
def= Ĝ �

(Ĝ � Ĥ)uu
>
(Ĝ � Ĥ)

u> (Ĝ � Ĥ)u
. (7)
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Table 1: We compare the convergence results of proposed PQN methods with existing quasi-Newton methods [24] for solving
SCSC minimax problem (1). The measure of Liu and Luo [24]’s algorithms is the gradient norm kr5 (z: )k after (: +:0) iterations.
The measure of proposed PQN methods is based on the weighted gradient norm hrx 5 (z: ), P

�1
: rx 5 (z: )i

1/2
+ (2/

p
`)kry 5 (z: )k

after (: + :0) iterations, where P: � 0. The upper bounds of random algorithms hold with probability at least 1 � X for X > 0.

Algorithm Upper Bound :0

Random Broyden [24, Corollary 3.17.2]
✓
1 �

1
=^2 + 1

◆: (:�1)/2 ✓
1
2

◆: ✓
1 �

1
4^2

◆:0
O

⇣
=^2 ln

⇣=^
X

⌘⌘

Random SR1 [24, Corollary 3.17.2]
✓
1 �

1
= + 1

◆: (:�1)/2 ✓
1
2

◆: ✓
1 �

1
4^2

◆:0
O

⇣
(= + ^2) ln

⇣=^
X

⌘⌘

Random Broyden PQN [This paper, Corollary 4.7 (a)]
✓
1 �

1
=^ + 1

◆: (:�1)/2 ✓
1
2

◆: ✓
1 �

1
4^

◆:0
O

⇣
=^ ln

⇣=^
X

⌘⌘

Greedy Broyden PQN [This paper, Corollary 4.7 (b)]
✓
1 �

1
=^

◆: (:�1)/2 ✓
1
2

◆: ✓
1 �

1
4^

◆:0
O (=^ ln (=^))

Random SR1 PQN [This paper, Corollary 4.7 (c)]
✓
1 �

1
= + 1

◆: (:�1)/2 ✓
1
2

◆: ✓
1 �

1
4^

◆:0
O

⇣
(= + ^) ln

⇣=^
X

⌘⌘

Greedy SR1 PQN [This paper, Corollary 4.7 (d)]
✓
1 �

1
=

◆: (:�1)/2 ✓
1
2

◆: ✓
1 �

1
4^

◆:0
O ((= + ^) ln (=^))

For minimization strongly-convex function, classical quasi-Newton
methods [5, 11, 38] construct the Hessian estimator based on the
framework of Broyden family update and select direction u by
secant condition. As a result, these algorithms achieve local super-
linear convergence.

Recently, Rodomanov and Nesterov [42] proposed a greedy al-
gorithm for selecting the direction u for Broyden family update (6):

û
Ĥ
(Ĝ)

def= argmax
u2{e1,· · · ,e=̂ }

u
>
Ĝu

u>Ĥu

. (8)

Later, Lin et al. [22] provided a specific method to chose direction
for SR1 update as follows

ū
Ĥ
(Ĝ)

def= argmax
u2{e1,· · · ,e=̂ }

u
>
(Ĝ � Ĥ)

2
u

u> (Ĝ � Ĥ)u
. (9)

Lin et al. [22], Rodomanov and Nesterov [42] also studies the ran-
dom algorithm for selection u as follows

u ⇠ N(0, I) or u ⇠ Unif
⇣
S
=̂�1

⌘
, (10)

which can be implemented more efficiently.
Minimizing strongly-convex objective function by either greedy

or random quasi-Newton methods enjoys two-period local conver-
gence behaviors: the first one has a linear convergence rate and
the second one enjoys explicit non-asymptotic superlinear conver-
gence.

3.2 Quasi-Newton Methods for SCSC Minimax
Optimization Problems

Different with convex minimization, the Hessian matrix for the
objective function in SCSC minimax problem is indefinite. Hence,

we cannot apply the Broyden family update to approximate the
Hessian directly. To address this issue, Liu and Luo [24] character-
ized the second-order information by approximating the square of
the Hessian. Specifically, they considered the following update rule
at :-th iteration

z:+1 = z: � Ĝ
�1
: H(z: )g(z: ),

where Ĝ: is an estimator for the square of H(z: ). We can verify
that the matrix (H(z: ))

2 must be positive definite [24, Lemma 3.1].
Then applying Broyden family updating on (H(z: ))

2 and selecting
direction u by greedy strategy (8) or random strategy (10) obtains
the quasi-Newton methods for SCSC minimax optimization with
two-period local convergence rates: the first one has linear conver-
gence and the second one has explicit superlinear convergence.

Note that the convergence rates of Liu and Luo [24]’s algorithms
for SCSC minimax problems depend on O

�
1 � 1/^2

�
(see Table 1),

while the convergence rates of quasi-Newton methods for convex
optimization [21, 42] depends on O(1� 1/^). The reason is the con-
dition number for (H(z: ))

2 is the square of the condition number
for H(z: ). On the other hand, it is difficult to implement greedy
algorithm (8) with Ĥ: = (H(z: ))

2 in practice since computing the
diagonal entries for the square of Hessian is so expensive. In fact,
even for quadratic SCSC minimax problem, computing all diagonal
entries for the square of Hessian requires O(=3) time complexity
in general.

4 PARTIAL-QUASI-NEWTON METHODS
In this section, we propose Partial-Quasi-Newton (PQN) methods
for solving minimax problem (1) which satisfies Assumption 2.1-2.2
and =G � =~ , then we provide their convergence analysis.
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Algorithm 1 Inverse(G�1
xx,Hxy,Hyy)

1: Input: G�1
xx , Hxy and Hyy

2: C2 = Hyy � H
>
xyG

�1
xxHxy

3: C
�1
1 = G

�1
xx +

�
G
�1
xxHxy

�
C
�1
2

�
G
�1
xxHxy

�>

4: G
�1 =

266664
C
�1
1 �C

�1
1 HxyH

�1
yy

�

⇣
C
�1
1 HxyH

�1
yy

⌘>
C
�1
2

377775
5: Output: G�1

4.1 Algorithms
The key idea of designing PQN methods is taking the advantage
of the dimensionality-unbalanced structure in the object function.
Since the problem holds that =G � =~ , we can access the exact
second-order information related to Hxy (·) and Hyy (·) efficiently.
Thus, it is only necessary to approximate the matrix Hxx (·) whose
dimensionality is relatively large.

Assumption 2.1 means the matrix Hxx (·) is always positive def-
inite, which implies we can apply Broyden family updating to
approximate it. Based on the observation above, we propose our
PQN methods as shown in Algorithm 2. The Hessian estimator
G: 2 R=⇥= in the algorithm can be partitioned into

G: =

"
Gxx,: Hxy (z: )

Hxy (z: )
>

Hyy (z: )

#
2 R=⇥=,

whereGxx,: 2 R=G⇥=G ,Hxy (z: ) 2 R
=G⇥=~ andHyy (z: ) 2 R

=~⇥=~ .
Compared with approximating (H(z: ))

2 [24], directly constructing
the estimator for H(z: ) is easier to obtain higher accuracy since its
condition number is smaller.

The unbalanced dimensionality in the minimax problem means
the cost for computing G�1

: mainly depends on finding the inverse
of Gxx,: , which can be finished in O(=2G ) flops like existing quasi-
Newton methods [21, 24, 42]. Following Woodbury identity [40],
we can obtain G

�1
: with O(=2) flops by the given inverse of Gxx,:

which is shown in Algorithm 1.

Remark 4.1. The choice of parameter g: 2 [0, 1] in Algorithm 2
leads to different types of Broyden family update (6) for approx-
imating Hxx (z: ) [32]. Our theoretical analysis will focus on the
setting of g: = 0, which corresponds to SR1 update.

Remark 4.2. Note that we can calculate
P(z: ) (x:+1 � x: )

=Hxx (z: )(x:+1 � x: ) � Hxy (z: )H
�1
yy (z: ) (Hxy (z: )

>
(x:+1 � x: ))

in O(=2) flops, which means A: can be calculated in O(=2) flops.

4.2 Convergence Analysis
We introduce some notations to simplify the presentation for the
analysis of the proposed PQN methods (Algorithm 2). We denote
g:

def= g(z: ), H:
def= H(z: ). We use gx,: , gy,: , Hxx,: , Hxy,: and

Hyy,: to presentrx 5 (z: ),ry 5 (z: ),Hxx (z: ),Hxy (z: ) andHyy (z: )

respectively. We use P: and C: to denote Hxx,: �Hxy,:H
�1
yy,:H

>

xy,:

Algorithm 2 Partial-Quasi-Newton (PQN)
1: Input: Gxx,0 ⌫ Hxx,0, z0, g: 2 [0, 1] and" � 0

2: G�1
0 = Inverse

�
G
�1
xx,0,Hxy,0,Hyy,0

�
3: for : = 0, 1, . . .

4: z:+1 = z: � G
�1
: g(z: )

5: A: = hx:+1 � x: , P(z: ) (x:+1 � x: )i
1/2

+ ky:+1 � y: k

6: G̃xx,: = (1 +"A: )Gxx,:

7: Choose u: from
• Option I (greedy method):

u: =

8>><
>>:
ûHxx (z:+1)

(G̃xx,: ) if g: 2 (0, 1]

ūHxx (z:+1) (G̃xx,: ) if g: = 0

• Option II (random method):
u: ⇠ N(0, I) or u: ⇠ Unif

�
S
=G�1

�
8: Gxx,:+1 = Broydg:

�
G̃xx,: ,Hxx (z:+1), u:

�
9: G

�1
:+1 = Inverse

�
G
�1
xx,:+1,Hxy (z:+1),Hyy (z:+1)

�
10: end for

and Gxx,: � Hxy,:H
�1
yy,:H

>

xy,: respectively. We let fmax (·), _max (·)

and _min (·) be the largest singular value, the largest eigenvalue and
the smallest eigenvalue of the matrix respectively.

Different from the analysis in the work of existing quasi-Newton
methods [22, 24, 42], we design the weighted gradient norm as the
measure for our convergence analysis below

W:
def= hgx,: , P

�1
: gx,: i

1/2
+

2
p
`
· kgy,: k,

where we have P: � Hxx,: � 0 due to the fact that H�1
yy,: � 0.

Now, we establish the relation between W:+1 and W: by the itera-
tion rule z:+1 = z: � G

�1
: g: .

Lemma 4.3. Using Algorithm 2 and assuming that

Hxx,: � Gxx,: � [:Hxx,:

with [: � 1, then for U def= 54^2^2/`, we have

W:+1 

✓
1 �

1
[:

◆
W: + UW2: and A: 

3W:
p
`

(11)

Proof. See Appendix A. ⇤

Then we prove that if the norm of Gxx,: is bounded, the matrix
Gxx,:+1 obtained from the Broyden update

Gxx,:+1 = Broydg: (G̃xx,: ,Hxx,:+1, u: ), (12)

where G̃xx,: = (1 +"A: )Gxx,: can be bounded by Hxx,:+1.

Lemma 4.4. Using Algorithm 2 and assuming thatHxx,: � Gxx,: �

[:Hxx,: for some [: � 1, G̃xx,: = (1+"A: )Gxx,: and" = !2/`3/2.
Then we have G̃xx,: ⌫ Hxx,: and

Hxx,:+1 � Gxx,:+1 � (1 +"A: )
2[:Hxx,:+1 . (13)
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Proof. We first prove that kHxx,: � Hxx,:+1k can be bounded
by kz:+1 � z: k. Note that the difference H:+1 � H: can be written
as the form of block matrix as follows

H:+1 � H: =


Hxx,:+1 � Hxx,: Hxy,:+1 � Hxy,:
(Hxy,:+1 � Hxy,: )

>
Hyy,:+1 � Hyy,:

�
.

According to Assumption 2.1, we have
kH:+1 � H: k  !2kz:+1 � z: k .

Thus we can obtain��Hxx,:+1 � Hxx,:
��  !2kz:+1 � z: k (14)


!2
p
`
kP

1/2
:

(x:+1 � x: )k +
!2
2
ky:+1 � y: k 

!2
p
`
A: . (15)

Connecting (14) to the strongly-convex assumption on x leads to

Hxx,:+1 � Hxx,: �
!2
p
`
A: I �

!2
`3/2

A:Hxx,: = "A:Hxx,:

and

Hxx,: � Hxx,:+1 �
!2
p
`
A: I �

!2
`3/2

A:Hxx,:+1 = "A:Hxx,:+1

which are equivalent to
Hxx,:

1 +"A:
� Hxx,:+1 � (1 +"A: )Hxx,: . (16)

We assume that
Hxx,: � Gxx,: � [:Hxx,: . (17)

Hence, we have

Hxx,:+1
(16)
� (1 +"A: )Hxx,:

(17)
� (1 +"A: )Gxx,: = G̃:

and

G̃: = (1+"A: )Gxx,:
(17)
� (1+"A: )[:Hxx,:

(16)
� (1+"A: )

2[:H:+1 .

According to Lemma 2.2 in Rodomanov and Nesterov [42], we have
Hxx,:+1 � Broydg (G̃: ,Hxx,:+1, u) = Gxx,:+1 � (1+"A: )

2[:H:+1 .

⇤

The linear convergence of PQN methods can be established by
Lemma 4.3 and 4.4. The convergence rate matches the result of
quasi-Newton method for convex optimization [22].

Theorem 4.5. Using Algorithm 2 and assuming the initial point
be sufficiently close to the saddle point such that W0  `/(216^3^2),
then for all : � 0, we have W:  (1 � 1/4^): W0 .

Proof. Let d8 = 3!2
`2 W8 . The initial assumption means we have

"^
p
`
W0 

ln 2
24

and UW0 
1
4^

. (18)

We use induction to prove the following statements

Hxx,: � Gxx,: � exp

 
2
:�1’
8=0

d8

!
^Hxx,: � 2^Hxx,: , (19)

W: 

✓
1 �

1
4^

◆:
W0, (20)

[:
def= exp

 
:�1’
8=0

2d8

!
^  2^ (21)

hold for all : � 0.
For : = 0, the initialization Gxx,0 = !I leads to [0 = ^ and

Hxx,0 � G0 � ^Hxx,0, which satisfy (19), (20) and (21). Suppose the
statements (19), (20) and (21) hold for all: 0  : , thenwe prove these
results for : 0 = : +1. The induction assumption means [:  2^ and
Hxx,: � Gxx,:  [:Hxx,: . According to inequality (11), we have

W:+1 

✓
1 �

1
2^

◆
W: + UW2:

(20)


✓
1 �

1
2^

+ UW0

◆
W:



✓
1 �

1
4^

◆
W:

(20)


✓
1 �

1
4^

◆:
W0 .

Recall that we have defined d8 = 3"
p
` W8 . Based on the elementary

inequality eG � G + 1 and Lemma 4.4 of Rodomanov and Nesterov
[42], we have

Hxx,:+1 �Gxx,:+1 � (1 +"A: )
2[:Hxx,:+1 �

✓
1 +

3"W:
p
`

◆2
[:Hxx,:+1

= (1 + d: )
2[:Hxx,:+1 � e2d:[:Hxx,:+1

(19)
� exp

 
2

:’
8=0

d8

!
^Hxx,:+1,

where the term of Õ:
8=0 d8 can be bounded by

:’
8=0

d8
(20)


3"
p
`
W0

:’
8=0

✓
1 �

1
4^

◆8�1


12"^
p
`

W0
(18)


ln 2
2

. (22)

Hence, we have Gxx,:+1 � exp
⇣
2
Õ:
8=0 d8

⌘
^Hxx,:+1 � 2^Hxx,:+1

and [:+1 = exp
⇣
2
Õ:
8=0 d8

⌘
^  2^. Then we complete the proof by

induction. ⇤

Note that the result ofTheorem 4.5 does not depend on the choice
of the direction u: . However, selecting u: by the update rule in
Algorithm 2 leads to the superlinear local convergence rates. We
present the formal statement in the following theorem.

Theorem 4.6. Solving minimax optimization problem (1) under
Assumption 2.1 and 2.2 by proposed PQN methods (Algorithm 2) with
" = !2/`3/2 and Gxx,0 = !I=x

, and the initial point is sufficiently
close to the saddle point such that W0 

ln 2
24 ·

`
^2^ (1+V0=^)

where

V0
def= max{2, 18^= }, then we have the following results:

(a) If we choose g 2 (0, 1] then Algorithm 2 (Broyden PQN) holds
that

E


W:+1
W:

�


✓
1 �

1
=^

◆:
2=^, for all : � 0. (23)

(b) If we choose g = 0 then Algorithm 2 (SR1 PQN) holds that

E


W:+1
W:

�


✓
1 �

1
=

◆:
2=^2, for all : � 0. (24)

Proof. See Appendix B. ⇤

The choices of g: and u: lead to different versions of PQN meth-
ods. Combining the local linear convergence result in Theorem 4.5
and the local superlinear convergence results inTheorem 4.6, we ob-
tain the two-period convergence results for these PQN algorithms.
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Corollary 4.7. Solving minimax problem under Assumption 2.1 and
2.2 by proposed PQN methods (Algorithm 2) with" = !2/`3/2 and
Gxx,0 = !I=x

and the initial point is sufficiently close to the saddle
point such that W0 

`
216^3^2

, we have the following results:

(a) If we choose g 2 (0, 1] and use the random method (10) to
determine u: , then Algorithm 2 (random Broyden PQN) holds
that

W:0+: 

✓
1 �

1
=^ + 1

◆: (:�1)/2 ✓
1
2

◆: ✓
1 �

1
4^

◆:0
W0

for all : � 0 and :0 = O

⇣
=^ ln

⇣
=^
X

⌘⌘
with probability 1 � X ,

where X 2 (0, 1).
(b) If we choose g 2 (0, 1] and use the greedy method (8) to deter-

mine u: , then Algorithm 2 (greedy Broyden PQN) holds that

W:0+: 

✓
1 �

1
=^

◆: (:�1)/2 ✓
1
2

◆: ✓
1 �

1
4^

◆:0
W0

for all : � 0 and :0 = O (=^ ln(=^)).
(c) If we choose g = 0 and use the random method (10) to determine

u: , then Algorithm 2 (random SR1 PQN) holds that

W:0+: 

✓
1 �

1
= + 1

◆: (:�1)/2 ✓
1
2

◆: ✓
1 �

1
4^

◆:0
W0

for all : � 0 and :0 = O

⇣
(^ + =) ln

⇣
=^
X

⌘⌘
with probability

1 � X , where X 2 (0, 1).
(d) If we choose g = 0 and use the greedy method (9) to determine

u: , then Algorithm 2 (greedy SR1 PQN) holds that

W:0+: 

✓
1 �

1
=

◆: (:�1)/2 ✓
1
2

◆: ✓
1 �

1
4^

◆:0
W0

for all : � 0 and :0 = O ((^ + =) ln(=^)).

Proof. Theorem 4.5 and 4.6 have shown the local linear and
superlinear convergence rate for two periods of the algorithms.
We can prove this corollary by combining these two theorems. The
statement of cases (a), (b) and (d) can be easily obtained by following
the proof of existing quasi-Newton methods [22, 42] as follow:

• For case (a), Theorem 4.5 and 4.6 mean we can use Corol-
lary 11 of Lin et al. [22] by replacing the term (1 � 1/(2^)) by
(1 � 1/(4^)), which directly obtains the two-period conver-
gence result for our random Broyden PQN method.

• For case (c) and (d),Theorem 4.5 and 4.6meanwe can use Corol-
lary 21 of Lin et al. [22] by replacing the term (1 � 1/(2^)) by
(1 � 1/(4^)), which directly obtains the two-period conver-
gence result for our random and greedy SR1 PQN methods.

We provide the proof of case (b) as an example. We denote :1 � 0
as the number of the first iteration which satisfies✓

1 �
1
4^

◆:1


^2

V0=^ + 1
.

Thus we have

W:1 

✓
1 �

1
4^

◆:1
W0 

ln 2
24

·
`

^2^ (1 + V0=^)
,
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Figure 1: We demonstrate iteration numbers vs. kg(z)k2 and
GPU time (second) vs. kg(z)k2 for AUC maximization on
datasets “a9a” (= = 126,< = 32561), “w8a” (= = 303,< = 45546)
and “sido” (= = 4935,< = 12678).

which means our algorithm satisfies the initial condition for the
superlinear convergence of Theorem 4.6 after :1 iterations where
:1 = O

�
max

�
^,^ ln

�=
^

� �
.

We denote :2 � 0 as the number of the first iteration satisfies

2=^
✓
1 �

1
=^

◆:2


1
2
,

where we have :2 = O (=^ ln (=^)).
We obtain the result of (b) by setting:0 = :1+:2 = O (^= ln (=^)).

⇤

5 NUMERICAL EXPERIMENTS
In this section, we conduct our algorithms on popular machine
learning applications and regularized nonlinear minimax optimiza-
tion problem. We refer to random and greedy versions of proposed
Algorithm 2 by choosing g: = 0 as RaSR1-PQN and GrSR1-PQN.
We also refer to random and greedy versions of Algorithm 2 by
choosing g: = u

>

: Hxx,:+1u:/(u
>

: Gxx,:u: ) as RaBFGS-PQN and
GrBFGS-PQN respectively. We use the RaSR1 [24, Algorithm 7] and
RaBFGSv1 methods [24, Algroithm 5] as baselines and refer them
to RaSR1 and RaBFGS in our experiments respectively. We do not
include the first-order method extragradient since the experiments
of Liu and Luo [24] have already shown its performance is worse
than their quasi-Newton methods.
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Figure 2: We demonstrate iteration numbers vs. kg(z)k2 and
GPU time (second) vs. kg(z)k2 for AUC maximization on
datasets “w8a” (= = 303, < = 45546) with different regular-
ized parameter _.

Our experiments are conducted on a workstation with NVIDIA
Tesla V100 GPU with 16GB memory. We use PyTorch 1.8.0 to run
the code and the operating system is Ubuntu 20.04.2.

5.1 AUC Maximization
We first validate our PQN methods on AUC maximization. Each
component 58 in (2) is a quadratic function of the form

58 (x,~; a8 ,18 ) =(1 � ?)
�
(w

>
a8 � D)2 � 2(1 + ~)w>

a8
�
I18=1

� ? (1 � ?)~2 + ?
�
(w

>
a8 � E)2 + 2(1 + ~)w>

a8
�
I18=�1,

where x = [w;D; E] 2 R3+2, w 2 R3 , D 2 R, E 2 R, ? = <+
/<

and<+ is the number of positive instances. We have =G = 3 + 2
and =~ = 1. Since the object function is quadratic which satisfies
Assumption 2.1 with !2 = 0, we set" = !2/` = 0 for PQN methods
by following the setting of Liu and Luo [24]. We tune the input !
from {1, 100, 1000} for all algorithms (including the baselines).

We first let _ = 1/< and evaluate all algorithms on three im-
balanced binary classification datasets “a9a” (? = 0.241), “w8a”
(? = 0.029) and “sido0” (? = 0.0036) where “sido0” comes from
Causality Workbench [15] and the others can be downloaded from
LIBSVM repository [6]. The results of iteration numbers against
kg(z)k2 and GPU time against kg(z)k2 are presented in Figure 1,
which show that our PQN algorithms performance significantly
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Figure 3: We demonstrate iteration numbers vs. kg(z)k2 and
GPU time (second) vs. kg(z)k2 for Fairness-aware machine
learning on datasets “adult” (= = 123,< = 32561) with differ-
ent rounds of extragradient iteration as warm-up.

better than baseline algorithms. We observe that the baseline al-
gorithm RaSR1 diverges for the dataset “a9a” and “sido0”. This is
because the SR1 method is not numerical stable [2, 10, 53] when
the condition number is large. Recall that RaSR1 [24] address the
square of Hessian, which leads to the approximate second-order
information comes from more ill-conditioned matrices, while our
PQN algorithm directly deals with the original Hessian.

We also compare our RaSR1-PQN and GrSR1-PQN with RaSR1
under different settings of regularization parameter _, which cor-
respond to the SCSC minimax problem with different condition
numbers. The results presented in Figure 2 show our algorithms
are more stable than baseline RaSR1.

5.2 Fairness-Aware Machine Learning
Then we validate PQN-methods on the fairness-aware machine
learning model defined in (3). We have =G = 3 and =~ = 1. Our
experiments focus on fairness-aware binary classification such that
both ;1 (·) and ;2 (·) are logit functions: logit(G) = ln(1 + exp(�G)).
We use the fairness-aware datasets “adults” and “law school” which
can be found in Quy et al.’s survey [39]. We convert all features of
the original datasets into binary by following the prepossessing of
previous work [6, 24, 36]. We set _ = W = 0.0001 and V = 0.5.

We tune" and ! from {1, 10, 100} for all algorithms. Since the
object function is nonlinear, we use the first-order algorithm ex-
tragradient [19, 48] as warm-up to achieve a good initial point,
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Figure 4: We demonstrate iteration numbers vs. kg(z)k2 and
GPU time (second) vs. kg(z)k2 for fairness-aware machine
learning on datasets “law school” (= = 380,< = 20427) with
different rounds of extragradient iteration as warm-up.

which is a popular strategy in the numerical experiments for quasi-
Newton methods [21, 24]. We run all algorithms with ) rounds
of extragradient iteration as warm-up, where ) is selected from
{100, 1000, 10000} for “adult” dataset and {10000, 20000, 30000} for
“law school” dataset. The results presented in Figure 3 and 4 show
that our PQN methods outperform the baselines under all of the
warm-up settings, which implies our algorithms are more robust to
the choice of initial point.

5.3 Regularized Nonlinear Minimax Problem
This section studies how the difference between dimensionalities of
two variables in the problem affect the performance of algorithms.
We consider the following minimax problem [17]

min
x2R=G

max
~2R=~

5 (x, y) =
1
<1

<1’
8=1

ln
�
1 + exp

�
� a

>
8 x

� �
+
_

2
kxk

2

+ x
>
Ay �

1
<2

<2’
9=1

ln
�
1 + exp

�
� b

>
9 y

� �
�
W

2
kyk

2,

where a8 2 R=G , b9 2 R=~ and A 2 R=G⇥=~ are generated ran-
domly by the Pytorch function torch.randn()with corresponding
dimensions and _,W > 0 are the regularized parameters.

We set _ = W = 0.01 and fix =G = 1000 for our experiments.
The inputs" and ! are tuned from {1, 10, 100, 1000, 10000} for all
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Figure 5: We demonstrate iteration numbers vs. kg(z)k2 and
GPU time (second) vs. kg(z)k2 for regularized nonlinear min-
imax problem with different settings for =~ .

algorithms. We test all algorithms under different settings of the
dimensionality of y, that is, we select =~ from {10, 50, 100}. We
present the experimental results in Figure 5, which show our PQN
methods always perform better than baselines in all cases.

6 CONCLUSION
In this work, we have proposed the partial-quasi-Newton (PQN)
methods for solving the SCSC minimax optimization problems with
unbalanced dimensionality. The algorithms only approximate the
positive-definite block in the Hessian matrix and compute the other
second-order information exactly. The unbalanced structure in the
problem allows we can efficiently update the Hessian estimator
with the iteration. We prove our PQN methods enjoy better conver-
gence rates than existing quasi-Newton methods for SCSC minimax
optimization. The empirical studies on popular machine learning
applications and synthetic minimax problems show PQN method
perform significantly better than the state-of-the-art algorithms.

The framework of PQN methods is not only limited to quasi-
Newton-type algorithms, we can also incorporate the idea of PQN
into other classes of inexact Newton methods [12, 35, 45, 45, 51, 52].
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A THE PROOF OF LEMMA 4.3

Proof. We use J:
def=

"
P
1/2
:

0

0 I=y

#
in the following analysis.

We first give the bounds for somematrices whichwill be useful in
the analysis. We have Gxx,: ⌫ `I and Hyy,: � �`I, then G

2
: ⌫ `2I,

which implies _min (G
2
: ) � `2 and kG

�1
: k = _max ((G

�1
: )

2
)  1/`2.

Hence, we have kG�1
: k =

q
_max ((G

�1
:
)2)  1/` .

Recall that we’ve defined C: = Gxx,: � Hxy,:H
�1
yy,:H

>

xy,: and
according to the assumption that Hxx,: � Gxx,: � [:Hxx,: , we
have P: � C: � [:P: and combining with Lemma B.1 of Liu and
Luo [24], we have���I � P

1/2
:

C
�1
: P

1/2
:

���  1 �
1
[:

and
���P1/2:

C
�1
: P

1/2
:

���  1. (25)

If we further define the matrices Q:
def= Hyy,: � Hyx,:H

�1
xx,:Hxy,:

and B:
def= Hyy,: � Hyx,:G

�1
xx,:Hxy,: , we can easily obtain that

kQ
�1
: k  1/` and kB

�1
: k  1/`. According to the Woodbury iden-

tity, we have
Q
�1
: = H

�1
yy,: + H

�1
yy,:Hyx,:P

�1
: Hxy,:H

�1
yy,: ,

thus we have
kP

�1/2
:

Hxy,:H
�1
yy,: k =

q
_max (H

�1
yy,:

H
>

xy,:
P
�1
:
Hxy,:H

�1
yy,:

)

=
q
kQ�1

:
� H

�1
yy,:

k 

q
kQ�1

:
k + kH�1

yy,:
k 

2
p
`
.

(26)

We can obtain that `I � P: � (2^/`)I and P(z) is 3^2!2-lipschitz
countinous which means

P:

1 + 3^2^2A:/
p
`
� P:+1 �

✓
1 +

3^2^2A:
p
`

◆
P: . (27)

We rewrite r5 (z:+1) according to the iteration (12) as
r5 (z:+1) = r5 (z: ) + H: (�G

�1
: r5 (z: ))|                               {z                               }

a:

+

π 1

0

⇣
r
2 5 (z: + B (z:+1 � z: )) � r

2 5 (z: )
⌘
(z:+1 � z: ) dB

|                                                                     {z                                                                     }
b:

.

The term of a: can be written as

a: = (G: � H: )G
�1
: g: =


Gxx,: � Hxx,: 0

0 0

�
G
�1
: g: .

We define a:
def= [a

>

x,: ; a
>

y,: ]
>, and we have


ax,:

ay,:

�
=


(Gxx,: � Hxx,: )C

�1
: gx,: � (Gxx,: � Hxx,: )C

�1
: Hxy,:Hyy,:gy,:

0

�
.

We bound the term of P�1/2
x,:

ax,: by

kP
�1/2
:

ax,: k  kI � P
1/2
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C
�1
: P

1/2
:

kkP
�1/2
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gx,: k

+ kI � P
1/2
:

C
�1
: P

1/2
:

kkP
�1/2
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Hxy,:H
�1
yy,:gy,: k

(25), (26)


✓
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1
[:

◆
kP

�1/2
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gx,: k +

✓
1 �

1
[:

◆
2
p
`
kgy,: k.

(28)

The term of b:
def= [b

0

x,: ; b
0

y,: ]
> can be bounded by Lipschitz-

continuous of H(z) that is

kb: k 

π 1

0

��r2 5 (z: + B (z:+1 � z: )) � r
2 5 (z: )

�� k (z:+1 � z: ) k dB

(4)


!2
2
kz:+1 � z: k

2


!2
2`

A 2: .

(29)

We further denote h: =

hx,:
hy,:

�
def= J

�1
: g: =

"
P
�1/2
:

gx,:
gy,:

#
. Then,

we can bound hx,:+1 and hy,:+1 as follows:

khy,:+1k  kby,: k  kb: k 
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khx,:+1k  kP
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Thus, we have
khx,:+1k + (2/

p
`)khy,:+1k



q
1 + 3^2^2A:/

p
`

✓
1 �

1
[:

◆ ✓
khx,: k +

2
p
`
khy,: k

◆
+

!2
p
``

A2: .

Finally, we bound A: by W: as follows

J: (z:+1 � z: ) =

"
P
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#
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:
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Thus, we can bound the term A:
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In the end, we obtain the relation between W:+1 and W:
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B THE PROOF OF THEOREM 4.6
The proof is standard which can be modified from Liu and Luo [24].
We only provide proof sketch of this theorem.

We first define the following constants for analysis

U0
def= max{2=, 18^2} and V0

def= max
⇢
2,
18^
=

�
.

We have 24
ln 2 (1 + V0=^) � 24 ⇥ 18^2 � 216^2, so the initial

condition
W0 

ln 2
24

·
`

^2^ (1 + V0=^)
(31)

satisfies W0 
`

216^3^2
, which is the initial condition forTheorem 4.5.

Recall that we define d8 = 3!2
`2 W8 then it enjoys that

d: 

✓
1 �

1
4^

◆:
d0 . (32)

We also have
V0^= = max{2=^, 18^2} � max{2=, 18^2} = U0,

which implies that if W0 satisfies (31),then it also satisfies

W0 
ln 2
24

·
`

^2^ (1 + U0)
(33)

Proof. We define the random sequence
�
[:

 
,
�
f:

 
as follows

[:
def=

tr(Gxx,: � Hxx,: )

tr(Hxx,: )
, (34)

f:
def= tr

⇣
(Gxx,: � Hxx,: )H

�1
xx,:

⌘
. (35)

We have
H: � G:�(1 + f: )H: . (36)

From Lemma 4.3, we have

W:+1  f:W: + UW2: and A: 
3W:
p
`
. (37)

Broyden Case (0 < g:  1): One can obtain the following
results by Lin et al. [22]

Eu: [f:+1] 

✓
1 �

1
=^

◆
(1 +"A: )

2
✓
f: +

2="A:
1 +"A:

◆
. (38)

We set \:
def= f: + U0d: and use induction to show that

E [\: ] 

✓
1 �

1
=^

◆:
2=^ . (39)

In the case of : = 0, we have
\0=hH�1

xx,0,Gxx,0i � =x + 2=d0

 hH
�1
xx,0,^Hxx,0i � =x + U0d0 = =^ + U0d0 � =x

(33)
 =^ .

(40)

Thus for : = 0, inequality (39) is satisfied.

Suppose inequality (39) holds for 0  : 0  : . For : + 1, using
the inequality eG � 1 + G and recall that d: = 3"

p
` W: , we have

d:+1  f:d: +
54^2

3
d2:  d: (f: + 18^2d: )  d:\: (41)
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1
=^

◆
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1
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◆
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✓
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✓
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1
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◆
E

⇥
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2
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⇤

=
✓
1 �

1
=^

◆
E [\: exp(2d: )] .

(42)

Thus we obtain by reduction that

E [\:+1] 

✓
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1
=^

◆
exp
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✓
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1
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!
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Therefore, we have

E [\:+1] 

✓
1 �

1
=
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which proves (39). Hence, for any : � 0, we have

E [f: ]  E [\: ] 
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1
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which implies

E
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W:

�
= E


d:+1
d:

� (41)
 E [\: ] 

✓
1 �

1
=^

◆:
2=^ . (44)

SR1 Case (g: = 0): The proof of the SR1 case is almost the same
as the Broyden case.

One can obtain the following results from Lin et al. [22]

Eu: [[:+1] 

✓
1 �

1
=

◆
(1 +"A: )

2
([: + 2"A: ) .

It also holds that

d:+1 

✓
1 �

1
=

◆
(1 + d: )

22=^d: ([: + V0d: ) . (45)

Setting \:
def= [: + V0d: , same as Broyden case, one can use induc-

tion to show that

E [\: ] 

✓
1 �

1
=

◆:
2^ . (46)

We can obtain that

E


W:+1
W:

�
= E


d:+1
d:

�
 E [=^\: ] 

✓
1 �

1
=

◆:
2=^2, (47)

which is equivalent to the result of (24). ⇤
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