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Abstract—With recent advances in communication technolo-
gies and Internet of Things (IoT) infrastructures, home automa-
tion (HA) systems have emerged as a new promising paradigm
that provides convenient smart-home services to users. However,
there exist various security risks during the deployment and
application of HA systems, which pose severe security threats
to users. On the one hand, traditional IoT security threats (e.g.,
device intrusion, protocol vulnerabilities, and so on) are inherent
to HA systems. On the other hand, as the core of HA systems,
the Trigger-Action Programming (TAP) model organizes cloud
platforms, local hubs, and smart devices through user-customized
rules, but the complex interactions involved bring new challenges
to the security of HA systems. These two kinds of security issues
have attracted widespread attention from both academia and
industry, and explorations on both attack and defense have been
made. However, there is not yet a survey that provides a sum-
mary of the overall HA systems’ security research. In this paper,
we conduct a comprehensive survey of the state-of-the-art liter-
ature on HA system security from aspects of attack and defense.
We first give a brief introduction to the HA system architec-
ture and present a general workflow of HA systems. Then, we
review and classify the relevant attacks based on the HA archi-
tecture, with an explicit analysis of vulnerabilities exploited by
these attacks. We further elaborate on the security requirements
of HA systems and provide detailed descriptions and compar-
isons of existing defenses methods. Finally, we conclude with a
thorough discussion of open issues for future research.
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I. INTRODUCTION

W ITH ubiquitous sensing, communication, and comput-
ing capabilities, the Internet of Things (IoT) has been

playing a critical role in connecting the physical world and
cyberspace [1]. Benefiting from the integration and innova-
tion of information and communication technologies such as
5G, cloud/edge computing, and artificial intelligence, IoT has
empowered diverse services, such as industrial IoT, smart
home, smart city, etc. [2], [3], [4], [5], [6], [7]. Smart Home,
as one of the most important applications of IoT, builds an
autonomous system for managing residential facilities and
scheduling family affairs by allowing users to intelligently
program and automatically control the IoT devices [8].

In recent years, we have witnessed the emergence and
development of Home Automation (HA) systems as a new
promising paradigm, which provides smart-home services to
users through the comprehensive analysis of environmental
information and user preferences. HA enables users to auto-
matically manage home attributes (e.g., light intensity, climate
conditions, etc.) and ensure home security (e.g., access con-
trol), with an ultimate goal of realizing automation for smart
homes. Due to its great potential, HA has received a tremen-
dous growth of popularity worldwide. According to Statista
Research [9], the number of subscriptions for HA has reached
about 290 million globally by 2022. Besides, the expedited
technological advancements are booming the HA market. This
market is projected to grow from 72.30 billion dollars in
2021 to 163.24 billion dollars in 2028 at a compound annual
growth rate of 12.3% [10]. Thus far, many well-known com-
mercial companies have developed HA platforms to provide
desirable HA services, such as Samsung’s SmartThings [11],
Apple’s HomeKit [12], Amazon AWS IoT [13], IFTTT [14],
and Google Home [15], etc.

To empower smart home services, most HA systems adopt
Trigger-Action Programming (TAP) model to organize cloud
platforms, local hubs, smart devices and smart apps through
user-customized automation rules. Specifically, in TAP model,
end-users specify the behavior of triggers (e.g., system events)
and corresponding actions (e.g., commands) when customiz-
ing automation rules. Once an event is triggered, one or more
actions will be activated according to the preset automation
rules, realizing automatic interactive operations of the devices.
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In some cases, an additional condition, which enforces a con-
dition that must be satisfied to run the triggered actions, is
included in a rule. Thus, the form of a rule can be 〈trigger,
action〉 or 〈trigger, condition, action〉. For example, a rule
can be turning on the light (action) when the door lock is
open (trigger) at 9 a.m. (condition) [16]. By customizing rules
through the TAP model, users can easily control/manage a
series of devices/services, promising a more convenient daily
life.

Despite their great benefits, HA systems face serious
security threats. An investigation from a consumer advo-
cacy organization reported that more than 12,807 hacking or
unknown scanning attacks against a smart home honeypot
in a week [17]. On the one hand, HA systems are suscep-
tible to traditional IoT vulnerabilities, such as side-channel
information eavesdropping [18], device-level authentication
deprivation [19], [20], and server-targeted DDoS attacks [21],
[22]. On the other hand, the vulnerabilities of the TAP
model caused by inconsistent device states, misconfiguration
of automation rules, and the absence of cross-platform authen-
tication mechanisms could lead to new security risks for HA
systems. Specifically, [16], [23], [24] demonstrated that attack-
ers can trigger unexpected actions or leak users’ sensitive
information by manipulating devices. References [25], [26],
[27], [28] pointed out that adversaries can launch attacks
when multiple automation rules jointly functionate, which may
result in the misbehavior of devices, such as false alarms.
Besides, many features of HA systems require cross-platform
interaction support, such as accessing information from other
platforms (e.g., stocks, weather, etc.), message push (e.g.,
SMS, Email, etc.), etc. Therefore, triggers and actions of the
TAP model may come from different platforms. However,
[29], [30], [31] revealed that triggers and actions of the TAP
model from different platforms lack authentication. For exam-
ple, the trigger of a rule on platform A may come from the
Web services (e.g., location sharing services) under another
platform B. Thus, when cross-platform interactions occur,
an attacker can send unauthenticated, malicious triggers to
another benign platform via the exploited Web services. For
example, platform B can send a fake IP address to platform
A without authentication via the location-sharing service. The
incorrect location information received by platform A (e.g.,
the user is near home) can trigger a TAP rule to perform the
wrong action (e.g., open the front door). The above security
threats will significantly degrade the quality of service (QoS)
for users, and finally hinder the deployment and promotion of
HA systems.

Traditional defense methods for IoT systems usually depend
on software upgrades [32], firmware encryption [33], [34], and
machine learning-based anomaly detection techniques [35],
[36]. However, devices in HA systems usually refer to sen-
sors dedicated to data collection and actuators with limited
functionality, such as temperature and humidity sensors, smart
locks, etc. The communication and computing resources of
these devices are usually constrained, making it impractical to
afford those traditional defense mechanisms.

To address these issues, researchers have made efforts to
provide various defenses for HA systems to thwart both the

traditional IoT attacks and the TAP-based attacks. For exam-
ple, [37], [38] blocked abnormal operations of devices through
device behavior recognition and traffic filtering. They collected
data traffic and device status of the HA system and then
used the smartphone apps for malicious behavior detection.
References [39], [40], [41] made the smart app perform only
a limited number of operations by embedding tagging code
on the app and setting some regulations on triggers/actions
to eliminate the vulnerabilities of TAP rules. References [42],
[43], [44] explicitly modeled HA systems by simulating the
interactions between devices and performed data detection at
HA platforms to ensure secure information exchange. All these
methods are not directly deployed on resource-constrained end
devices and do not use the computing/storage resources of the
endpoints so that they can overcome the problem of resource
constraints.

Up until now, efforts have been made to design effec-
tive attack and defense methods for HA systems, but these
approaches are overly scattered, and there remains much room
to explore. Hence, the aim of the paper is to conduct a com-
prehensive study on HA system security from the perspectives
of both attacks and defenses so as to clarify the limitations of
existing works and lay the foundation for future innovative
studies.

A. Related Surveys

There are surveys about the issues of automation algo-
rithms [45] and TAP model [46], [47] of HA systems. They
mainly focus on the technologies and implementations of HA
systems but largely neglect the relevant security issues. In
terms of traditional security issues in HA systems, a few
surveys discussed the attacks against the vulnerabilities of
end-point devices [48], [49] and protocols [50], as well as
the defenses based on integrity checks, hardware protection,
and authentication mechanisms. However, the newly emerging
security risks of HA systems arising from the TAP model and
cross-platform interactions were not summarized in these sur-
veys. Celik et al. [51] took the first step towards presenting
the effectiveness of program analysis techniques in defend-
ing against TAP-based attacks. Nevertheless, they [51] only
considered the behavior analysis of automation applications
while the attacks against automation rules execution and cross-
platform interactions have not been explicitly accounted for.
We summarize the differences between the existing surveys
and our survey in Table I. The comparison is made from
the perspectives of HA systems’ technologies & implemen-
tations, attacks, and defenses. As shown in Table I, each of
the existing surveys reviewed and discussed the HA system
from a narrow angle of view, only covering parts of technolo-
gies & implementations, attacks, and defenses. Technologies &
implementations include the approaches of automation algo-
rithm and TAP model. Attacks on HA systems refer to the
device attack, the protocol attack, the TAP model attack, and
the cross-platform attack. Defenses of HA systems include
integrity check, hardware protection, communication super-
vision, authentication & authorization, rules protection, and
cross-platform defense. There lacks a survey that can dissect
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TABLE I
A COMPARISON BETWEEN PREVIOUS SURVEYS AND OUR SURVEY ON HA SYSTEMS

HA systems in a systematic and comprehensive manner and
fully cover the relevant works about HA system security.
Therefore, this paper presents a more comprehensive and in-
depth tutorial on HA system security from two aspects (i.e.,
attacks and defenses). We aim to help interested researchers
quickly grasp the motivations, challenges, and solutions for
HA security.

B. Contributions

In this paper, we systematically survey the state-of-the-
art literature of attacks and defenses in HA systems, and
aim to highlight the security threats and defense require-
ments therein. We first present the basic 3-layer architecture
of HA systems (i.e., perception layer, communication layer,
and application layer) and give a brief introduction about how
a HA system works. Afterwards, we summarize the security
threats in each layer of the HA system including traditional IoT
security issues and TAP-based security risks and review exist-
ing attacks that are based on those security threats. Then, we
highlight the security requirements of HA systems in terms of
integrity, confidentiality, and stability. Subsequently, we pro-
vide a detailed description of existing defense schemes and
compare them from perspectives of technical principles and
application scope. Finally, we conclude with a discussion on
open research issues of attacks and defenses in HA systems.

The key contributions of this paper can be summarized as
follows.

1) This is the first paper, which systematically summarizes
the state-of-the-art literature on HA system security from
two aspects of attacks and defenses. Detailed reviews
and discussions on the existing works are provided to
show their pros and cons.

2) This paper extensively analyzes the security threats of
HA systems, with a special focus on the security risks
induced by complex interactions in the TAP model. This
paper also presents the security requirements of HA
systems for better security protection.

3) This paper identifies critical challenges and promising
trends for future research in terms of attacks and

Fig. 1. A structural diagram of this survey.

defenses to encourage readers to explore more innova-
tive and practical approaches.

The organization for the remainder of this paper is shown
in Fig. 1. In Section II, we provide a comprehensive overview
of IoT-enabled HA systems and introduce the general HA
workflow. Section III introduces seven typical HA platforms,
with a discussion of their rule models and security policies. In
Section IV, we present a detailed literature review of recent
advanced attacks in the HA domain and classify them into
three categories. We then comparatively and comprehensively
summarize the security requirements of HA systems and cor-
responding defenses in Section V. Afterwards, Section VI
highlights the open questions, challenges, and future research
directions in HA systems. Finally, Section VII concludes this
paper.

II. AN OVERVIEW OF HA SYSTEMS

HA are the most important technologies of IoT in recent
years, which helps users achieve remote and automated control
for end-point devices. In this section, we provide an overview
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Fig. 2. The basic layered architecture of HA systems.

TABLE II
LIST OF ACRONYMS FREQUENTLY USED IN THIS SURVEY

of the HA system. First, we present the basic 3-layer archi-
tecture of HA systems. As shown in Fig. 2, it contains the
perception layer, communication layer, and application layer.
For each layer, we not only describe its basic components
but also introduce the characteristics developed for HA. After
that, we give a brief introduction about how the components in
each layer work together to support the general HA workflow.
Table II provides the list of acronyms.

A. Perception Layer of HA Systems

The perception layer of HA systems is mainly com-
posed of different smart devices, which can sense data
and execute commands. These devices can be divided into

cloud-connected devices and hub-connected devices. Cloud-
connected devices communicate directly with the cloud
through wireless connection protocols. Hub-connected devices
are first connected to hubs/gateways through some energy-
saving wireless communication technologies (such as Z-Wave
and ZigBee) and then communicate with HA cloud platforms
through hubs/gateways [43]. Specifically, Hub is a special
cloud-connected device, which can perform device controlling,
geo-fencing, and rules-based automation.

In HA systems, a large number of sensors and actuators
are deployed on devices. Each device has its pre-declared
operations (e.g., turn on/off the light, adjust light intensity,
change light color), which is defined as Devices’ Capabilities.
Capabilities can be broken down into attributes and commands.
For sensors, attributes represent the state information or prop-
erties of the devices. For actuators, commands represent the
way you can control or drive the device. Capabilities abstract
specific devices into their underlying functions, allowing users
to retrieve the state of a device or control a function of
the device, rather than directly controlling physical attributes
such as voltage and frequency. Therefore, a capability is
not a device-level permission management mechanism, but a
device-specific abstraction.

As a special cloud-connected device, a Hub can realize sev-
eral messaging patterns that enable secure device-to-device
and device-to-cloud communication. In addition, it can provide
simple intelligence to support device authentication, upload-
ing files from devices, and request-reply methods to control
devices from the cloud. Generally speaking, Hub is essentially
a relay node for resource-constrained devices that only sup-
port low-power communication protocols such as Bluetooth
and ZigBee, and thus cannot directly connect to the cloud.
For example, various have been developed, and some HA hubs
(e.g., Hubitat [52], Samsung SmartThings Hub v3 [53], and
Oomi Camera [54]) now support automation even when the
home is offline. Worth mentioning, voice assistant like AWS
Alexa is a special kind of hub with the ability to enable human-
computer interaction and voice control of home devices [55].
If combined with Near Field Communication (NFC) [56] tech-
nology and voice input technology, more automatic functions
can be realized.

B. Communication Layer of HA Systems

The communication layer ensures secure and reliable
communication between devices and HA platforms through
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standardized network protocols. In this paper, we focus only
on security issues in wireless technologies, where wired com-
munications and power carriers are out of scope. Currently,
there exist lots of wireless protocols for different purposes,
which can be generally classified into two categories: one is
the communication protocol and the other is the transmission
protocol. Communication protocols like Wifi, Bluetooth, and
Zigbee require chip module support (hardware support) and
are mainly used for near-range wireless connection between
devices within a subnet. Transmission protocols like HTTP,
CoAP, and MQTT require interfaces to cloud platforms (soft-
ware support) and are responsible for data exchange and
remote communication between devices and servers over the
TCP/IP Internet. Besides, the communication layer of HA con-
siders end-to-end security assurance, including authentication,
encryption, and open port protection.

Note that various communication protocols keep evolving,
with the latest versions replacing the shortcomings of previous
versions so to meet the requirements of HA systems in terms of
security, power consumption, and connection numbers. Wi-Fi
is particularly convenient because it does not require an addi-
tional hub and can be directly connected to the network.
However, the high power consumption leads to its limited use
in HA systems. For example. smart door locks, infrared for-
warding controllers are not suitable to implement the Wi-Fi
module. ZigBee protocol is acknowledged as one of the most
suitable protocols available. It can communicate bidirection-
ally, not only to send commands to devices but also to send
back the execution status. This is crucial to the end-user
experience, especially for security devices. For example, if
you send a command to close a door and the door does
not send back a acknowledgement, this poses a significant
security risk that the user does not know if it is actually
locked. Another popular communication protocol is Bluetooth,
which is a point-to-point, short-range communication method.
Therefore, Bluetooth products are more suitable for personal
services, such as headphones, smart scales, etc. Other pro-
tocols, such as Z-Wave, Lora, and NB-IOT, also excel in
terms of long service life, far communication distance, and
low deployment difficulty, but are not yet widely used in HA
systems.

Most common transmission protocols for HA systems use
a publish-subscribe mechanism to achieve the flow and for-
warding of information. A sensor node uploads collected data
to the network, which is equivalent to the publication of a
message. This message needs to be based on a certain topic,
such as the type of sensor. Other nodes that care about this
topic can get the latest data in real-time by subscribing to mes-
sages on this topic. The publish/subscribe protocols solve the
problems of event filtering, topic subscription, and service self-
discovery of HA systems at the application layer. Considering
the real-time communication needs, a suitable protocol needs
to be selected. For example, for intelligent lighting control in
HA systems, the XMPP protocol can be used to control the
switching of lights. For inspection and maintenance of power
lines, the MQTT protocol can be employed. For publishing the
energy consumption query service of your own home to the
Internet, REST/HTTP can be utilized to open API services.

C. Application Layer of HA Systems

The application layer utilizes resources in the HA cloud
platforms to store and analyze data collected from the percep-
tion layer, and Web consoles/Mobile applications to achieve
real-time control of the physical world and scientific decision-
making. The HA cloud platforms provide many practical
functions, such as security monitoring, data storage, data ana-
lytics, machine learning, and so on. For example, when a
device is connected to the platform, the security monitor in
the platform audits device queues, detects abnormal device
behavior, and alerts users to security issues promptly. End-
users manage their data and monitor device behaviors via user
interfaces (i.e., Web consoles/Mobile applications) provided by
platforms. HA cloud platforms build devices into extensions of
automation applications through device virtualization technol-
ogy. For example, TVs, wearable devices, and smart assistants
are instantiated as screens, sensors and speakers for the appli-
cation. An HA logic rule will be initiated and packaged as
an automation app when a user customizes the triggers and
actions in the Web consoles/Mobile applications.

With abundant resources and functions, HA cloud platforms
provide external third-party developers and transaction part-
ners with open application programming interfaces (APIs) to
share their data and functionalities. The combination of differ-
ent APIs releases the potential of HA systems in automation
programming, location services, etc. Besides, HA platforms
create device handlers for physical devices to enable the def-
inition and delivery of control commands. Meanwhile, HA
platforms abstract the information uploaded from the applica-
tions or hubs as events and store them in the database. In [16],
[51], the authors defined five types of events for connecting
specific sensor readings and handlers, including Device events,
Timer events, App touch events, External events, and Mode
events. Considering that Mode events and App touch events
both need users to click the corresponding button in the apps
so that both of them can be taken as Application click events.
Based on that, we define four types of events, i.e., Device
events, Timer events, Application click events, and External
Web events. Compared to existing works [16], [51], we have
made minor adjustments and supplements to the interpretation
of External Web events and Application click events. Detailed
definitions and examples are as follows:

• Device events are the most common representation in the
system, which indicates the change of device status. For
example, “the door opens” is a device event. When this
event occurs, the event handler may change the state of
another device, such as turning on the light.

• Timer events refer to the arrival of a predefined time or
the occurrence of a specified time range. When a timer
event happens, the event handler calls the corresponding
action. For example, at eight in the morning, open the
curtains.

• External Web events are requests or instructions sent
to/from external Web entities to the platform. Some plat-
forms have access to external Web services (e.g., IFTTT
can access weather forecasting services provided by
Weather Underground [57]) or allow the external access
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Fig. 3. General Workflow of HA Systems.

of apps in another platform over the Web. For example,
SmartThings is connected to the Home Assistant plat-
form via an open API, which allows Home Assistant to
access information about Samsung devices and control
their execution.

• Application click events include remote control events and
mode setting events. They both need users to click the
corresponding button in the apps. Remote control events
allow contact-less operation of another electronic device,
such as turning on the light after clicking the button in a
mobile application. Mode setting event requires multiple
actions to be performed when the user clicks the cor-
responding button in the app. For example, when a user
turns on “away” mode in the mobile application, all lights
will turn off and the alarm will turn on.

Web Consoles/Mobile Applications are rule-based programs
that allow users to customize device behavior, forming automa-
tion services. Rules are user pre-configured automation logic
that reflects the will of users about HA. The form of a rule
can be 〈trigger, action〉 or 〈trigger, condition, action〉. Once
an automatic scenario is activated by a trigger event and the
condition is satisfied, one or more actions will be triggered
according to the automation rules. Note that trigger, condi-
tion, and action are all event-driven. For example, a user sets
the rule “when the home mode is on, every night at 6 pm, turn
on the light". Here, the trigger is an application click event,
the condition is a timer event, and action is a device event.

D. General Workflow of HA Systems

The HA system usually adopts a TAP model to orga-
nize each layer in the HA architecture and make them work
together through user-customized automation rules. The most
core part of TAP model is the cooperation among devices,
hubs, platforms and automation apps. Even through differ-
ent HA systems may contain different entities in each layer
(e.g., different HA systems may deploy different smart-home
devices and utilize different communication protocols), they
structure the TAP model with the same Device-Hub-Platform-
App workflow, as shown in Fig. 3. Specifically, a typical
workflow of HA systems, which involves four main compo-
nents (i.e., devices, hubs, platforms, and automation apps) is
described as follows.

1) A user first connects devices to HA platforms and
defines the triggers and actions of rules in automation
apps via the user interface (UI). Then, according to the
customized rules, the user can control and configure the
trigger/action devices remotely.

2) The platform parses the user’s configurations into the
automation logic and subscribes to the relevant events
of trigger devices and device handlers of action devices
for automation apps.

3) When a trigger device uploads data or updates its status
to hubs, the related events (i.e., the behaviors of the
trigger device) will be fed back to platforms.

4) The platform will invoke the device handler of the cor-
responding action device according to the TAP model’s
Trigger-Action logic and deliver the handler to hubs.
With this handler, hubs can send control commands to
the action device, which will then behave as expected.
In the meantime, the platform will send the device
information update to automation apps, and the user will
receive the latest device status.

Now, an HA function is implemented as the user desires. Next,
we take the automation rule “When there is smoke in the
home, the alarm should go on and send a message to me"
on the mobile application as a concrete example to see how
the TAP model realizes it through the above workflow. After
the user sets the above rule, the platform will update the user’s
configuration and subscribe to the smoke sensor events in the
database. When the smoke sensor is triggered, the platform
sends the smoke.off command to the Hub, as well as the noti-
fication message to the mobile app. Then, the smoke alarm
receives the command from Hub and goes on, and the user
receives the alarm message via the mobile application.

III. HOME AUTOMATION PLATFORMS

HA platforms enable HA devices and automation apps
belonging to different companies to interact jointly. Currently,
there are numerous HA platforms active worldwide. All
of them have different features and benefits. We investi-
gate seven most popular open-source and commercial HA
platforms to gain insight into their technical architectures
(Section III-A), rules model (Section III-B), and security
policies (Section III-C).

A. Overview of Platform Architectures

Samsung’s SmartThings is a relatively mature HA plat-
form, which aims to provide the whole house coordination
service. It consists of four common elements, including
SmartThings Cloud Backend, smart devices, SmartThings Hub,
and SmartApps, as shown in Fig. 4. Among them, the Cloud
Backend is the brain of the SmartThings and is responsible
for coordinating all parties to realize HA and maintaining
device health. It abstracts various sensor data and device oper-
ations into structured events and commands, and makes the
corresponding execution decisions. The smart devices from
different manufacturers are connected to the platform via the
device SDK provided by Cloud Backend. SmartThings Hub
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Fig. 4. SmartThings architecture [11].

supports various radio protocols and is in charge of report-
ing device events to the cloud backend. Smartapps are usually
installed via application markets in the cloud backend. They
subscribe to the device handlers or predefined events to acti-
vate the user-customized rules to implement the trigger-action
automation logic and realize remote control.

SmartThings provides a detailed classification of devices
and lists the information about the available devices. For
example, Type identifies what type of handler (Device Type
Handler) the device uses to read or write data, and Execution
Location indicates whether the device is running in the Cloud
or locally. Unlike other platforms, SmartThings Hub [53] adds
support for native protocols, so that the application logic can
be implemented not only in the cloud backend but also at
the local hub. Therefore, even without the network, hub-based
devices can still exchange information locally or perform pre-
defined automatic actions via the hub. However, there are
some limitations of the current hub offline operations since
the user identity needs to be verified in the automation apps
and the device cannot be controlled remotely from the apps
without network support. It is worth noting that SmartApps
are Groovy-based [58] programs. SmartApps are often stored
in the cloud backend and can be accessed by external systems
through open APIs. Every SmartApp or Device Handler is an
instance of an abstract executor class defined in SmartThings.
Third-party developers can use the Groovy development tools
to import or write their automation rules and device handlers
that are not officially supported. Moreover, the cloud backend
runs the device handler in a sandboxed environment and sup-
ports third-party service-connection like IFTTT through the
Web console, which gives devices connected to SmartThings
even more scope for use.

Amazon Web Services (AWS) IoT is a cloud-based plat-
form that connects IoT devices with AWS cloud services. The
four major components in AWS IoT are Device Gateway,
Rules Engine, Registry, and Device Shadows [59]. Device
Gateway and Rules Engine work like SmartThings Hub and
Smart Apps. Besides, Registry is utilized to assign a unique

identity to each device, and Device Shadow records the status
of the device and sends it to apps and other services.

The AWS IoT, the AWS IoT core works as a message bro-
ker and supports common communication protocols including
MQTT, HTTPS, and LoRaWAN. Each device (physical or vir-
tual) can register in the platform through SDKs and connect to
other cloud service endpoints (e.g., Amazon DynamoDB [60],
Amazon S3 [61], Amazon Machine Learning [62], and oth-
ers) through AWS IoT Core. Meanwhile, in AWS IoT, rules
are defined using an SQL-like syntax. The data is stored in
semi-structured formats (e.g., JSON, CSV) and can be used for
machine learning purposes (e.g., monitoring and optimizing
interactions between IoT devices). Device Shadow is a special
service in AWS IoT, which provides reliable data storage for
devices, applications, and other cloud services, and thus allows
them to connect and disconnect without losing the state of the
device. AWS IoT objects can have multiple named shadows so
that there are more options to connect devices to other appli-
cations and services. Furthermore, AWS IoT allows users to
use voice commands to access external Web services or con-
trol their devices. Alexa Voice Services (AVS), a new feature
offered by AWS IoT Core, integrates connected products (Web
services and physical devices) with the voice assistant Alexa,
enabling device manufacturers to build any connected device
as an Alexa built-in device.

Google Home is a representative service provider that uses
smart voice assistants (such as Ali’s Tmall Genie, Amazon’s
Alexa, and Apple’s Siri) as home controllers. In Google
Home, users are allowed to control their smart devices through
Google Assistant and Google Home app. Specifically, Google
Assistant works like SmartThings Hub and provides users with
useful metadata (such as the status of specific devices). Google
Home app can be used to download or customize automation
rules (named as routines). Cloud Engine is the core of Google
Home, and it works in a similar way as the SmartThings Cloud
backend.

Different from other HA platforms, in Google Home,
automation rules and external third-party services are col-
lectively known as Actions. Most published Actions can be
activated directly by Google Assistant once they have been
certified by Google. Google Home intents, which are known
as events, are simple messaging objects that describe actions
to be performed by the smart home, such as turning on a
light or playing audio. Google Home cloud Engine can not
only receive device data and Web services but also maintain
a database that stores home contextual data (know as Home
Graph). A Home Graph contains information about structures
(e.g., home or office), rooms (e.g., bedroom or living room),
and devices (e.g., speaker or light bulb). It works like a logical
map of the user home and is available for Google Assistant
to execute user requests based on the appropriate context.
As shown in Fig. 5, Google Home Cloud offers an assistant
interface to accept user queries and filter out invalid segments
(e.g., background noise, non-keyword) in user speech com-
mands. Every change of device status and Web information
(e.g., Google Search) will be updated to Home Graph, which
will further be used by Google Assistant to trigger the corre-
sponding Actions (most programmed in Java or Kotlin). When
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Fig. 5. Google Home’s working mode [63].

a user says a command to Google Assistant, it will get the
automation rules in customized Action and send the execu-
tion requests therein to the specific device. Noticeably, Google
Home pays more attention to the HA business and updates
devices and software more frequently, about once every half
a month.

Apple’s HomeKit is a development kit that manages and
controls compatible smart devices [41]. It allows users to cen-
tralize the management of HA devices through iOS devices.
For better utilization of Homekit, Apple releases Home, a cen-
tral application with functional modules of accessories, scenes,
rooms, and automation. Accessories encapsulate the state of
physical devices and represent the presence of a single device
in Home. Scenes combine multiple devices and other services
into one state, such as watching TV within a scene that con-
tains closed curtains and dimmed lights. Rooms are a group
of devices in the same physical space. Automation is a set
of conditions that trigger automatic execution. Users can trig-
ger automation rules through virtual assistant Siri or Home
app [64].

In Homekit, automation rules can be developed with swift or
objective C language [65]. Third-party products connect to the
Home App after accessing the HomeKit Accessory Protocol.
HomeKit objects are stored in the user’s iOS device and can
be synced to other iOS devices via iCloud. The local hub
acts as the core of Homekit, and all the automation rules are
executed on the hub. When the user is at home with an iOS
phone, the phone can temporarily become the hub. However,
the high mobility of phones is inappropriate or insufficient as a
part-time hub. Unfortunately, Apple has not launched a stylish
hub yet and chooses other manufacturers as an alternative.
Besides, HomeKit allows users to create one or more Home
layouts. Each Home layout (HMHome) represents a home with
several rooms and networked devices, with multiple acces-
sories attached. The Home App uses the HMHomeManager to
retrieve HMHomes and other related items from the HomeKit
database. Remarkably, HomeKit has also taken an epic step
forward in open source recently [66].

IFTTT, namely “If This Then That”, is an innovative
Internet service designed to help people connect applications
and devices from different developers through the open APIs
of various external websites (such as Facebook and Twitter).
Unlike other HA platforms, IFTTT does not have the key

components like hub and devices but provides a cloud platform
to manage HA devices and applications.

In IFTTT, the Web services are called Channels [67]. “This”
refers to Trigger Channel and “That” refers to Action Channel.
When a Trigger Channel meets the trigger conditions then the
action specified in the Action Channel will be executed. This
kind of If-This-Then-That automation is called Recipes (also
known as Applets now [68]). Applets can be shared within the
IFTTT community. IFTTT creates multiple parameters for the
Applet, including a title, applet description, trigger/action def-
initions, filters, etc. When the user creates an Applet, IFTTT
starts monitoring the endpoints specified by the trigger ser-
vice. Users can also create some custom JavaScript code in
the Applet to automatically filter actions. For example, if the
user arrives after 6 p.m., a certain number of lights will be
turned on in a specified location in the house, instead of all
the lights. Each Applet runs in its separate process and uses
a lightweight communication mechanism (usually an HTTP-
based RESTful API) to exchange information. Usually, IFTTT
uses the Kafka [69] log analysis system to handle the massive
volume of messaging services used for applets interactions and
is deeply nested with AWS (i.e., AWS Redshift [70], AWSData
Pipeline [71], AmazonRDS [72], etc.) to help monitor the
behavior of collaborating APIs.

Home Assistant is an open-source platform for HA. It is not
a typical HA platform since it acts more as a hub to manage
and control the devices. The outstanding features of Home
Assistant are local control and privacy [73], [74]. Specifically,
it enables local control of smart devices without the cloud,
so the HA system does not rely on remote servers or Internet
connections, which means all user data will not be delivered
to the cloud. Even when there is a need for recovering data
from the last run after a disconnection, Home Assistant does
not need to download data from the network. It extracts and
loads the relevant configurations directly from local files [75].

Hassbian, based on the official Raspberry Pi system, is
often installed on a local server or the Raspberry Pi. Hassbian
serves as a hub locally, running preset automation apps. It
connects to a local router to discover all smart devices on
the Wi-Fi frequency band and provides a clear console to
make devices work together based on how and when the user
wants the single command to be executed. Meanwhile, it sup-
ports devices and services from different manufacturers and
platforms connecting to the Home Assistant directly or indi-
rectly, which facilitates cross-platform interactions. However,
the Home Assistant version changes very frequently, i.e., sev-
eral times a month, which makes the research and development
process difficult because developers need to constantly adapt
their codes to the new specification. It’s worth mentioning that
Home Assistant has been so profitable in open source and has
been listed in GitHub’s “State of the Octoverse” 2020 report
as it took second place in this year’s Top-10 list of the Python
packages with most active contributors [76].

OpenHAB is an open-source automation platform with
built-in eclipse IDE (Integrated Development Environment),
which is fully based on Open Services Gateway Initiative
(OSGi) [77] and uses Jetty [78] as a Web server. OpenHAB
segments and compartmentalizes stateful services and physical
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TABLE III
AN OVERVIEW OF HA PLATFORMS

Fig. 6. Openhab core components.

connections, and the most important components of OpenHab
are Bindings, Add-on Libraries and Automation Rules, as
shown in Fig. 6. Bindings provide interfaces for devices, Add-
on Libraries work as different services, and Automation Rules
play a similar role as SmartApps in SmartThings.

OpenHAB can connect various kinds of HA devices
and provide vendor-independent technical support [79]. In
OpenHAB, developers can design unique operator interfaces
(known as Sitemap) to develop personalized HA scenarios.
Different hardware devices and interface protocols are brought
together through Bindings. These bindings can send/receive
commands and update status via the event bus, which is used
for inter-component communication. Therefore, various events
(e.g., ItemCommandEvent, ItemStateEvent, ItemAddedEvent,
ThingStatusInfoEvent, etc.) abstracted from Items are the core
contents of communications in OpenHAB. Besides, Add-
ons are installable enhancements that allow users to add
or modify application functionality, or decorate the appear-
ance with themes. Through the openHAB REST APIs [80],

other platforms can easily access most objects in OpenHAB,
such as data related to Items, and the capabilities to invoke
automation rules. Same with Home Assistant, Openhabian
works like a local hub. Moreover, OpenHAB has offi-
cial apps and third-party apps, which are programmed in
Xtend-based Domain Specific Language (Once the SDK
is installed, the Xtend program will be compiled into
Java code by Eclipse in real-time). However, OpenHAB
application update is relatively slow, usually once a few
months.

The above seven platforms are the major platforms in the
HA market [81], we summarize their basic information in
Table III, and further highlight their characteristics as follows.

1) SmartThings and Homekit are committed to creating
a multi-scenario integrated whole-house HA, which
closely integrates devices and cloud services to provide
more coherent services.

2) Google Home and AWS both use the company’s pow-
erful products (Google Search and AWS Cloud) to
improve their data processing capabilities and are com-
mitted to developing voice assistants. Google focuses
on partnering with other hardware companies, while
Amazon prefers to launch more products with the
Amazon bandage.

3) Unlike others, IFTTT focuses on gluing together frag-
mented online services (e.g., Twitter, Facebook, etc.) and
solving the dilemma of users being forced to constantly
jump between services. The open strategy enhances
the user experience and extends the functionality of the
service itself. However, it is somewhat limited by the
opening degree of other applications, as other com-
panies constantly adjust their API open strategy [82].
Meanwhile, the automated services (e.g., email, con-
tacts access and modification, photos/videos access, etc.)
offered by IFTTT require access to third-party platforms,
a sensitive action that undoubtedly increases the security
risk for users.
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TABLE IV
PROPERTIES OF SINGLE RULE IN DIFFERENT PLATFORMS

4) Home Assistant and openHAB aim to provide more
open services to stimulate extensive collaboration among
multiple platforms for the HA community. OpenHAB is
more mature and stable, while Home Assistant is a more
innovative and flexible platform to control smart devices.
With Home Assistant, users will have more compre-
hensive permissions to decide whether data generated
by sensors and actuators will be uploaded to the cloud,
and can design customized services. However, the higher
authority also means greater security risks.

B. Rule Model

Automation rules can be taken as the concrete program-
matic representation of Trigger-Action logic. A user can set
up automation rules to operate devices. All the HA plat-
forms mentioned above use “if-then" rules to specify HA
behaviors. Therefore, one can construct a rule model with
many properties for each rule. This can be described as
follow.

• Support Conditions: Some rules need to be implemented
under specified conditions. For example, turn on the
light every Sunday after 8 p.m, where the condition is
every Sunday. Most platforms support conditions, except
Homekit.

• Multiple Actions: A rule can have multiple actions. For
instance, when the host comes home, HA systems should
turn on the light and air conditioner at the same time.
Most platforms such as SmartThings, AWS IoT, and
Google Home support the creation of multiple-actions
rules.

• Device Shadow Service: This service can collect and
report the status of devices to applications when the
device is offline [59]. For example, a rule is triggered, but
the corresponding device for its action is offline. At this
point, the application can update the shadow to request a
change in the state of the device. Once the device recon-
nects, the device can update its state by accessing the
shadow. Currently, only AWS IoT uses the device shadow
service.

• Virtual Device: Unlike the device shadow, virtual devices
are often used for rule simulation and system simulation.
For researchers, the simulation of rules is helpful to the
mining of security problems, as they can simulate the HA
rules without a device. The seven mainstream platforms
we studied all support virtual devices.

• Message Service: In addition to changing the state of
devices, platforms transmit specified messages to the
external points. For example, when a smoke alarm goes
on, a fire message is sent to the user. Some platforms
support messaging services, such as Amazon’s SNS and
ADM, Google’s GCM, and Apple’s APNs.

• Third-party Platform Access: For some commercial or
open-source platforms, they provide interfaces or integra-
tions, which can access or be accessed by third-party plat-
forms. For example, all devices under HomeKit can be
controlled through Home Assistant. Under this function,
the association between devices changes from single-
platform to cross-platform, and the interaction of rules
becomes more complex. At present, cross-platform col-
laboration can be realized in AWS IoT, IFTTT, Home
Assistant, and OpenHAB.

• Rule Database: Both rules and relevant device data
need to be stored, which helps the platform to quickly
return to a pre-set state when the network connectivity
is restored. SmartThings, AWS IoT, Google Home have
their databases in the cloud. Other platforms that support
rule storage don’t have a cloud database, instead, they
record the occurred events through local files.

We summarize how the above HA platforms build rule mod-
els in Table IV, from which we can observe that not all
platforms support all the attributes in the rule model. Some
platforms do not implement device modelling (i.e., device
shadow service, virtual device), external services (i.e., mes-
sage service, third-party platform access, rule database) due to
security and efficiency considerations or resource constraints.

In HA systems, many automation functions require interac-
tions between rules [83]. For example, a wake-up automation
scenario requires a chain reaction of rules from “alarm clock
goes off at 8:00 am” to “lights on automatically after the
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Fig. 7. Rule chain model [26].

alarm clock goes off.”. As a supplement to the rule model,
the Rule Chain Model could express all these interactions
between rules as a model to better analyze the workflow of
HA systems. Thus, it is necessary to introduce the rule chain
model to help readers better understand the architecture and
workflow of the HA system. The rule chain model consists
of two main parts: the automated rules (i.e., the rule model
mentioned above) and the interaction channels between the
rules. To be specific, interaction channels contain both system
channels and physical channels, as described below.

• System Channels: The control commands and timing
signals (e.g., various events, including time, location
information, switches, locks, etc.) in HA systems form the
system channels. These system channels can be shared by
multiple automation rules on the same platform so that
rules can be chained together.

• Physical Channels: The physical environment of a smart
home is closely related to the triggering of rules, and
the physical behavior of the device, e.g., raising the tem-
perature can turn on the air conditioner. Therefore, the
physical environment is an essential physical channel in
rules interaction. Wang et al. [26] used Natural Language
Processing (NLP) techniques to perform linguistic anal-
ysis on the description of the official SmartThings
application and Identified seven physical channels, i.e.,
Temperature, Humidity, Illumination, Location, Motion,
Smoke.

These automation rules can be chained into explicit links or
implicit links via the system or physical channels [26], respec-
tively, which is shown in Fig. 7. Specifically, Rule A and Rule
B are explicitly linked through the system channel if the action
of A and the trigger of B are the same events. In this case,
the execution of A’s action directly satisfies the trigger event
of B. For example, in Fig. 7(a), the action in Rule A is to
turn on the light, and the trigger in Rule B is the light on.
When Rule A fires, Rule B automatically executes, opening
the Air Condition to make the room temperature rise or fall. In
contrast, Rule C and rule D are implicitly linked since C and
D are connected through a physical channel, and C’s actions

can control this channel to satisfy D’s trigger. For example, in
Fig. 7(b), the action in Rule C is to turn on the heater, which
changes the temperature of the room. The trigger in Rule D is
to have a temperature above 85◦ F. Therefore, after 17:00, the
window can be opened automatically through Rule C and D.

C. Security Policy

HA systems usually deploy detailed security policies to
maintain the orderly operation of automation rules. These
security policies involve device/client authentication, cross
account access, system logging, etc. We refer to the official
security policy documents of the seven mentioned plat-
forms [84], [85], [86], [87], [88], [89], [90], [91] and
summarize their four most important types of security policies
as follows.

• Authentication: Authentication is a two-way verification
process that allows a device (or client) to provide iden-
tity credentials to the HA platform and the platform
to provide authentication information to the device (or
client) [84]. Client authentication is the process where
devices or other clients authenticate themselves with HA
platforms. Server authentication is the process where
devices or other clients ensure they are communicating
with an actual HA platform endpoint. Most platforms will
have dedicated engines to handle safety certificates and
system authentication. For example, in AWS IoT, when
the user’s devices or other clients establish a TLS con-
nection to an AWS IoT Core endpoint, AWS IoT Core
presents a certificate chain for devices to verify whether
they’re communicating with AWS IoT Core.

• Authorization: Authorization is the process of grant-
ing permissions to authenticated identities (e.g., devices,
clients, etc.). HA platforms usually provide two types
of authorization to authenticated identities. One is at the
control level, and devices or clients with such a kind of
authorization are allowed to create or update certificates,
rules, permission scopes, and other tasks. The other is at
the data level, where devices or clients with such autho-
rization are allowed to send data and receive data from
the platform. Specifically, AWS IoT uses identity-based
policies (such as IAM users, user groups, or roles) and
access control lists (ACLs) to control which actions users
and roles can perform on which resources under which
conditions. For example, a user can set permissions in the
platform to allow the device to access all MQTT topics
or restrict its access to only one topic [84].

• Encryption and Data Protection: HA systems need to
continuously send and receive data that contains sensi-
tive information in the network throughout the workflow.
Therefore, security policies nowadays include encryp-
tion and data protection, which refers to protecting the
data by using encryption and digital signatures both in
in-transit (as it travels to and from platforms) and at
rest (while it is stored on devices or platforms). Most
platforms use the industry-standard SSL/TLS protocol to
ensure the confidentiality of supported application proto-
cols (MQTT, HTTP, and WebSocket) [88]. In Web socket
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Fig. 8. AWS IoT’s multi-layered security architecture.

communication, the built-in webserver of each platform
attempts to use cryptographically supported HTTPS in
preference to HTTP. For example, in Google Home, user
Actions interaction with the Actions on Google APIs
must use HTTPS [87]. In addition to encrypting trans-
mission data, Homekit provides an encrypted disk image,
which is a static secure container for users to store
sensitive texts and other files [89].

• User Information Privacy: User information privacy asks
all the automation rules/apps to provide accurate and
transparent descriptions of their functionality and per-
form as reasonably expected by the user. Unlike data
protection, “user information privacy” protects personal
information from inappropriate use, disclosure, or shar-
ing. For example, Google Home asks all the Actions
to provide a link to a privacy policy in the Directory’s
designated field. The privacy policy must, together with
any in-Action disclosures, comprehensively disclose how
your Action collects, uses, and shares user data, includ-
ing the types of parties with whom it’s shared. Actions
are prohibited from requesting sensitive data (e.g., pay-
ment or financial data, healthcare data, etc.) via the
conversational interface (text, image, or speech) in all
scenarios [87].

In addition to various commonly used security policies,
each platform has its proprietary security mechanisms. In the
following, we list some of the exclusive security policies of
different platforms.

AWS IoT uses a multi-layered security architecture for
device access and service output, which is shown in Fig. 8.
When a device wants to get connected to the platform, AWS
IoT provides three methods to verify its identity: X.509
certificate, AWS IAM user groups, and AWS Cognito authen-
tication. AWS validates device credentials for devices and
creates policies that match these subject devices and enforces
strict credential management. These managements form the
core of device authentication and authorization. After this, a

device is accepted as AWS IoT connectable device. When
a user controls a certificated device connected to the local
hub, AWS Identity and Access Management (IAM) will apply
fine-grained policies to assign permissions to users, groups, or
devices, and define which actions these identities can perform
on which resources. Finally, In AWS IoT, many services (e.g.,
AWS Lambda, Amazon DynamoDB, etc.) are provided and
shared with other applications through the API. The platform
controls access to the API using the API Gateway Resource
Policy, which is a JSON policy document that AWS attaches
to the API to control whether a specified delegate (usually an
IAM user or role) can invoke the API. In AWS IoT communi-
cation, all traffic is encrypted through the SSL/TLS protocol,
and AWS IoT Cloud allocates a private home directory for
each legal user. In addition, AWS applies methods such as
boundary protection, monitoring inbound and outbound sites,
logging, monitoring and alerting, etc.

SmartThings use a Capability model [92] to specify which
devices the SmartApp can access and which properties on the
device the SmartApp can access. A device has a series of
capabilities. For example, a smart door lock can expose capa-
bility.lock and capability.battery. Smartapps must get enough
permission authorized by users to access device capabilities.
For example, a temperature management app can be autho-
rized to access temperature sensor data and operate the air
conditioner by the user. However, the disparity in importance
between capabilities has not been noted. For example, opening
and closing a lock are two unique capabilities, one of which
is safe and the other is unsafe. The ability to open a lock
is often authorized in the Lock-Off app, which can lead to
security threats.

Homekit uses sandboxing technology to isolate each app’s
runtime environment and implements ASLR technology to
prevent overflow and other vulnerability attacks. Automation
rules need to be authorized by the user to access Home app
data. As the security modules of the iOS system are integrated,
only trusted codes can be run on the device to ensure secure
communication. Besides, Apple has launched a standard pro-
tocol for its HA platform, named HomeKit Accessary Protocol
(HAP). Only organizations that have passed the MFi (Made
for iOS) certification can get the HAP protocol and design and
produce compatible smart hardware devices for HomeKit. The
certification process is very strict, with a 2% pass rate, and it is
impossible to join as an individual developer. When no official
certification can be obtained, a bridging hub is another way to
access Home. Homebridge [93] allows user to integrate with
smart home devices that do not natively support HomeKit.
There are over 2,000 Homebridge plugins supporting thou-
sands of different accessories. The bridging hub communicates
with iOS devices via the HomeKit protocol and with non-
HomeKit peripherals using other wireless/transport protocols
such as ZigBee, Z-Wave.

Note that we describe only part of the security mecha-
nisms that distinguish each platform from the others, more
details can be found in the technical documents on their official
websites [84], [85], [86], [87], [88], [89], [90], [91].

Additionally, the above security policies are expected to
provide confidentiality, integrity, and availability assurance.
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TABLE V
THE CATEGORY OF ATTACKS

However, they are insufficient to deal with all security threats
in HA systems, especially the new threats from emerging
TAP-based rule interactions and cross-platform links. Thus,
adversaries can launch attacks by breaking these security poli-
cies. For better understanding, we have added some analysis
of the relationship between attacks and security policies at the
end of Sections IV-A, IV-B, and IV-C.

IV. ATTACKS OF HOME AUTOMATION SYSTEMS

Home Automation Security Incident is now taken as one of
the most important IoT security incidents [94]. Recent attacks
against HA systems are not limited to traditional IoT vulnera-
bilities such as the takeover of individual devices [95], [96] or
sniffing network traffic [97], [98] but can be launched through
the TAP interaction model of HA systems [43], [92], [99].
In this section, we summarize state-of-art attacks and ana-
lyze the security threats involved. Corresponding to the HA
architecture, we divide them into three categories: perception
layer attacks, communication layer attacks, and application
layer attacks. Specifically, as shown in Table V, perception
layer attacks are mainly initiated by remote device intrusion
and defects of smart voice assistants. Communication layer
attacks are mainly based on wireless communication disrup-
tion attacks, wireless communication manipulation attacks,
and unsupervised physical channel. Application layer attacks
are largely on account of backdoors of automation apps, over-
privileged capabilities of apps, conflicting interactions between
automation rules, and fragile HA Platforms & Cross-Platforms
Interactions.

A. Perception Layer Attacks

In HA systems, devices (i.e., sensors and actuators) in the
perception layer can interact with the indoor/outdoor envi-
ronments. There are two types of devices: cloud-connected
devices and hub-connected devices. The former communi-
cates directly with the cloud, and the latter first connects
to the hub/gateway and then communicates with the cloud
through the hub/gateway. However, some characteristics of
devices (e.g., limited resources, no typing equipment) hamper
the deployment of some classical safety methods, which gives

the attacker a chance to exploit the vulnerable devices to attack
HA systems. Specifically, most devices do not have embed-
ded security mechanisms and they are using risky outdated
firmware [100], [101], [102]. Some devices lack typing equip-
ment, leading to the failure of password-based authentication
mechanisms [103], [104]. Furthermore, it is worth noting that
perception layer risks arise not only from the vulnerability
of the device itself but also the interaction between devices
and users, the latter exposing the device to a larger attack
surface. For example, the open-access channels (e.g., voice
interaction) of some devices (e.g., smart assistants) place new
demands on security measures such as speech recognition,
multi-factor authentication, and so on. Therefore, we elabo-
rate on the attacks in the perception layer from two aspects
according to their purpose.

1) Remote Device Intrusion: Before connecting to HA plat-
forms, devices need to report their product version and device
information according to different authentication methods to
ensure that connected devices on the platforms can be trusted
for what they claim to be. However, HA platforms often per-
form inadequate device authentication [105], which leaves
devices vulnerable to remote intrusion and leads to security
threats for HA systems. For example, the publicly trusted
SSL/TLS protocol used by some HA platforms for device-
side authentication only supports one-way authentication. This
means that the device only verifies the cloud/server certifi-
cate, but the cloud cannot verify the device through the client
certificate. What’s worse, many devices don’t use encrypted
and verifiable identities such as the serial number and pub-
lic key when communicating with platforms. This makes it
more difficult for the platform to verify the identities of
devices.

Device authentication relies on the uniqueness of the chan-
nel state information (CSI) on the transmitter-receiver channel.
From the analysis in [106], [107], physical layer authentica-
tion is sensitive to impersonation attacks, where an attacker
can obtain legitimate CSI in the vicinity of the device.
Baracca et al. [108] provided a fingerprint forgery strategy in
multiple-input multiple-output (MIMO) systems, which min-
imizes the average time required to crack the authentication
system. The attacker obtains the maximum likelihood estimate
of the CSI of transmitter A-receiver B based on the observa-
tion and statistics of the CSI of other channels and uses this
likelihood signal to connect B maliciously. Such a numerical
estimation-based method can maximize the probability of suc-
cessful attacks and reduce the attack overhead. On the other
hand, physical layer authentication assumes that the estimation
of CSI is always correct. However, Xiao et al. [109] found
this assumption was generally not valid because the channel
response fades with time. An attacker can exploit the receiver’s
incorrect estimation of CSI in the channel and use the signal-
ing device to construct many false connection requests to top
off benign devices. Mukherjee and Swindlehurst [110] exam-
ined the design of a full-duplex active eavesdropper in the
wiretap channel, where all nodes are equipped with multiple
antennas. The adversary intends to optimize its transmitting
and receiving sub-arrays and jamming signal parameters so as
to minimize the MIMO secrecy rate of the main channel.
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Fig. 9. Remote device misbinding attack.

In addition to the lack of authentication of devices, the
weak password of devices also give chance to remote device
intrusion. For example, since the initial credentials of remote
management services for devices (e.g., SSH, FTP, etc.) are
weakly secured in HA systems, and users rarely change their
default passwords, attackers can crack passwords of devices
through brute force or default factory passwords and thus pen-
etrate the system [111], [112]. Kumar et al. [95] constructed a
small dictionary of default credentials to initiate the login-
test attack against the online devices with open FTP and
Telnet services, and thereby login to the devices that allow
weak default credential authentication. Besides, most devices
lack the protection of login credentials. Ling et al. [113] effi-
ciently obtained the victim’s authentication credentials (e.g.,
the plug’s MAC address, username, and password) by reverse-
engineering the smart plug. Attackers can use these credentials
to log in and perform false command injection attacks on the
corresponding smart plug. Margulies [114] demonstrated that
an attack on a rolling code garage door opener can be accom-
plished by simply synchronizing a malicious remote controller
with an existing remote control signal, followed by a few
minutes of brute-force code.

To be mentioned, in TAP models, the device ID are prop-
agated between the device and the app or stored in the app’s
logs. However, Zhou et al. [43] found that the device ID
can be obtained by attackers and then be used to launch a
Remote Device Misbinding Attack based on the TAP model. In
Fig. 9, we show the normal process of establishing a connec-
tion between a device and an app with black solid lines and
show the process of Remote Device Misbinding Attack with
dashed red lines. To establish a connection between a device
and an app, the device ID is spread among the app and the
platform. The malicious phantom device can obtain the device
ID during this process and send a registration request to the
cloud with the ID of the real device. The cloud can not dis-
tinguish between the real device and the phantom device, and
may register a virtual device for them with the same device
ID. At this time, the app binds both the phantom device and
the real device, which are in fact competing for a connection
to the platform. To win the competition, the attacker will con-
figure the phantom device to log in very frequently. In this
situation, the user still seems to “control" a device through its
mobile application, even though the device has been replaced

by a malicious phantom device. This attack can continuously
upload fake device commands, and eavesdrop on the user’s
commands to analyze her habits.

Furthermore, as applications deployed on devices increas-
ingly move to Web environments (e.g., IFTTT), some attackers
have been trying to manipulate device and platform commu-
nication messages. Rauti et al. [115] implemented a malicious
browser extension (known as the MitB attack) on the Chrome
Web browser to bypass user authentication. In this case, the
attacker can modify data in HTTP requests or manipulate
data using the Document Object Model (DOM) before it is
sent to the server. This attack can alter user input in the
smart home management console to manipulate IoT devices.
Sethi et al. [116] found that the Bluetooth Secure Simple
Pairing (SSP) security mechanism can not validate the device
name or other attributes of the device (e.g., make, model, and
serial number). Thus, an attacker could configure a malicious
device with the same name to impersonate a normal device.
For example, when the user device attempts to get connected
with device A, device A will receive a pairing code, and the
user device needs to check whether the pairing code is correct.
At this time, the attacker can construct a malicious device B
with the same make and model around device A, which makes
the user device mistakenly think that device B is the one that
should be matched. Device B receives the pairing code and
forwards it to Device A. The user device confirms the code
displayed by device A and is gullible enough to believe that
device A has properly connected.

2) Attackers Behind You (Smart Voice Assistants): Due to
the rapid development of artificial intelligence technologies,
speech control has become more prevalent in HA systems. In
real life, people always think that the “smartest" thing will be
safe, so they obtain external information such as weather and
road conditions, play music, and control HA devices through
voice interaction with voice assistants. However, smart voice
assistants, which serve as the central interactive interface of
HA systems, are different from the devices hidden behind the
hub. They are exposed to the network (a fact is that most
smart voice assistants are required to connect to the Internet
directly) and perform actions frequently with high control
privileges. Moreover, the voice channel is excessively vulner-
able and lacks proper authentication between users and smart
voice assistants. Thus, smart voice assistants are susceptible
to various attacks.

Researchers proposed many attacks against the speech
recognition system in voice assistants by constructing mali-
cious speech samples. Zhang et al. [117] attacked the speech
recognition system by modulating voice commands on ultra-
sonic carriers which can not be heard by the human ear. By
exploiting the non-linearity of the voice assistant’s microphone
circuitry, modulated low-frequency audio commands can be
successfully demodulated and recovered so that the speaker
could be completely controlled by any command without the
user’s knowledge. Yuan et al. [103] utilized the loopholes
of artificial intelligence algorithms of the speech recognition
system to launch attacks. They integrated the malicious com-
mands into a song and utilized the gradient descent method
to find the local minimum between modified audio with the
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original one. This led to the situation where the command can
be recognized by the speech recognition system, but can cir-
cumvent the detection from a human listener. Yan et al. [118]
exploited the unique properties of sound transmission in solid
materials and extended the ultrasonic attack through an array
of speakers. Such attacks allowed multiple rounds of interac-
tions among acoustic devices at longer distances without the
need to be in the line of sight, thus causing minimal alteration
to the physical environment. These attacks compromised the
authentication from smart voice assistants to the users and
impersonated an authorized user to operate the smart voice
assistant.

Furthermore, users can download and interact with the
automation apps (e.g., skills, actions), which are published
by some third-party developers,via the smart voice assis-
tants. Thus, due to the ambiguity of voice commands (e.g.,
non-standard pronunciation, unclear semantics) and the user’s
misunderstanding of the service (e.g., skill invocation life-
cycle), an attacker can publish malicious third-party skills
on the app marketplace and mislead users to invoke them.
Kumar et al. [119] and Zhang et al. [31] discovered some
voice-based confusion attacks (Skill Squatting Attack and
Masquerading Attack) on smart assistants. In Squatting Attack,
when the user calls the normal app through voice assistants,
the attacker hijacks the user’s normal app by a malicious app
containing words with similar pronunciation or meaning. For
example, the user calls the voice assistant “Alexa, ask Amex to
pay Bailey $100.” The malicious skill with the same pronunci-
ation Am X. will respond “You need to log in. I’ve sent a card
to your phone.” to induce the user to enter private information.
Masquerading attack refers to an attacker using a malicious
app to disguise the voice of normal voice assistants (e.g.,
Siri, Alexa) during a conversation, making the user think they
are communicating or giving commands to the normal voice
assistant rather than an app developed by a third party. As a
result, the malicious app can continue ping information about
the user’s surroundings. For example, when a user tries to
switch apps or exit the current app, the malicious app does not
exit, but masquerades as a voice assistant or another app and
stays in conversation with the user. Zhang et al. [31] further
proposed the paraphrased invocation name hijacking attacks.
In this attack, one may say “Alexa, open Capital One please”,
which normally opens the skill Capital One, but can also trig-
ger a malicious skill Capital One Please once it is uploaded to
the skill market [31]. The skill-calling mechanism of different
platforms is still very fuzzy, and the defense of such attacks
remains uninvestigated. Exploring ways to increase the success
rate of such attacks is still a potential direction for researchers.

It is worth mentioning that these smart voice assistants-
based attacks are unique to HA systems, since smart voice
assistants are used as a new interface of interaction to allow
users to ask and save information, control smart appliances,
and perform online operations (e.g., shopping, banking) in
HA systems. The attackers exploited vulnerabilities of the
interaction process between the user and the voice assistant
to inject malicious commands and further propagate them in
the HA system with the control authority of the smart voice
assistant, thus misleading the above actions.

Summary: There are a wide variety of devices in HA
systems, ranging from traditional embedded sensing devices
to emerging AI-enabled voice assistants. The perception
layer attacks bypass the platform’s security policies on
Authentication as well as Encryption and data protection
(in Section III-C). By interfering or falsifying authentication
information, attackers can register fake devices to HA plat-
forms or introduce false commands to smart voice assistants.
However, Exploiting vulnerabilities of Smarter Devices will be
a challenge as HA embraces more vendors and more securely
protected devices.

B. Communication Layer Attacks

Differing from traditional IoT systems, in HA systems,
devices need to interact with the physical environment to
realize monitoring and control of home attributes (e.g., temper-
ature and humidity). Thus, the communication channel in HA
systems contains not only network channels but also physical
channels. The physical channel refers to the physical environ-
ments between device interactions, while the network channel
ensures that the authenticated commands and sensor data can
be transmitted securely with minimal overhead. We use the
communication layer to represent these two kinds of chan-
nels. However, the chaotic communication environments of
households and online services make it possible for a hacker
to imperceptibly break into HA systems [23], [120], [121].

1) Wireless Communication Disruption Attacks: The pur-
pose of a disruption attack is to introduce disorder in the
communication and/or sensing processes [122]. The manifes-
tation of this attack is to disrupt the content and characteristics
of the wireless signal by directing intentional interference
to the communication/sensing system [123]. For example, in
wireless communication, the power of the received signal
must be greater than the overall power of the ambient noise
and interference. Attackers intentionally increase the level
of interference in the transmission channel, resulting in the
disruption of legitimate transmissions [124]. The key to disrup-
tion attacks is to occupy the current communication channel or
disrupt the associated communication protocol, which can sig-
nificantly degrade the performance (e.g., network throughput
and transmission delay) of wireless networks.

In addition to cutting off the wireless communication pro-
cess [125], [126], an attacker could also forgery the interaction
between HA platforms and the user by hijacking the commu-
nication protocol in HA systems. Ho et al. [23] implemented
two attacks on smart locks, i.e., State Consistency Attacks
and Unwanted Unlocking Attacks, by exploiting vulnerabil-
ities in Bluetooth. For State Consistency Attacks, they found
that when the smart lock was in a device-gateway-cloud archi-
tecture, key revocation was pushed by the remote server to
the revoked user. However, if the phone of revoked user went
offline, the server was unable to push this information to the
phone, which caused the lock to remain unaware of the revo-
cation. Thus, the attacker can still able to maintain access to
the smart lock using an offline phone that is previously regis-
tered. For Unwanted Unlocking Attacks, an attacker disguised
himself as a smart lock and interacted with the user to grab

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 08,2023 at 09:38:24 UTC from IEEE Xplore.  Restrictions apply. 



WANG et al.: SURVEY ON IoT-ENABLED HOME AUTOMATION SYSTEMS: ATTACKS AND DEFENSES 2307

the Bluetooth wireless packages, which will be replayed to
the smart lock at the same time and achieved unlocking. This
type of attack occurs because the platform is unable to confirm
whether the user is at his network-identified affirmation, and
the user monitors the devices via mobile apps or Web services
without accessing the device physically [127].

Besides, some attacks occurred due to the errors in the
configuration and implementation of popular communication
protocols (e.g., ZigBee, Zwave, RFID) or transmission proto-
cols (e.g., MQTT, COAP). Fouladi and Ghanoun [98] found
that the key exchange process of the Z-wave protocol was vul-
nerable because the protocol did not provide confidentiality
protection when transmitting the “network key” Kn over the
network. By intercepting the authentication process between
the “control device” and the “security device” as a man-in-the-
middle, the attacker can restore the “network key” Kn therein.
Therefore, an attacker can link the “security device” to the
malicious network and open the Z-Wave door lock directly
without a password, as long as he knows the Home and Node
IDs of the “security device” during the key exchange process.
Besides, Aghili et al. [128] proved that the ultra-lightweight
RFID protocol is vulnerable to DOS attack and desynchroniza-
tion attack when the adversary can compromise a legitimate
reader and obtain its secrets. Attackers make the authentication
key stored in the server and the tag out of sync by disrupting
the key negotiation process between the server and RFID tags.
However, these attacks require decryption of network proto-
cols (directly decrypting to the security information in them),
or a compromised network (infecting the entire network with
a malicious device).

2) Wireless Communication Manipulation Attacks:
Wireless communication protocols are created to exchange
data in networks and are the basis for communication between
devices. Apart from adding meaningless jamming signals to
the wireless channel or hijacking data packets to perform dis-
ruption attacks, attackers can also actively tamper or construct
fake wireless signals to achieve wireless communication
manipulation attacks. Manipulation attacks not only interfere
with communication but also result in incorrect sensing and
faulty data message [122], [129]. For example, a wrong data
message can pass an incorrect command to a device, leading
to misbehavior in the HA system.

The protocol data packet is composed of the payload for
authentication (i.e., device ID) and other field information
(i.e., protocol header). However, some protocols are not well
configured or implemented in HA systems, which can be
maliciously Manipulated by attackers. There have been many
works demonstrating that some protocols (e.g., HTTP, MQTT)
do not encrypt messages where commands may be transmit-
ted in plaintext, or even be expired and forged [130], [131].
The vulnerabilities of the widely-used transmission protocol
MQTT are also taken as the entry points by attackers. Since
MQTT clients will occasionally disconnect ungracefully (e.g.,
loss of connection, empty batteries, disconnect without any
DISCONNECT message), Will message is defined in MQTT
specification as a response to an unordered disconnection. The
Will message is a normal MQTT message with a topic, retained
message flag, QoS, and payload. However, MQTT does not

Fig. 10. Will message attack [132].

have a detailed specification of will messages, such as what
kind of client can send a will message, and restrictions on the
content of a will message’s payload, which can be maliciously
exploited by attackers.

In HA systems, each client (device or user) can upload
its constructed Will message topic or subscribe to any Will
message topic when it first connects to a broker (HA plat-
form). The HA platform stores the message until it detects
that the client has disconnected ungracefully, the platform
then sends the Will message to notify all subscribed clients.
Jia et al. [132] provided the first systematic study of the secu-
rity vulnerabilities of the MQTT protocol in HA platforms
and identified new attack scenarios. Fig. 10 illustrates a typi-
cal will message attack based on the vulnerabilities of MQTT.
This attack is based on the fact that some hotels (e.g., Airbnb,
Hilton) are increasingly equipped with IoT devices and their
guests are often granted temporary access to the devices, so
the attacker can impersonate a normal user to check into a
hotel and gain control of the device for a period of time.
The attacker first logins in the broker (HA platform) and reg-
ister a Will Message topic with a malicious payload, which
includes a malicious command (Command:Start). After that,
the attacker controls the Device in the hotel to subscribe to the
Will Message topic. When the attacker checks out, he does not
voluntarily release the device or log out of his account. Once
a victim user (like the subsequent guest of the same hotel
room) resets the Device (e.g., the door lock), the attacker’s
account will go offline ungracefully. Then, the will message
will be activated and the commands in it will invoke the
Device (i.e., the door lock will open automatically). What’s
worse, the MQTT topic structure is similar to a hierarchical
file path (e.g., /doorlock/[device ID]/status), some platforms
do not have appropriate authentication and a hierarchical strat-
egy for topics, which allows an attacker to subscribe to any
MQTT topic through a compromised device [132].

Adversaries can also take advantage of the non-robustness
of network protocols to execute some malicious injection
attacks [133], [134], [135]. Oren and Keromytis [136] pointed
out that the communication channel of broadcast data stream
used by smart TVs was vulnerable, and an attacker could
build a digital terrestrial television (DTT) transmitter to dis-
tribute malicious advertisements to thousands of potential

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 08,2023 at 09:38:24 UTC from IEEE Xplore.  Restrictions apply. 



2308 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 24, NO. 4, FOURTH QUARTER 2022

hosts through the broadcast channel. This attack is a vari-
ation of the traditional cross-site request forgery (CSRF)
attack [137] and since it is done with the help of a tradi-
tional broadcast channel, it does not leave a trail of activity in
the form of IP or DNS transactions. Ronen et al. [22] found
a new type of threat that adjacent HA devices would infect
each other with a worm through their built-in ZigBee wire-
less connectivity. Vidgren et al. [97] demonstrated that an
attacker could masquerade as a router or trust center and con-
tinuously send request messages to ZigBee-enabled devices.
The devices’ continuous response to the requests causes dam-
age to the battery. This attack is similar to a DoS attack, but
the limited resources of the end nodes make it much less dif-
ficult to execute, and the attack can be launched on multiple
ZigBee devices at the same time. Esnaashari et al. [138] found
that the transmission protocol Universal Plug and Play (UPnP)
in HA systems, which is designed for locally enabled wireless
devices to redirect ports and services to the Internet, is vul-
nerable to various attacks. For example, an attacker could use
a misconfigured UPnP service to inject malicious routes into
the router’s Network Address Translation (NAT) table, result-
ing in the situation that intranet devices are mapped into the
public interface and exposed to the external network.

3) Unsupervised Physical Channel: The TAP model of HA
systems enables devices to collect data from their respective
environments and act on the physical environment accord-
ing to app commands. However, malicious apps can interact
indirectly through shared physical environments (e.g., air,
temperature, and humidity) and lead to insecure/unsuspected
states. For example, an app may turn on the heater to raise
the indoor temperature, and when the temperature exceeds a
threshold, another app might open the windows, which makes
the whole house vulnerable to invasion. This cyber-physical
interaction accelerates the transformation of cyber threats into
physical incidents and makes it difficult to trace attackers
because the point where the problem occurs is not the point
where the attack is initialized.

Current HA systems do not provide any validation meth-
ods to check if sensor inputs are valid. Therefore, an attacker
could maliciously change or control environmental parame-
ters (e.g., light intensity, temperature, electromagnetic) in a
targeted manner to construct fake sensor data, and then trig-
ger malicious activity and disrupt the operation of the TAP
model [24], [139], [140]. Sugawara et al. [96] launched a new
signal injection attack on smart speaker arrays simply by using
a laser pointer. The attacker could shine a laser on the voice
assistant and adjust the beam intensity of the electrical signal
to induce the microphones to produce an electrical signal as if
they were receiving real audio. Even though the attacker stands
outside the house, he can shine the laser through the window.
Bozzato et al. [141] carried out a voltage glitch attack on the
charging port of a device (e.g., a smart lock), which interferes
with the power line (changing the chip pin current) to modify
the execution flow of the device. Thus, an attacker can skip
certain instructions or run incorrect operations. This attack can
be carried out during the unlocking process to bypass authen-
tication or can cause the lock logic to enter a confused state.
Mao et al. [20] found that current context-based device pairing

schemes (e.g., using common events in the same trust domain)
can not accurately identify events or resist contextual noise.
They proposed a jamming-based attack called pairjam that
prevents voice-controlled devices (e.g., microphone) from pair-
ing with the user by injecting user environmental events (e.g.,
door closing) into the voice-controlled device. Specifically, a
typical contextual pairing scheme is that the microphone will
use the door closing event (i.e., the user entering the house)
as the context for user authentication. The attacker prevents
the normal signal (walking and door opening) from being rec-
ognized by injecting events of a single dimension into the
voice-controlled device in a continuous manner, causing the
attack signal to overlap with the normal signal. The continu-
ous injection ensures that a sufficient number of normal events
are swamped, and the voice-controlled device cannot recog-
nize the correct context, causing the voice-controlled device
to refuse to pair with the user.

In HA systems, sensors not only obtain information from
the environment but also leak data into the physical space
(e.g., sound, brightness, heat), which can also be exploited by
attackers [142], [143]. Xu et al. [144] introduced an attack that
used the radiation of light changes to reveal programs on smart
TV. The attacker performs feature extraction from the recorded
light emission variations of the smart TV and then uses a pre-
computed feature library to extract the corresponding video
from the reference content. The attack is surprisingly robust
to the variety of noisy signals that occur in realistic envi-
ronments and is able to successfully identify what is being
watched in a reference library of tens of thousands of videos
in a matter of seconds. Faruque et al. [145] implemented an
attack to reconstruct the source code of a design sent to a
3D printer by placing a logger near the 3D printer to collect
the run-time acoustic change information. The recorded files
with acoustic change information can be processed to extract
time and frequency domain features, and then cross-matched
with the training datasets collected during the learning phase
to infer the correct design.

In addition to the security threats posed by the direct
interactions between devices and the physical environments,
automation apps, which share the same physical environments,
can also lead to security threats. Trimananda et al. [146]
found that many applications in SmartThings use their local
(private) variables rather than global variables to track and
update device states. For example, two apps (Auto-Humidity-
Vent [147], Big-Turn-OFF [148]) in SmartThings may cause
invalid-local-state conflicts. A user may use the Big-Turn-OFF
app to turn off the fan, causing the room humidity to increase
above the threshold. However, since local variable state.fansOn
remains true in the Auto-Humidity-Vent app, Auto-Humidity-
Vent will not run. When these apps are paired with other apps
that update the same physical environment state, they can make
the variables in these apps inconsistent with the physical envi-
ronment state, ultimately making the system run on the wrong
track.

In HA systems, devices and the physical environment inter-
act frequently. On the one hand, devices sense and report
changes in the physical environment constantly. On the other
hand, device actions may lead to changes in the physical
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environment. Based on the Unsupervised Physical Channel,
attackers can inject false physical signals into the HA system
or steal information from the HA system. This is what distin-
guishes HA systems from other IoT systems, so such attacks
are unique to HA.

Summary: The communication layer in the HA system
allows data sharing, data reading, and control between dif-
ferent devices through various network protocols and physi-
cal channels. Communication layer attacks often violate the
HA platform’s security policy in terms of Authentication,
Encryption and data protection (in Section III-C).

By decrypting or planting confusing data messages into the
communication process between HA entities, an attacker can
prevent the normal authentication process, eavesdrop on sen-
sitive information or even forge communication data packages
to manipulate the HA system operations.

The communication process has always been the most com-
plicated part of HA systems. Various vendors apply different
protocols, and additional components for handling mismatches
between protocols are still lacking. Exploring new authen-
tication vulnerabilities and data leakage schemes will be a
challenging direction.

C. Application Layer Attacks

The application layer, which includes apps and platforms,
is at the heart of HA systems. Apps provide a visual interface
for users to design automation rules to control smart-home
devices. However, malicious apps (including apps with back-
door and over-privileged apps) or unregulated rules settings
can cause unexpected actions or leak sensitive information to
third-parties. Besides, HA platforms store and process a large
amount of sensor data and provide a series of services such as
device and resource management to support HA. However,
the unreasonable authorization mechanisms between plat-
forms become a vulnerability for attackers to gain additional
privileges, leading to a number of cross-platform threats.

1) Backdoor Attacks of Automation Apps: Rule-based HA
platforms provide users with approachable configuration
interfaces or allow users to install automation apps from third-
party to support complex interactions. However, HA platforms
do not have the same strong detection capabilities as the
mobile application market, thus most third-party apps do not
undergo thorough security checks [83]. In this permissive
security environment, a large number of malicious apps are
deliberately designed to cause illegal control of devices, leak-
age of sensitive information, and even the paralysis of entire
HA systems.

It is commonly believed that devices can be protected from
Internet attacks through the perimeter security provided by
the hubs. However, it is possible for attackers to distribute
malicious apps to circumvent the firewall protection provided
by the home hub [149], [150]. According to GeoEdge [151],
online broadcast devices (e.g., smart TVs) can be used as a
distribution channel for attacks [152]. The attacker constructs
a malicious app to inject malicious code into online display
ads via an online broadcast network, resulting in the silent
installation of the app on a home Wi-Fi connected device.

On the other hand, to covertly leak information to the outside
world without being intercepted by the firewall in the Hub,
Ronen and Shamir [153] investigated the smart light bright-
ness control methods and built a malicious app that generated
light signals with private information by using an existing API
to craft the duty cycle of the PWM signal (change the light
brightness level). Since the light intensity switches between
high and low frequencies very quickly, it is not perceptible to
the human eye but is easily distinguishable by optical detec-
tors. Besides, this attack cannot be detected by HA systems as
the backdoor app does not generate abnormal electrical signals
or send out interaction commands.

Usually, users judge whether to install the app by only
the brief description of the app’s function. However, they
do not have access to the automation app source code and
cannot check the app’s internal settings (filter code or param-
eters) [154]. Therefore, malicious app developers can bypass
the access control policies of the HA system by specially craft-
ing filter code and parameters [155], [156]. Bastys et al. [30]
found that automated apps (called applets) in IFTTT lacked
censorship. An attacker could embed malicious payloads in
the app’s Filter (a JavaScript code with optional static types
that can be used to configure the output actions of an app) as
a backdoor to exfiltrate private information from IFTTT to an
attacker-controlled server. They proposed two kinds of attacks
called URL upload attack and URL markup attack. We show
these two kinds of attacks in Fig. 11.

In a URL upload attack, an attacker can modify the sink
of the action in the applet to make the user data upload to a
malicious server. For example, as shown in Fig. 11(a), in the
IFTTT platform, there is an app that when “User uploads an
iOS photo” is triggered, the date will be added to the photo
name and the photo would be passed to Google Drive using
an intermediate URL. The attacker changes the JavaScript
code of the app’s filter (adding an independent variable attack)
to change this intermediate URL. This variable encapsulates
the URL generated by IFTTT (https://locker.ifttt.com/img.jpeg)
into a filename and adds the attacker’s hostname information
(https://attacker.com?). To make the attack undetectable,
the attacker makes a simple setup on his own node.js
server that logs the URL parameters when a request of
the form https://attacker.com?https://locker.ifttt.com/img.jpeg
is received and then forwards it to the original request.

In a URL markup attack, the attacker can plant a hidden
HTML markup in the app (used to automatically put docu-
ments on the Web) to pass the data to the malicious server.
For example, as shown in Fig. 11(b), there is an app that
takes “add to daily email digest” action from the Email Digest
service to send an email digest containing the user’s com-
ments (remember to vote on Tuesday) when triggered by “The
user says a phrase with a text component”. The attacker cre-
ates an HTML markup (the independent variable img) and
sets its length and width to 0px (invisible). img contains the
user’s information (notes) and specifies its target site as the
attacker’s host (https://attacker.com?). The user’s notes and
the img markup are sent as parameters to the email digest ser-
vice via the EmailDigest.sendDailyEmail.setMessage() API.
The markup can be part of the body of a post or email on
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Fig. 11. Backdoor attacks of automation Apps.

a social network and will be automatically activated when a
Web browser or email reader loads the post or email, so the
attacker server will receive the notes contained in the img.

Popular HA platforms, including IFTTT, Zapier, and
Microsoft Flow, are all vulnerable to URL-based attacks,
which can lead to the leakage of user private information,
such as private photos, users’ locations, and user input to smart
assistants. An attacker could also use a normal automation app
as a backdoor to an attack. For example, a user could set a
rule in the app to “upload all attachments of newly received
emails to her OneDrive folder”. Then, if the user receives an
email with a malicious attachment and syncs multiple devices
using OneDrive, the malicious attachment will be copied to
multiple devices automatically, increasing the likelihood that
the user will execute the malicious program in error [83].

Moreover, attackers may exploit software update vulnerabil-
ities of apps to launch the corresponding attacks [157], [158],
[159]. For example, SmartThings makes it very convenient
for SmartApp developers to deploy updates by automatically
updating the cloud instances of SmartApp for all users. In this
mode, the attacker can slice the malicious logic into cloud
pieces, and introduce a malicious payload to the original appli-
cation step by step through software updates [42]. In addition,
the firmware of Sony surveillance cameras sold on Amazon
may link to strange hosts illegally. When they are used, they

Fig. 12. Over-privileged capabilities attack.

will automatically download and install malware, which may
lead to illegal surveillance and data theft [160], [161], [162].
Although developers are often active in rolling out bug patches
or function updates to fix the vulnerabilities of apps, users
may not update the software frequently, which gives hackers
enough time to try various methods to launch attacks based
on the backdoor of apps.

Unlike other systems, the HA system allows developers to
submit applications to customize their personalized TAP-based
automation. However, there is not yet an efficient way to pro-
vide code-level censorship for automation apps. Therefore, the
threats induced by backdoor attacks of automation apps are
especially noticeable for HA systems.

2) Over-Privileged Capabilities of Apps: Capabilities are
made up of attributes and commands. The attribute and com-
mand represent the state information and control instruction
of a device, respectively. However, when an app is granted
too many capabilities, (i.e., it can control attributes beyond its
scope), attackers can use these additional attributes to launch
attacks, which are called over-privileged attacks. For example,
a door-lock app is used to automatically lock the door when
the user leaves the house. Strictly speaking, the automation
app should only have the ability to lock the door, but actually,
it also has the ability to unlock it. Thus, the attacker can break
into the home with unlocking privileges.

Most HA platforms provide programming frameworks for
third-party developers to develop automated apps that con-
trol the corresponding smart-home devices. Felt et al. [163]
conducted permission analysis on 940 Android applications
and found that one-third of them were over-privileged.
Fernandes et al. [92] pointed out that attackers could utilize
the existing over-privileged lock app to create arbitrary lock
code (essentially creating a backdoor to the user’s home). As
shown in Fig. 12, the attacker uses a battery monitor SmartApp
that masks its malicious intent at the source code level to
launch an attack on the smart lock to get its pin-code. During
the installation of the battery monitor SmartApp, the user
is asked to grant the SmartApp access to smart lock with
the attributes of Battery-Monitor, so that the battery moni-
tor SmartApp can also subscribe to the Smart Lock Handler.
When the user wants to set a new pin-code for the smart
lock, the LockManager App gives a setCode command to the
ZWave lock device handler, which will send back a series of
ZWave configuration commands to the smart lock. Once the
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Fig. 13. Conflicting interaction between automation rules.

device handler gets a successful acknowledgment from the
smart lock, it creates a codeReport event containing various
data items, including the event creation log, the device status
(e.g., heartbeat parameter, electric quantity value), and the pin
codes in plaintext. If the malicious battery monitor SmartApp
subscribes to all types of codeReport events on the devices
authorized to access, the device handlers will send the codeRe-
ports to the malicious app. Thus, the malicious app can snoop
on lock pin codes, and even transmit pin codes via SMS to the
remote attacker server if the HA platform does not constrain
the SMS service.

3) Conflicting Interactions Between Automation Rules: In
HA systems, users customize triggers, conditions, and actions
for each rule in app, and the platform subscribes to the corre-
sponding events. However, since every app is dedicated to its
self-declared functions, it can not anticipate what apps the user
will install and how the user will configure them. Therefore, a
large number of rules maintained in the HA platform may sub-
scribe to the same events, which causes the situation that the
events of one rule may potentially affect the events of another
rule. Chi et al. [99] revealed that HA apps could cause some
special threats when there are conflicting interactions among
them, even though they follow the principle of least privilege,
which is also called cross-app interference (CAI) threats. For
example, two rules issue opposite commands to open/close a
smart door simultaneously (e.g., open a door when there is a
fire/close the door when the owner comes home), which will
leave the door in a paradoxical working state. The attacker
can use such vulnerability to interfere with the execution of
the device or even completely control the device. Besides,
since the automation rules involve a large number of hetero-
geneous devices and the interaction are highly complex, it is
difficult for users to trace the provenance of the vulnerabil-
ities. Thus, attacks based on conflicting interactions among
rules have strong stealthiness.

The vulnerabilities of interactions between rules are specific
to HA systems, and can be divided into three types: action
conflict, action revert, and action loop [26], [146], as shown
in Fig. 13.

• Action conflict refers to the issue of conflicting com-
mands to a device at the same time [99], such as opening
and closing the doors, turning on and turning off the
lights. There are two kinds of action conflicts. One is
that different rules act on the same attribute of the same
device at the same time, but have opposite actions. For
example, as shown in Fig. 13(a), rule 1 is to turn on the
air conditioner after 8 a.m., and rule 2 is to turn off the air
conditioner when the temperature is higher than 85◦ F.
Then, if the temperature is higher than 85◦ F after 8 a.m.,
the execution of these two commands would become con-
tradictory, and the state of the air conditioner would be
unstable [26]. The other is the conflict between rules and
setting mode. In most smart home platforms, users can
set modes, such as home mode, alert mode, and sleep
mode, where multiple actions may be taken. However,
the action of a single rule may conflict with the state in
the mode. As shown in Fig. 13(b), in alert mode, all appli-
ances need to be turned off, but rule 1 will turn on the
air conditioner when the temperature is higher than 85◦

F. Such a contradiction between rules and modes leads
to security challenges for the HA system. Attackers can
set malicious rules or modes, and use action conflicts to
block the normal execution of the device [164], [165].

• Action reverting is caused by a chain of rules, and the
action of the first rule is opposite to that of the last
rule [26]. We show an example of action reverting in
Fig. 13(c). The first rule is to open the door when the
temperature is higher than 85◦ F. After a series of asso-
ciation rules occur, the last rule is to close the door. In HA
systems, most of the devices can only show one state at
a time and cannot change the state at once, so the action
reverting may result in system instability. Attackers can
also write malicious rules to form a rule chain of action
reversal and make the device control invalid [166].

• Action loop means that an action’s activation causes its
reactivation. As shown in Fig. 13(d), rule 1 is to turn on
the bedroom light if the living room light is on, rule 2 is
to turn on the living room light if the bedroom light is
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on [26]. Executing these two rules simultaneously causes
the lights in the living room and bedroom to keep flash-
ing. Some researchers have proposed some real attacks
of action loop. In [153], the attacker created a malicious
application that can regularly adjust light intensity and
light color to flash the lights, which leads to seizures in
people with photosensitive epilepsy. In [42], the attacker
created a side channel by changing the light intensity to
disclose the user’s sensitive information.

4) Fragile HA Platforms and Cross-Platforms Interactions:
HA platforms facilitate communication between devices and
users, and manage user access to devices. To ensure that
only authorized users can operate the device, devices need
to be registered to the platform, and the user’s remote con-
trol commands (e.g., opening a lock) should be authenticated
and authorized by the platform. However, the security mecha-
nisms in HA platforms are fragile and incomplete. Specifically,
HA platforms do not take steps to validate the origin of the
rules’ trigger. Based on that, attackers can launch integrity
violation attacks [30], [83]. For example, if a user sets up a
typical automation rule “turn on lights when a user is tagged
in a Twitter post” in IFTTT, an attacker could manipulate an
untrusted event (Twitter post) to change the state of a locally
trusted action (light on). Besides, Bastys et al. [30] found
that the user-tagged links (e.g., http://ift.tt/URLs) for data shar-
ing in IFTTT is too small, which usually only contains 5 or
6 character tags in size, and thus they can be searched in
a brute-force manner. Therefore, the online resources (e.g.,
Films, images, Netflix resources) shared by such links could
be publicly available for everyone.

In HA systems, users can configure and monitor local
devices as well as online Web services via APIs provided
by the HA platforms. However, the fast-growing APIs lack
reliable security mechanisms, resulting in the leakage of
sensitive data and the emergence of data injection attacks.
Subashini and Kavitha [167] launched an unauthorized manip-
ulation attack via SQL injection flaws in APIs. Obermaier and
Hutle [168] found that due to the insecurity of services and
APIs, attackers could inject footage, trigger false alarms, and
carry out DoS (Denial of Service) attacks on camera systems.
Additionally, Max et al. [169] analyzed the cloud security of
the August smart lock system and found that the system has
insecure API, which can upgrade guest account to adminis-
trator account. Existing defense strategies about data isolation
and data sharing [170] are often powerless against such attacks
as authenticating APIs is a time-consuming and expensive
process.

Furthermore, the emerging demands for cross-domain
services in HA systems intensify the inter-operation across
HA platforms. During the cross-platform interaction process,
different HA platforms are hard to share and access sensing
resources of each other in a uniform and secure manner [171].
Many HA platforms now support the delegation mechanism
across different cloud providers (e.g., Google Home Cloud,
IFTTT, etc.), and thus a user can manage multiple devices
from different vendors through one HA platform. However,
real-world HA platforms often utilize their own separate
and heterogeneous authorization protocols, which may not be

Fig. 14. The hazardous delegations between platforms.

compatible with those of other HA platforms, or may not
be properly validated. For example, SmartThings grants its
control of hub-controlled devices such as the Philips Hue to
Google Home via an OAuth token, while IFTTT uses a secret
URL as its secure access token to provide shared services to
SmartThings. To communicate with the devices/services on
each delegate platform, SmartThings runs a separate program
for each platform so that the corresponding protocol can be
implemented.

Yuan et al. [29] pointed out that the cross-platform authen-
tication protocol only encapsulated the data without filtering
sensitive information. This is a general security flaw of del-
egation mechanism in typical platforms, and may lead to
unauthorized access to devices and device impersonation. As
shown in Fig. 14, if a user in Google Home needs to control
the device in SmartThings, SmartThings will give the device
ID to Google Home directly through OAuth [172]. Although
SmartThings also calls devices in its own platform in this way,
this ID cannot be directly used for cross-platform calls, since
the user in other platforms is not necessarily trusted. When the
user’s permission is revoked by Google Home, the user can
still use the same device ID to communicate with SmartThings
illegally and may perform device spoofing attacks.

Summary: The application layer is the processing center of
HA’s information. Apps and platforms store a large amount of
users’ personal information and perceptual data, and they pro-
vide the computing power for statistically analyzing perceptual
data and generating&parsing control commands. Application
layer attacks often violate the HA platform’s security policies
on Authentication, Authorization, and User information pri-
vacy (in Section III-C). Attackers can compromise app design
bugs (e.g., apps backdoor) and coarse-grained authorization
models (e.g., over-privileged apps) to access unauthorized
information and leak sensitive user data to the outside world.
Some undiscovered vulnerabilities (e.g., logic errors in rule
chains) and insufficient authentication of HA platforms can
also lead to device manipulation. Still, current security policies
do not yet cover these attacks.

Besides, as data moves to the cloud platform, many per-
sonal/perceived data are no longer stored at the end devices
or apps. To obtain more information, attackers are required
to study attacks against HA platforms, where the security
measures are more robust.
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Fig. 15. An Taxonomy of Attacks and Defenses for HA Systems Security.

V. DEFENSES OF HOME AUTOMATION SYSTEMS

The security risks of HA systems can be summarized as
the vulnerabilities of the resource-limited devices, the wireless
communications, the app’s capabilities management, and the
TAP-based platforms collaboration, according to Section IV.
Existing security policies are no longer sufficient to defend
against new security threats posed by TAP-based rule interac-
tions and cross-platform interactions.

To deal with these security threats, some great efforts have
been made to provide effective defenses for HA systems so
as to cope with both traditional IoT attacks and the unique
TAP model-based attacks. In this section, we first clarify the
security requirements for a stable HA system, which can be
taken as a supplement to existing security policies. Then, we
summarize and compare relevant defenses for HA systems.
Specifically, we divide them into four groups according to the
vulnerable spots that they defend against.

To better understand the relationship between attacks and
defenses, we provide a detailed taxonomy of HA systems
security in Fig. 15. With the presented four security require-
ments, we correlate our taxonomies for attacks and defenses.
Generally, a particular type of attack imposes a specific secu-
rity requirement. And to satisfy this security requirement, a
kind of corresponding defenses are proposed.

A. Security Requirements of HA Systems

To ensure the stability and security of HA systems, some
security requirements should be met. Based on the exten-
sive research and analysis, we propose four general security
requirements for HA systems.

1) Security Checks of Devices: HA systems are mostly
self-operated and require only a few user interventions. This
limits the user’s insight into the true functionality of devices
as well as potential security threats in the system. What’s
worse, some devices also lack a firmware update or patching
mechanisms that could help eliminate security vulnerabili-
ties. These oversights allow attackers to compromise systems

by disguising malicious devices as benign ones or exploiting
vulnerabilities of devices. Thus, HA systems require security
checks of devices.

Most of the existing works analyze device security in
two different approaches. One is to evaluate the security of
devices by analyzing environmental data or device behaviors.
However, these approaches are difficult to implement, since
they need to collect data from encrypted traffic, through the
technologies of device fingerprint [37], [173], [174], [175]
and network traffic analysis [176], [177], [178]. Another is to
reduce the privileges of devices so as to minimize the damage
caused by their abnormality [25], [179], [180]. For example,
user can remove the external communication function of the
device to cut off the remote control. However, such schemes
can affect the usability of devices, which further lowers the
operational efficiency of HA systems. Therefore, HA systems
should have the security requirement of effective and efficient
device checking. However, it is quite challenging to accurately
distinguish carefully disguised devices from the vast amount
of benign devices.

2) Reliability of Communication Channels: The commu-
nication channels include network channels represented by
wired/wireless connections, and physical channels such as
sound/Illumination, which are consistent with the communi-
cation layer in Section IV-B. The three main entities (i.e.,
platforms, users, devices) of HA systems rely on various com-
munication channels to exchange commands and messages.
With the increase of the device number and the user’s needs,
reliable communication channels become more critical for HA
systems.

Lightweight communication protocols such as ZigBee,
WiFi, and MQTT are usually deployed on HA devices.
However, the characteristics of these protocols, such as
short transmission distance, low transmission rate, bad anti-
interference, may lead to the execution delay of automation
commands and make the system vulnerable to network attacks
like DDoS attacks [181]. Besides, transmission protocols such
as MQTT and CoAP rely on the TLS protocol to achieve end-
to-end encryption between two entities, making it impossible
for third parties to inspect the communication. Thus, users
can not audit and inspect the device activities. In other words,
there is a conflict between security and auditability.

On the other hand, physical channels are also unreliable
as an external input and output of HA systems. Researchers
need to consider how to prevent malicious inputs from enter-
ing the system through the physical environment (e.g., by
injecting malicious commands into voice assistants) and how
to reduce the impact of improper operations on the physical
environment. Thus, for stability and reliability reasons, HA
systems require reliable communication channels. In partic-
ular, they should not only bear the desirable properties of
low-latency and anti-interference, but can also support some
security mechanisms such as traffic monitoring and encrypted
transmission.

3) Authorization and Monitoring of Apps: In HA systems,
apps are given a large number of permissions to configure,
control, and monitor devices. Usually, a user-controlled app
collects data from sensors to construct corresponding events,

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 08,2023 at 09:38:24 UTC from IEEE Xplore.  Restrictions apply. 



2314 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 24, NO. 4, FOURTH QUARTER 2022

which are then used as inputs by the customized automa-
tion rules therein to provide automation services. However,
many malicious apps do not follow the principle of least priv-
ilege and may access device capabilities beyond their actual
demand, which enables them to collect and leak user data
without user consent [182]. Surbatovich et al. [83] found
that approximately 50% of 19,323 unique automation apps
on the IFTTT platform would potentially disclose sensitive
information. What’s worse, apps stitch online services and
physical resources together through APIs that lack censor-
ship mechanisms, making the system more vulnerable to
attacks [182], [183]. Therefore, to ensure the security and
privacy of HA systems, the permissions of apps should be con-
strained, and effective authorization of apps is required [184].

With secure and effective authorization of apps, data sensed
by sensors would only be transferred to authenticated apps, and
online services would only connect authenticated apps [185],
[186]. However, reasonable authorization should not only con-
trol app’s access to the device but also restrict the app’s
permissions to operate the device [42], [187]. For example,
an app for automatic door lock should only have the per-
mission to lock the door, without opening it or changing
the pin-code. With the increase of the number of apps, the
intersection of permissions becomes more and more complex,
making it difficult for users to determine whether the app’s per-
missions match its functionality. Therefore, it’s hard to achieve
appropriate fine-grained authorization of apps.

It is worth noting that once an app gets permission from
a user, the permission remains “on” unless the user manually
turns it off. This may lead to the user’s privacy leakage. For
example, a weather app can read the user’s voice, but if it
keeps recording when we don’t need the service. Thus, in
addition to authenticating apps, we also need to monitor the
data flow of apps to prevent them from using permissions at
inappropriate times and pose security risks to HA systems.

4) Consistency of Automation Rules: In HA systems,
devices act according to predefined automation rules, so the
disorder of automation rules will lead to the confusion of
device states. For example, if two rules with the action of open-
ing and closing the door respectively, are executed at the same
time, the state of the door will be out of control. This hazard
is usually caused by incomplete conditions and the disconnec-
tions between function and reality. Therefore, the consistency
of automation rules is required to ensure the effective operation
of HA systems.

Rule redundancy, loop, and conflict detection have been
important research topics in areas like firewall design (e.g.,
Define the types of Internet traffic that are allowed or blocked)
and database security (e.g., Provisions and limits for cell val-
ues stored in tables) in IoT systems [188], [189]. There are
many similarities for rule conflict detection in HA systems,
where some approaches place a security policy [27] or add
a security check box [190] to the app execution environ-
ments. These automated tools can detect rule conflicts, and
then insert, delete, or modify operations to eliminate conflict-
ing rules without human intervention. However, most of these
solutions rely on inference processes, and the issue of false
positives and false negatives still needs to be addressed. In

HA systems, therefore, there is an urgent need for a highly
accurate and easy-to-deploy rule detection solution to exclude
out-of-date rules from a large number of natural rules and
prevent malicious rules from breaking the rule chains.

B. A Taxonomy of Defense Mechanisms

In this section, we review state-of-the-art defense mecha-
nisms for HA systems. Thus, we divide them into the following
groups according to the security requirements they achieved:
device discovery and behavior tracing, the inspection of com-
munication channels, fine-grained access control of apps, the
detection of abnormal dataflow, and the analysis of rules
interaction.

1) Device Discovery and Behavior Tracing: The discovery
of devices is a prerequisite for characterizing and monitor-
ing them. Device information can be collected by analyzing
the packets or textual information from apps and software
services. Previous studies [191], [192], [193] used fingerprint-
ing or banner grabbing technology to discover and annotate
devices. Usually, learning algorithms in fingerprint recogni-
tion require large amounts of labeled training data to achieve
high accuracy and high coverage. In practice, however, there
is a lack of training data for device discovery. The banner
grabbing technology develops banner rules to filter the host
device’s information, which contains only part of the device
annotation, thus can not realize large-scale device discovery.

There is a large amount of device response data in the
network without being able to identify which devices they
are coming from. ARE [194] is a newly proposed technique
for large-scale device discovery that automatically generates
information about a device based on the device’s network data.
Some websites, such as the description webpage of the prod-
ucts, product review websites, and Wikipedia, have detailed
descriptions of device information on the Internet. Given this,
ARE extracts the keywords from the device application layer
packets, and uses them to discover the device description web-
sites. Besides, ARE defines the device rules (different from
automation rules) as mappings between unique response data
to device descriptions. These mappings are then used to iden-
tify the corresponding devices information for a large number
of application-layer response messages, thus enabling large-
scale device discovery. The device rule can be described as
the format A ⇒ B , where A is the keywords extracted from
the application layer packets and B is a device description
information crawled from the related Web pages. As shown
in Fig. 16, ARE receives application-layer response data from
online devices and filters out redundant fields (e.g., hyperlinks,
script blocks, etc.) to form the transaction set. Rule Miner is
the core of ARE, which uses Device Entity Recognition (NER)
to extract device annotations in the form of 〈vendor (e.g.,
Schneider), device type (e.g., camera), product (e.g., ISR4451-
X/K9)〉. Local Dependency that describes the occurrence order
of three entities 〈vendor, device type, product〉 (e.g., ven-
dor information appears first in the Web page, followed by
the device type) is used to further filter the device enti-
ties. The data mining algorithm Apriori Algorithm will learn
device rules from the Transaction set. Based on the malicious
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Fig. 16. ARE architecture.

response data of devices collected from the honeypot tech-
nology [195] and the National Vulnerability Database [196],
the author further used the ARE to extract the rules for these
devices to discover their relevant information, which therefore
enables the discovery of vulnerable devices in HA systems.

Besides, Kumar et al. [95] provided the first large-scale
empirical analysis about devices with data collected from 83
million devices in 16 million households. They detailed the
devices’ open services, weak default credentials, and vul-
nerabilities to known attacks. Pour et al. [197] revealed the
scanning behavior, packet arrival interval, adoption rate, and
geographical distribution of devices in an IoT botnet by
observing only one-way network traffic (e.g., request mes-
sages). However, these methods are too expensive to be used
for large-scale device discovery. To achieve a good balance
between the overhead of multi-protocol probe technique (used
to extract device information from the application layer of
the protocol) and the identification fineness, Yu et al. [198]
modeled the banner-based device identification process as a
Markov decision process (MDP) and then derived the optimal
multi-protocol probe sequence segments based on a gain
threshold of identification accuracy to reduce device discovery
time. However, device connectivity in HA systems is dynamic,
with mobile devices moving in and out of the system as users
arrive and leave. Therefore, it would be a promising research
direction to compress and embed device discovery apps into
the system to enable timely and continuous device information
updates.

Moreover, to locate the sources of malicious events
promptly, HA systems need to enable the behavioral trac-
ing of devices. The data provenance techniques [199], [200],
[201], which are used to record fields (e.g., creation date,
creator, data processing method, etc.) in the form of meta-
data, allow users to clarify causal event chains and data state
changes that occur within HA systems. ProvThings [38]
uses program instrumentation technology to insert specially
crafted code into the app, which responds to specially crafted
instructions and reports the corresponding data allocation and
method calls to obtain data provenance. In ProvThings, all

the behaviors of a data object are recorded, which can be
used to explain questions such as “in what context was the
data generated” and “did this message come from sensitive
data”. This provides a descriptive policy language to explain
the causal relationships between different event sequences in
device-level. However, the limited resources of devices make
it difficult to deploy analytic apps on the user side to com-
plete data collection directly. Besides, IoTBox [25] analyses
the device behaviors from a bundle of apps and devices and
deploys a sandbox, which enforces that previously unseen
behaviors are disallowed. It can block the execution of mali-
cious behavior introduced from software updates or obscured
through methods to hinder program analysis.

For the stable operation of HA systems, it is important to
achieve the coexistence of potentially vulnerable devices with-
out compromising the security of other devices in the same
network. To this end, isolating vulnerable devices when nec-
essary is a good idea. SENTINEL [37] automatically identifies
the type of each device connected to the HA system and exe-
cutes the vulnerability assessment based on the device type.
It enforces isolation policies on vulnerable devices to restrict
their communication, thus the damage or impact of the com-
promised device is minimized. SENTINEL consists of two
main components: a security gateway located on the user’s
local network and an IoT security service provider (IoTSSP).
When a new device is connected to the network, the secu-
rity gateway generates a fingerprint from its network activity,
which is then sent to the IoTSSP. IoTSSP uses a machine
learning-based classification model to classify devices accord-
ing to their type. For each device type in the training data, the
IoTSSP performs a vulnerability assessment based on querying
a database such as CVE for vulnerability reports, and speci-
fies a restricted isolation level for the device type (i.e., Strict,
Restricted, Trusted). Based on that, the gateway enforces dif-
ferent levels of isolation policies for different devices. For
example, the Strict isolation policy only allows the device to
communicate with other devices in the trusted network overlay
and the device cannot access the Internet.

Summary: These defense mechanisms provide good exam-
ples for device discovery and behavior tracing. However, the
devices in HA are interactive and would generate a large
amount of data, which belongs to different operating envi-
ronments and have various data structures. Especially when
multiple platforms collaborate, data may be processed in dif-
ferent services, further complicating the information flow.
Thus, cross-platform device identification will be a challenge.

2) The Inspection of Communication Channels: A reli-
able communication channel is the foundation for safely and
orderly operating HA systems. To ensure the reliability of
network channel, a great number of studies [202], [203], [204],
[205], [206] looked into Machine-to-Machine (M2M) proto-
cols protection. Jia et al. [132] made efforts to mitigate the
security risks of the most popular network protocol in HA
systems – MQTT. They proposed a set of secure design princi-
ples to standardize authentication and authorization protection
of network protocols and designed an enhanced access model,
MOUCON, to ensure that devices can only be accessed while
the MQTT client is authorized. When a client wants to invoke
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an MQTT message under the platform, MOUCON checks the
client’s access rights to the message’s properties. Besides,
MOUCON maintains a mapping between the platform identity
(e.g., Amazon account) and the allowed MQTT identity (e.g.,
ClientID). Any attempts to claim an unauthorized ClientID
will be denied.

On the other hand, communication layer security takes
advantage of the channel randomness of the transmission
media to achieve confidentiality and authentication of commu-
nication channels [102]. Wiretap coding and signal processing
technologies are expected to play vital roles in this new secu-
rity mechanism [207]. Awan et al. [208] investigated the
problem of secure communication over parallel relay channels
in the presence of a passive eavesdropper and demonstrated
the basic secrecy capability of composite relay eavesdropping
channels. For each sub-channel, the relay station randomly
chooses to decode and forward the source information or inject
noise, thus confusing the eavesdropper.

Devices can affect the behavior of one another by changing
the physical environment. However, there are security vul-
nerabilities in this physical interaction among devices. For
example, an attacker can use a heater to raise the room tem-
perature, and then an automation rule detects the increased
temperature and opens the window. To find security problems
caused by physical interactions, the first step is to identify the
physical channels existing in HA systems and their associ-
ated devices and rules. Ban et al. proposed TAESim [209],
a simulation testbed that can model the TAP environment
and report on unexpected events in a few seconds. TAESim
simplifies the modeling of devices, rules, and channels (e.g.,
time, degree Celsius). For example, in the simulator, each
device is modeled as a variable with only two states (i.e.,
off/on). However, in the real world, the device states vary a
lot, and physical channels may change drastically. Ding and
Hu [24] identified all possible physical interaction channels
among devices by textual analysis of the app’s description
document and assessed the security risk of each physical chan-
nel interaction chain. However, the static analysis does not
capture some of the security issues that occur at runtime.
IoTSafe [210] is then proposed to identify the physical inter-
actions between devices at runtime based on the contextual
characteristics of the environment. It first extracts the trigger
conditions and the corresponding actions through a code anal-
ysis module to generate static interaction graphs. Then, it uses
the app’s configuration (e.g., temperature threshold that trig-
gers heater action) and room information to generate test cases
to further simulate the user’s real environment. To identify the
delayed impact of devices on the physical environment (e.g.,
the room temperature begins to change after the air condi-
tioner is on for a certain time period), IoTSafe classifies
potential physical interactions between devices by adjusting
the sequence of device actions. For example, temperature-
controlled devices such as air conditioners are activated at
different times in different cases. By performing run-time tests
on all possible cases, actual physical interactions can be identi-
fied and nonexistent ones are excluded. If an attacker changes
the temperature, IoTSafe can anticipate the upcoming device
behavior (e.g., the window will be open) and notify the user in

advance. However, this approach incurs significant computa-
tion overhead induced by static analysis and dynamic testing
and is troublesome as it requires the user to configure the
modification policy.

In voice control-based HA systems, the voice is a typical
kind of physical channel. To enhance the security of voice
authentication, Feng et al. [211] proposed VAuth to ensure
that wearable voice devices (e.g., glasses, airphones/buds)
only execute commands from the owner’s voice. Unlike the
direct collection of speech information such as the user’s
speech and accent using a microphone, VAuth uses an
embedded accelerator to collect unique body surface vibra-
tion signal and matches it with the speech signal received by
the voice assistant microphone to achieve speaker recognition.
Meng et al. [212] proposed a device-free voice liveness detec-
tion system based on the prevalent wireless signals generated
by IoT devices, called WiVo. It first extracts the unique fea-
tures from both voice and wireless signals. Then, it calculates
the consistency between these different types of signals to dis-
tinguish the authentic voice command from a spoofed one.
Therefore, diverse interactions bridge the physical and cyber
worlds, but there is a lack of security assessment for them.

Summary: These solutions make creative improvements to
the defense of HA systems in terms of both network and phys-
ical communications. However, data is not point-to-point in
the communication process. Users may receive status update
data from a particular device at the same time, i.e., some data
is sent in the form of broadcast. The delivery of data may
have time delay or packet loss, and how to ensure the secure
real-time sharing of data will be a new research direction.

3) Fine-Grained Access Control of Apps: HA systems
include lots of automation apps, physical devices, and online
services. Once an automation app requests the control of a
service (or a device), a series of commands or attributes con-
tained in the capabilities of the service (or the device) would be
automatically authorized to it. However, Fernandes et al. [92]
brought to light the security risks that more than 55% of smart
apps in stores are over-privileged due to their coarse-grained
capabilities. To avoid attacks based on over-privileged apps,
researchers proposed some countermeasures on preventing
apps from obtaining undeclared permissions or abusing the
permissions without the user’s knowledge [42], [213], [214],
[215]. They also suggested restricting attackers from obtain-
ing high-level permissions (e.g., API token compromise)
[44], [216].

Patching automation apps or actively prompting users is
a good method to prohibit privilege abuse. Jia et al. [42]
proposed a user-centered permission management system,
called ContexIoT, which can infer the app’s context (e.g.,
UID/GID, control flow, run-time value, etc.) automatically and
enforce permissions based on the context. It identifies security-
sensitive behaviors (such as unlocking) and then asks users to
manage the permissions. Specifically, when a sensitive behav-
ior matches a previously allowed context, the behavior will
be allowed. When a context first appears, the user will decide
based on the descriptive information about the correspond-
ing app. Furthermore, to deal with the security issue that
the description is inconsistent with actual operation in apps,

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 08,2023 at 09:38:24 UTC from IEEE Xplore.  Restrictions apply. 



WANG et al.: SURVEY ON IoT-ENABLED HOME AUTOMATION SYSTEMS: ATTACKS AND DEFENSES 2317

Fig. 17. HoMonit workflow.

WHYPER [213] uses NLP techniques to identify sentences with
permission requirements in an app description and compares
them with app operations. However, such attempts can only
be used for the protection of frequently used security-sensitive
permissions (e.g., address book, calendar, and recording audio)
due to the lack of training data for uncommonly used permis-
sions (e.g., getting heart rate sensor readings, getting power).
Besides, SmartAuth [214] performs static analysis on the
app’s source code, and uses NLP techniques on code anno-
tations and related API documents to link the context of
the device (e.g., humidity sensor in a shower room) to the
semantics of the activity (e.g., showering). However, such a
method is vulnerable to spoofing attacks, which can bypass
the detection of SmartAuth by constructing legitimate traf-
fic. Celik et al. [27] introduced a rigorously grounded system,
IoTGuard, for enforcing the correct operation of HA devices
and apps through systematically identified IoT policies. IoT
policy can be taken as a system artifact that represents the real-
world needs of users and environments (e.g., The door must
always be locked when the user is not home). IoTGuard
checks the IoT environment based on 36 identified policies.
It first adds extra logic to an app’s source code to collect the
app’s information at runtime, then stores the apps’ information
in a dynamic model, and finally enforces relevant policies on
the dynamic model of individual apps or sets of interacting
apps.

To effectively detect attacks from malicious apps that con-
stantly eavesdrop and spoof events, HoMonit [215] provides
a novel approach to monitor the behavior of smart apps from
encrypted traffic, without making any changes to the existing
HA systems. The core idea is to represent the working logic of
SmartApps in SmartThings as a state transfer and then estab-
lish a pairing relationship between packet traffic changes and
app status changes. As shown in Fig. 17, HoMonit first con-
verts the source code obtained from the HA platform into
an abstract syntax tree (AST). Then, the semantic analysis is
leveraged to match the parameters and instructions obtained
from the official documentation with the application’s states

to determine the app’s state set. Moreover, HoMonit uses a
subscription method to determine the app’s state transfer con-
ditions. Based on the app’s set of states and transfer conditions,
HoMonit builds a Deterministic Finite Automaton (DFA)
model, where the capabilities of devices are subdivided (e.g.,
switch.on and switch.off ). Finally, HoMonit monitors the
encrypted wireless communication channel by side-channel
analysis to match the SmartApps activities (packet size and
packet space) with the state and transfer conditions in the DFA
model. Once a smart app operates in a state that is not included
in the DFA model, it is possible that the device is behaving
abnormally and the corresponding app is malicious. Although
it is claimed that this approach can be potentially applied to
other IoT systems, it requires the extra wireless sniffers to be
deployed and has a certain false-positive rate.

To standardize app’s access to the API, Dtap [44] intro-
duces Decentralized Action Integrity by defining rule-specific
tokens for triggers and actions in each app. These tokens
only allow users to execute application-specific API calls. For
instance, for the rule “Turn off the oven if smoke is detected”,
there are two specific OAuth tokens. One is only allowed to
set a callback for the smoke event, and the other is only
allowed to turn off the oven. Besides, rule-specific tokens
can also restrict the parameters of API calls. For example,
it is possible to cast a rule-specific token that only allows the
holder to set the thermostat to 68 ◦ F. With Dtap, even if an
attacker obtains a rule-specific token, he could only use the
token to execute rule-specific online service actions explic-
itly created by the user, while all other commands will be
disabled. Moreover, since Dtap attaches a timestamp and sur-
vival time to the token to ensure the freshness of the event, it
is hard for attackers to construct false tokens. However, Dtap
necessitates the deployment of some enhanced attachments to
the platform architecture or communication process (e.g., the
platfrom needs to reconfirm the tokens after receiving events).

Summary: Currently, fine-grained defenses against apps are
mostly based on advanced analysis of app or API permissions
using ML or NLP. They have a requirement for computing
power, and some of them require obtaining or modifying the
app’s source code. There is thus a need for defense mecha-
nisms that are less modified and easier to deploy. Besides, the
HA platform’s app marketplace opens up a large number of
out-of-the-box apps for users to install. Whether the existing
schemes can be applied to large-scale malicious app inspection
remains to be studied.

4) The Detection of Abnormal Dataflow: Skipping over
the analysis of app behaviors, and only analyzing sensitive
information flows corresponding to the app or only supervis-
ing the dataflow that appears in HA systems would speed up
the attack detection process. Fig. 18 shows two methods of
abnormal dataflow detection.

The first method is SAINT [16], which is a static taint
analysis tool to monitor the abnormal dataflow in apps. It dis-
covers sensitive data flows in apps by tracing the information
flow from sensitive sources to external sinks. The sensi-
tive sources defined by SAINT include device status (e.g.,
locked/unlocked), device information (e.g., device ID), app
input (e.g., triggers), user location information (e.g., IP), and
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Fig. 18. Two ways of data abnormal detection.

app state information (e.g., counters). The external sinks rep-
resent external interfaces like Internet connection ports. To
identify sensitive sources and external sinks, SAINT translates
source codes of the app into an Intermediate Representation
(IR). The IR constructs an app’s entry points, event handlers,
and call graphs, and then forms an inter-app control flow
graph (ICFG) between apps. Based on ICFG, SAINT con-
structs possible data leakage paths from the tainted sinks back
to the sources. Then, it prunes infeasible paths using context-
sensitivity to obtain a set of feasible paths as the output of
static taint tracing. The warning reports in SAINT that contain
the information of all tainted sources and sinks will provide
convenience for source detection of attacks.

The second method is FlowFence [190], which introduces
an opaque computational model to help the detection of abnor-
mal dataflow. This model requires the consumers (apps or
online services) of sensitive data to explicitly declare intended
data flow patterns and enforce the expected data flow pat-
terns through the isolation module (QM). FlowFence has
two main components, (a) sandboxed quarantined modules
(QMs) that prevent needless communication. (b) a trusted ser-
vice&API that maintains handles and the data they represent.
To prevent apps from subscribing to sensitive information
(e.g., developers can write a method to call other apps
to return raw data), FlowFence transforms the raw data
into opaque handles before returning it to untrusted apps.
When QM accesses sensitive information, taints from the data
source (e.g., email messages) are tracked. If this information
belongs to pre-asserted data flow, the opaque handle would be
dereferenced in QM and passed out through the trusted API.

However, both SAINT and FlowFence face the problem
of over-approximation, which is caused by setting thresholds
of sensitive information. In particular, SAINT sets all methods
in apps as potential call targets, FlowFence does not restrict
QMs as code blocks that handle only sensitive data. Moreover,
the adoption of sandboxing techniques requires the slicing of
apps and a more complex execution flow.

Summary: While these solutions meet the security require-
ments of Authorization and Monitoring of Apps, they either

Fig. 19. General technical workflow of rule vulnerabilities detection systems.

require modifications to the app code or the deployment of
additional components (i.e., sandbox). However, the program-
ming languages of apps vary from platform to platform, and
some platforms impose strict restrictions on modifications to
the system. Therefore, the scalability of these defenses needs
to be improved.

5) The Analysis of Rules Interaction: To ensure that rules
operate in order, many researchers have focused on detecting
rule conflicts or violations of security properties [24], [40],
[99]. For example, iRuler [26] divides rule conflicts into
six categories and establishes a detection model to evaluate
the conflict rules in IFTTT. By analyzing existing methods, we
summarize the general workflow of rule vulnerability detection
as shown in Fig. 19, which contains four main modules: Rule
Parser, Model Builder, Intermediate Representation (IR), and
Checking Engine.

Rule parser extracts all the rules in the app and then converts
the rules into an interaction chain for the subsequent genera-
tion of the model. It has four main processes: (a) Extract the
input and output events of an app using static analysis. The
input event is explicitly declared in the subscription command.
It can be either identified by the API that reads the device sta-
tus or represented by an interrupt at a specific time. The output
event is called through the API that changes the state of the
smart device [39]. (b) Build dependency relationship between
rules based on event handler, input events, and output events.
(c) Transform the extracted rules into a standard representa-
tion. (d) Connect the two interaction rules to enable Interaction
Chain Discovery with the help of physical and system chan-
nels. For example, IoTMon [24] represents a single rule by
the 2-element tuple (trigger, action). It compares the channels
used in each rule to determine whether two rules can be con-
nected through one channel. Finally, a rule chain consisting of
two rules can be represented by a 5-element tuple (trigger 1,
action 1, channel, trigger 2, action 2).

Model Builder integrates heterogeneous devices and com-
plex apps according to the device metadata. Then, it extracts
rule representation and users’ configuration. In the end, Model
Builder will generates data in a unified format and pass it
to IR. It can be divided into device modeling, environment
modeling, and time modeling. (a) Device modeling uses a
unified paradigm to represent the state of the device and
the executable commands. For example, the heater has the
attribute of the “switch” and has two commands turn.on
and turn.off [26]. The device model includes the ID of
the device, the type of the device (such as heater and air
conditioner), and the attributes of the device (such as the
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device status, device command, and the effect of the com-
mand on the environment). (b) Environment modeling is to
model the environmental factors of rule interaction, that is,
the obtained physical channel. Note that as an environment
object, the same type of environment variables in different
locations should be different environment variables. For exam-
ple, the illumination in the living room and bedroom should
belong to different environmental variables. It can be modeled
as :< env .type|location|value:_ >. The value update of the
device model and environment model will affect each other.
(c) Time modeling instantiates physical time as a monoton-
ically growing variable and treats it as a trigger when the
rule is executed. For example, IOTGaze [217] constructs a
time model and finds temporal event dependencies (sequen-
tial interactions of events between applications and devices). It
identifies potentially anomalous interactions in HA systems by
combining the wireless context generated by sniffing encrypted
wireless traffic with user context generated by the descrip-
tion& UI of the apps. However, the problem faced by many
devices such as NFC smart cards is that they do not involve
the concept of time. Therefore, HA systems need to include
multiple logging methods for identifying and correlating
events.

Intermediate Representation (IR) is the transformation of
the source code of the app, which contains the life cycle
information of the app (e.g., entry points, event handling meth-
ods, and call graphs). It can efficiently extract the state and
state transitions. The adoption of IR allows the static analy-
sis algorithm to be more concise and efficient. For example,
Soteria [218] first obtains permissions of the app to extract
its devices and user inputs. Then, it analyzes what events the
app subscribes for establishing IR event/action blocks, and in
the end creates a call graph for the entry point of each pro-
cessing method to determine the calling sequence of event
handlers.

Checking Engine is responsible for detecting rule security.
Model checking and satisfiability module theory (SMT) are
two of the most common methods. Model checking is a tech-
nology that represents a system as a finite state machine and
checks whether the system conforms to the specified spec-
ifications [219]. The specification is written with temporal
logic formulas, such as Linear Temporal Logic (LTL) and
Computational Tree Logic (CTL) [220]. Ideally, the model
checker examines each system state to determine if there is
a violation of a predefined security policy. A SMT solver is
used to solve constraint satisfaction problems. For the trivial
strategy without LTL and CTL syntax, the SMT solver can
be used as an alternative method to solve parameters quickly.
AutoTap [221] and Salus [222] are two methods that trans-
late user desired properties and control system logic into a set
of parametric equations, and then fix existing TAP rules with
popular model checking tools or SMT.

Note that not all mechanisms follow the workflow shown
in Fig. 19, and some have novel expansions. IoTMon and
SafeChain are two typical mechanisms, which can mit-
igates rule interaction risks based on rule vulnerabilities
detection. Based on quantitative (IoTMon) and qualitative
(SafeChain) analysis, the two mechanisms use supplements

Fig. 20. Mitigation methods of rule interaction risks.

or send confirmation to users to block undesired rules
interaction.

As shown in Fig. 20, IoTMon [24] first extracts automation
rules, identifies the physical channels and system channels of
the rules, and constructs the interaction chains. Then, it mod-
els the rule chains, represents the rule chains with 11 physical
and system channels, and assigns values to channels accord-
ing to their frequency. After that, IoTMon gets the baseline
by modeling the trusted interaction chains. The risk score of
an interaction chain can be estimated according to the distance
between the nearest baseline and the detected interaction chain.
For an interaction chain with a high-risk score, IoTMon pro-
poses adding new triggers to mitigate its risk. For example,
an interaction chain with a high-risk score may turn on the
heater after 6 p.m., causing the temperature to rise and the
window to be opened automatically, which creates a chance
for attackers to break into the owner’s home. By supplement-
ing a rule “the window can only be opened when the owner
is at home”, the risk of such an interaction chain can be miti-
gated. SafeChain [40] does not focus on the conflict of rules
but detects the privilege escalation and privacy leakage caused
by rules. It proposes a practical security chain system based
on model checking, which models the HA system as a finite
state machine (FSM) to identify the attack chain. SafeChain
offer two alternative approaches to mitigate risks. In the first
approach, each rule with security problems will be put into
the monitoring list, and the user is requested to confirm when
the monitored rule is about to be executed. The second is
to find the minimum number of rules to block attack chains.
For each attack chain, blocking one of the rules can stop
the attack. Thus, optimization algorithms use pruning and
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TABLE VI
OVERVIEW OF DEFENSE METHODS

grouping methods to ignore irrelevant rules or combine them
with equivalence states to minimize blocking rules. However,
SafeChain does not account for the physical interaction,
which may lead to mis-blocking (false positives) and unde-
tected attacks (false negatives) due to missing transitions in
the FSM.

Summary: The main objective of defensive measures
against rule vulnerabilities is to construct a secure rule
interaction environment. These solutions generally use pro-
gram analysis techniques to model the system, identify various
system/physical channels, and monitor/restrict the information
delivery. However, implementing system-level real-time mon-
itoring is resource-intensive. Especially in HA systems, many
devices are dynamic (e.g., device connection/disconnection,
message backlog, etc.). How to cope with a large amount of
real-time data is a promising direction to consider in the future.

C. Summary and Comparisons of Typical Defenses

This section compares a few representative defense mech-
anisms mentioned above from the aspects of their purpose,
techniques, supported platforms, and security requirements, as
shown in Table VI.
ARE [194], MOUCON [132], IoTSafe [210], and

VAuth [211] are some extensions of the current internal data
detection mechanisms for HA systems. Among them, ARE

focuses more on adding security checks on devices, while
MOUCON and IoTSafe examine the reliability of HA commu-
nication channels. ARE provides a malicious device discovery
and filtering method to block attacks. Thus, it can effectively
reduces the probability of a system entering an insecure state.
MOUCON bridges the gap between cloud and local interactions,
ensuring the consistency of the device state in the system with
the actual state. Unlike IoTSafe, which provides a physical
environment modeling (e.g., temperature, light, humidity, etc.)
that allows apps to give apps a clearer picture of the system’s
operational state, VAuth [211] focuses on the physical chan-
nel interaction between user and voice assistants. These three
approaches broaden the defense horizons and make it more
difficult for external cyber/physical attackers to invade.
FlowFence [190], SAINT [16] and ProvThings [38]

are all dataflow detection mechanisms, which can prevent
insecure dataflow. However, FlowFence and ProvThings
are dedicated to dynamic dataflow protection while SAINT
is static taint analysis. FlowFence enforces the expected
declared sensitive dataflow and prevents other undeclared
flows. SAINT extracts the Intermediate Representation (IR)
from the application source code, identifies the source, and
performs static analysis to identify sensitive datastream.
ProvThings, on the other hand, analyzes data flows to
reverse locate the source of insecure logs. All these three
mechanisms can be deployed on SmartThings, enhancing the
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security of HA systems by meeting the security require-
ments for the app’s authorization and monitoring. Besides,
ProvThings also collects the device behavior and support
the security check of end-point devices.
SmartAuth [214], Soteria [218] HoMonit [215],

IoTMon [24] and AutoTap [221] are designed to prevent
undesired rules interaction. They generally use model check-
ing or SMT technology to detect the rule conflict and security
attribute violation, so as to meet the security requirements of
consistency of automatic rules. Among them, SmartAuth
analyzes the capabilities of individual apps to tighten control
over apps permissions. HoMonit creates dynamic state trans-
fer maps for apps, which are used to prevent inconsistencies
between apps operations and the working state of devices. To
address the security issues caused by multiple triggers in HA
systems, Soteria and AutoTap add multiple impact factors
to the model and construct call graphs for the interaction states
between apps. Based on the constructed models, IoTMon and
AutoTap propose their respective designs for repairing inse-
cure rules. All these mechanisms are supported for deployment
in smartThings, except AutoTap, as its experiments come
from studies of recruited participants.

Most of the existing work focuses on data flow control
and rule security detection, but a systematic study of security
protocols and security APIs in HA systems remains under-
explored. Note that this is one of the possible future research
directions for HA systems that we summarize in Section VI.

VI. OPEN RESEARCH ISSUES

As we discussed above, many efforts have been made to
design effective attack and defense methods for HA systems.
However, there are still many issues that have not been well
studied. This section provides some open issues from both
attack and defense perspectives.

A. Open Issues for Attacks

1) Exploiting Vulnerabilities of Smarter Devices: Existing
attacks are generally restricted to low-intelligence devices,
which are attached to HA hubs/gateways, and have only lim-
ited impact on HA systems if hijacked. However, recently,
smarter devices are widely deployed in HA systems, which
brings challenges for attackers since smarter devices have
more resources to deploy firewalls or software protection.
These devices, such as smart voice assistants, smart watches,
and smart cameras, can analyze user data, read information and
send messages to others, thus playing more important roles in
HA systems than low-intelligence devices. Therefore, attacks
on such smarter devices may be highly disruptive and may set
off a chain reaction in HA systems. Hijacking smarter devices
and posing a more serious threat to HA systems will be an
attractive topic.

Smarter devices place more emphasis on human-machine
interaction For example, sensor pieces developed on smarter
devices are very conducive to interacting with users. Due to
such interactions, users’ sensitive information is often con-
tained in sensor data, which provides chances for attackers to
analyze sensor data to obtain user-sensitive information. For

example, sensitive information (such as passwords and per-
sonal data) that users frequently type on mobile devices can
be inferred from the motion sensors of wearable devices on
users’ wrists. However, such vulnerabilities have not received
sufficient attention yet. It would be a good attempt for attackers
to take advantage of AI techniques to analyze data from sensor
pieces on smarter devices to infer user-sensitive information.

2) Exploiting Vulnerabilities of Permission Sharing: In
many HA platforms, users are allowed to share their control
over the residence. For example, Apple’s HomeKit supports
the user to invite others to take control of his/her home
from anywhere and edit their permissions. Although permis-
sion sharing has been carefully delineated and systematically
researched in other areas (e.g., operating systems, networked
cloud drives, social media, etc.), it has not received sufficient
attention in HA systems to guide users to properly manipulate
shared permissions. The details of permission transfer are com-
pletely unknown to the user. Hence, exploiting the information
gap to gain permissions is a promising idea for attackers. Also,
it is feasible to cheat users to share permissions with attackers
and then execute malicious rules. Very few attacks exploit the
vulnerability of permission sharing in HA systems, so this will
be a good direction for future efforts.

3) Cracking New Authentication Mechanisms in Every
Respect: It is worth noting that as new devices enter the
market, new authentication methods are introduced, including
contextual matching and face recognition. Previous attacks can
not crack these new authentication methods. Thus, It is nec-
essary to propose new attacks to compromise or bypass these
new authentication mechanisms.

Additionally, current authentication attacks are mostly
focused on the device side, such as impersonating devices
through theft of device credentials, weak password enumera-
tion, etc. However, these attacks require extensive vulnerability
analysis of devices and are easily blocked by firewalls or
security patches. Therefore, it is an open issue to crack authen-
tication mechanisms in every respect, i.e., launching attacks
at the user or even the platform side. Once the user or the
platform is compromised, the scope of data available to the
attacker would expand to all the devices under the user’s
control, and such an attack would be highly threatening.
Furthermore, current attacks on device authentication mech-
anisms are relatively isolated. Specifically, the attack only
targets a product belonging to a certain brand and is not
scalable to other brands. Future attacks need to account for
scalibility and transferability.

4) Expanding Breaches of Data Security and Privacy: In
HA systems, data security is mainly compromised by mali-
cious information injection attacks. Existing attacks generally
require the insertion of a Trojan device or application to
distribute the malicious message. This will undermine the
integrity of HA systems, and thus the attack is easily exposed
to defense mechanisms. Hence, there is a need to find new
methods of attack that can inject malicious data into the HA
system from outside while no changes are made to the system
itself. This kind of attack is feasible since it comes into play
during the smart devices’ interaction with the outside world.
For example, by modifying information on external websites,
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smart voice assistants can obtain false information and achieve
simple information injection without breaking any components
of the HA system. Notably, the core issue of such attacks
is how to inject more harmful information into HA systems
from the outside and bypass the HA system’s inspection of
the injected data to expand breaches of data security.

The ubiquity of sensors in HA systems puts user privacy
at great risk since the sensing data often contains the user’s
sensitive information. For example, wearable devices such as
Apple Watch, Apple Health Kit, or Google Fido can collect
sensitive information such as financial status and health con-
ditions. The challenge for attackers is how to ferry sensitive
information out. Existing attacks often require malicious pro-
grams to be installed in the system or specialized devices to be
deployed around the home to receive timely information. This
highly invasive behavior is easily detected by the firewall or
the owner. Therefore, it is necessary to develop new sensitive
data leakage attacks that are more covert and real-time, thus
expanding breaches of data privacy.

5) Abusing the Interaction Chains: HA systems organize
devices, users, and platforms together with the TAP model,
and use automation rules to enable mutual communication and
collaborative operation between devices/services. The com-
bination of multiple automation rules can further form a
long chain of devices/services interactions. Current attacks
destroy HA systems by disrupting the availability of devices,
which have a small impact and are limited to individual
devices/services. In the future, attackers can consider abus-
ing the interaction chains to extend the range of attacks. For
example, constructing a malicious chain of interactions to pass
the influence of misbehavior of a single (simple) device to
other (secure) devices. In this case, the user/defender cannot
directly replace the (security) device to fix the problem, nor
can they quickly locate the attacked (simple) device. However,
the great challenge for such attacks is to know the set of rules
customized by users in different HA systems and use these
rules to develop viable attacks. Besides, such attacks should
consider how malicious automation rules can be introduced
into HA systems proactively, as well as how to induce users
to activate false rules, or construct malicious interaction chains
in new ways.

B. Open Issues for Defenses

1) Monitoring Smart Voice Assistants: Since smart voice
assistants in HA systems are important devices as well as an
important communication channel, they become a major tar-
get for attackers. Existing studies have shown that attackers
can use inaudible voice commands to manipulate voice assis-
tants due to their openness. Meanwhile, adversaries can easily
record the user’s voice commands and replay them to trick the
voice assistant. However, the defenses of smart voice assistants
have not been adequately studied. Future works should attach
more importance to smart voice assistants monitoring and try
to defend against attacks on voice assistants.

2) Protecting User Privacy Against Apps: In HA systems,
many automation apps can compromise user privacy without
user consent. For example, some apps grant access to user

information (e.g., name, contact details, etc.) in their “default
privacy settings”. However, some of the existing defense mech-
anisms directly prevent automation apps from exchanging data,
which harms the usability of the app. Others require extensive
analysis and classification of system data, which incurs a cer-
tain level of computational overhead. Thus, to ensure better
protection of user privacy, some lightweight defense mecha-
nisms should be designed to allow users to gain full control
over their private data. That is, users have the option to decide
what data to share with whom under what conditions.

3) Ensuring Security of Data Sharing: Cross-platform col-
laborations become common in HA systems for more open
development environments. However, since the security of
“cloud-cloud interconnection” between two platforms has not
been adequately ensured, the data sharing between platforms
can easily lead to the outflow of sensitive data. Some works
tried to add a layer of protective measures at the interface
of each platform to control data sharing and avoid insecure
behaviors. However, such methods usually cause a significant
decrease in the operation response speed. Thus, future research
should try to achieve a better trade-off between data sharing
security and user experience.

4) Verifying Physical Events: Event spoofing attacks can
abnormally trigger automation rules to indirectly control other
devices and even the whole system. For example, if there is
an automation rule that “when the door is opened, open the
window”, an attacker can construct a spoofed device response
message to make the platform controller think that “the door
has been opened”. Then, the window will be opened at the
wrong time. In this way, the attacker can indirectly control the
window and even control the temperature in the HA system.
However, until now, it is hard to judge whether there is an
event spoofing attack or not. Thus, future works should pay
attention to the open issue of event verification to imple-
ment appropriate defensive measures. To analyze the data from
event sensors is a good way to determine whether the physi-
cal event is true, but it may require the additional deployment
of a wealth of sensors, which seems impractical. Therefore,
research in this field has great potential.

5) Designing Functional User Interfaces: HA systems con-
tain lots of devices and services, and the user interface is the
only way that the user can get information about the status of
devices and services. Nevertheless, the user interfaces of HA
systems are too simple currently and can only provide very
basic operations such as device controlling and rule sets. Some
important security components such as device interaction mon-
itoring and security tips have not been integrated. Therefore,
to avoid security issues caused by unsafe operations of users,
it is necessary to design a functional user interface that has a
complete security guarantee. It is worth noting that users pre-
fer the automation to be intuitive and easy-to-operate instead
of the complex description and instructions of applications.
Thus, future works on user interface design should avoid
cockamamie and detailed user settings.

On the other hand, the current user interface is still very
rudimentary in rule generation and acquisition. Specifically,
users can only create rules for a single trigger and a single
action, or directly download the pre-configured rules according
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to the instructions of the interface. There is no way for the
user to self-check whether there exist conflicts between the
sequence of rules being set or whether the downloaded rules
correspond to the devices in the home. Hence, there is an
urgent need to research and develop the ecosystem of automa-
tion rules (e.g., skills, SmartApps), so that we can understand
the types of rules available, the capabilities they have, how
they are used, and the sources of third-party developers, and
thus design a satisfactory user interface.

VII. CONCLUSION

In this survey, we conduct a systematic and comprehensive
review of attacks and defenses in HA systems. First, we pro-
vide an overview by introducing the architecture and workflow
of HA systems and comparing some common HA platforms.
Second, we summarize typical attacks against each layer of the
HA system, including perception layer attacks, communica-
tion layer attacks, and application layer attacks. Furthermore,
we shed light on the security risks exploited by these attacks,
which contains not only traditional IoT vulnerabilities but also
special TAP model-based vulnerabilities. Third, an in-depth
review and discussion of security requirements and defense
methods for HA systems is presented. In particular, we com-
pare typical defense mechanisms from various aspects, such
as their purpose, supported HA platforms and security require-
ments, etc. Finally, we clarify the current research bottlenecks
and present some promising future research directions, and
look forward to uplifting and inspiring more endeavors for
further research towards the security of HA systems.
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